新干县实验中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新干县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1.

,则等于( )
A

B

C

D

2. 已知函数f (x )=2x ,则f ′(x )=( )
A .2x
B .2x ln2
C .2x +ln2
D

3. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0
B .1
C .2
D .3
4. 阅读如下所示的程序框图,若运行相应的程序,则输出的S 的值是( )
A .39
B .21
C .81
D .
102
5. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )
A .
B 2=AC
B .A+C=2B
C .B (B ﹣A )=A (C ﹣A )
D .B (B ﹣A )=C (C ﹣A )
6. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( ) A .2 B .﹣2 C
.﹣ D

7. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数
1
2
z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
8. 已知函数()x e f x x
=,关于x 的方程2
()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的
取值范围是( )
A .21(,)21e e -+?-
B .21(,)21e e --?-
C .21(0,)21e e --
D .2121e e 禳-镲

-镲铪
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
9. 若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )
A .58
B .54
C .52
D .5
10.若函数y=|x|(1﹣x )在区间A 上是增函数,那么区间A 最大为( )
A .(﹣∞,0)
B .
C .[0,+∞)
D .
11.如右图,在长方体
中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将
次到第次反射点之间的线
段记为

,将线段
竖直放置在同一水平线上,则大致的图形是( )
A
B
C
D
12.已知平面向量=(1,2),=(﹣2,m),且∥,则=()
A.(﹣5,﹣10)B.(﹣4,﹣8) C.(﹣3,﹣6) D.(﹣2,﹣4)
二、填空题
13.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被
抽到的概率都为,则总体的个数为.
14.给出下列命题:
①存在实数α,使
②函数是偶函数

是函数的一条对称轴方程 ④若α、β是第一象限的角,且α<β,则sin α<sin β
其中正确命题的序号是 .
15.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.
【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 16.如图所示是y=f (x )的导函数的图象,有下列四个命题: ①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;
③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.
其中真命题为 (填写所有真命题的序号).
17.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________. 18.已知α为钝角,sin
(+α)
=,则sin

﹣α)= .
三、解答题
19.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x
),且有最小值是. (1)求f (x )的解析式;
(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;
(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.
1818 0792 4544 1716 5809 7983 8619
6206 7650 0310 5523 6405 0526 6238
20.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.
(1)求数列{a n}的通项公式;
(2)若b n=,求数列{b n}的前n项和S n.
21.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).
(1)求f(x)的最小值,并求取最小值时x的范围;
(2)若f(x)的最小值为2,求证:f(x)≥a+b.
22.求下列函数的定义域,并用区间表示其结果.
(1)y=+;
(2)y=.
23.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1.
24.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
新干县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】B
【解析】解:∵,


∴(﹣1,2)=m (1,1)+n (1,﹣1)=(m+n ,m ﹣n )
∴m+n=﹣1,m ﹣n=2,
∴m=,n=﹣,

故选B .
【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.
2. 【答案】B
【解析】解:f (x )=2x ,则f'(x )=2x
ln2, 故选:B .
【点评】本题考查了导数运算法则,属于基础题.
3. 【答案】C
【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2
﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅, 可得b 的最小值为:2. 故选:C .
【点评】本题考查集合的基本运算,交集的意义,是基础题.
4. 【答案】] 【解析】
试题分析:第一次循环:2,3==n S ;第二次循环:3,21==n S ;第三次循环:4,102==n S .结束循环,输出102=S .故选D. 1 考点:算法初步. 5. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;
故排除A ,D ; 若公比q ≠1,
则A=S n =
,B=S 2n =
,C=S 3n =

B(B﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n)
A(C﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n);
故B(B﹣A)=A(C﹣A);
故选:C.
【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.
6.【答案】B
【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,
所以f(2015)=f(3×672﹣1)=f(﹣1);
又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,
所以f(﹣1)=﹣f(1)=﹣2,
即f(2015)=﹣2.
故选:B.
【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).
7.【答案】B
【解析】
8.【答案】D
第Ⅱ卷(共90分)
9. 【答案】B 【解析】
试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+0
40
72y x y x ,解得定点()1,3,当点(3,1)
是弦中点时,此时弦长AB 最小,圆心与定点的距离()()512312
2=-+-=
d ,弦长
545252=-=AB ,故选B.
考点:1.直线与圆的位置关系;2.直线系方程.
【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]
10.【答案】B
【解析】解:y=|x|(1﹣x)=,
再结合二次函数图象可知
函数y=|x|(1﹣x)的单调递增区间是:.
故选:B.
11.【答案】C
【解析】根据题意有:
A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);
E的坐标为(4,3,12)
(1)l1长度计算
所以:l1=|AE|==13。

(2)l2长度计算
将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:
A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);
显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。

设AE与的延长线与平面A2B2C2D2相交于:E2(x E2,y E2,24)
根据相识三角形易知:
x E2=2x E=2×4=8,
y E2=2y E=2×3=6,
即:E2(8,6,24)
根据坐标可知,E2在长方形A2B2C2D2内。

12.【答案】B
【解析】解:排除法:横坐标为2+(﹣6)=﹣4,
故选B.
二、填空题
13.【答案】300.
【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,
所以总体中的个体的个数为15÷=300.
故答案为:300.
【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.
14.【答案】②③.
【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,
②函数=cosx是偶函数,故②正确,
③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数
的一条对称轴方程,故③正确,
④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,
故答案为:②③.
【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.
15.【答案】19
【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.16.【答案】①
【解析】解:由图象得:f(x)在(1,3)上递减,在(﹣3,1),(3,+∞)递增,
∴①f(x)在(﹣3,1)上是增函数,正确,
x=3是f(x)的极小值点,②④不正确;
③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确,
故答案为:①.
17.【答案】
【解析】由y=x2+3x得y′=2x+3,
∴当x=-1时,y′=1,
则曲线y=x2+3x在点(-1,-2)处的切线方程为y+2=x+1,
即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
18.【答案】
﹣ .
【解析】解:∵sin
(+α)
=, ∴cos
(﹣α)
=cos[
﹣(
+α)]
=sin

+α)
=,
∵α
为钝角,即<α<π,



, ∴sin
(﹣α)<0, ∴sin
(﹣α)=

=

=


故答案为:﹣.
【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.
三、解答题
19.【答案】
【解析】解:(1)二次函数f (x )图象经过点(0,4),任意x 满足f (3﹣x )=f (x ) 则对称轴
x=, f (x
)存在最小值, 则二次项系数a >0
设f (x )=a (x
﹣)2
+.
将点(0,4)代入得:
f(0)=,
解得:a=1
∴f(x)=(x﹣)2+=x2﹣3x+4.
(2)h(x)=f(x)﹣(2t﹣3)x
=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].
当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;
当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;
当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:
当t≤0时,最小值4;
当0<t<1时,最小值4﹣t2;
当t≥1时,最小值﹣2t+5.
∴.
(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,
∴m<x2﹣5x+4对x∈[﹣1,3]恒成立,
∵g(x)=x2﹣5x+4在x∈[﹣1,3]上的最小值为,
∴m<.
20.【答案】
【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,
∴=(a2+2)(a4﹣2),
(1+2d)2=(3+d)(﹣1+3d),
d2﹣4d+4=0,解得:d=2,
∴a n=1+2(n﹣1)=2n﹣1,
数列{a n}的通项公式a n=2n﹣1;
(2)b n===(﹣),
S n=[(1﹣)+(﹣)+…+(﹣)],
=(1﹣),
=,
数列{b n}的前n项和S n,S n=.
21.【答案】
【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|
=|a+b|得,
当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,
∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.
(2)证明:由(1)知a+b=2,
(a+b)2=a+b+2ab≤2(a+b)=4,
∴a+b≤2,
∴f(x)≥a+b=2≥a+b,
即f(x)≥a+b.
22.【答案】
【解析】解:(1)∵y=+,
∴,
解得x≥﹣2且x≠﹣2且x≠3,
∴函数y的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,
∴,
解得x≤4且x≠1且x≠3,
∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].
23.【答案】
【解析】解:(1)∵ABC﹣A1B1C1为直三棱柱,
∴CC1⊥平面ABC,AC⊂平面ABC,
∴CC1⊥AC…
∵AC=3,BC=4,AB=5,
∴AB2=AC2+BC2,∴AC⊥CB …
又C1C∩CB=C,
∴AC⊥平面C1CB1B,又BC1⊂平面C1CB1B,
∴AC⊥BC1…
(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,
∴E为C1B的中点…
又D为AB中点,∴AC1∥DE…
DE⊂平面CDB1,AC1⊄平面CDB1,
∴AC1∥平面CDB1…
【点评】本题考查直线与平面垂直,直线与直线垂直,直线与平面平行的证明,考查逻辑推理能力.
24.【答案】
【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,
再结合频率分布直方图可知n=,
∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,

(Ⅱ)因为第2,3,4组回答正确的人数共有54人,
∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;
第4组:人
(Ⅲ)设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.
则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),
(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,
其中恰好没有第3组人共3个基本事件,
∴所抽取的人中恰好没有第3组人的概率是:.
【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.。

相关文档
最新文档