西安市人教版七年级上册数学期末试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安市人教版七年级上册数学期末试卷
一、选择题
1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元
B .(b ﹣10)元
C .(10a ﹣b )元
D .(b ﹣10a )元
2.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q
3.已知max
{
}
2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,
max {}{
}2
2,,max 9,9,9x x x ==81.当max {
}
21
,,2
x x x =时,则x 的值为( ) A .14
-
B .116
C .
14
D .
12
4.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 5.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0
B .1-
C . 2.5-
D .3
6.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等
D .线段AB 的延长线与射线BA 是同一条射线
7.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1 D .(-1)n x 2n +1 8.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+
B .321x +
C .22x x -
D .3221x x -+
9.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )
A .棱柱
B .圆锥
C .圆柱
D .棱锥 10.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )
A .﹣4
B .﹣2
C .4
D .2
11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,
则t 的值为( ) A .2或2.5 B .2或10
C .2.5
D .2
12.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是
( ) A .①②④
B .①②③
C .②③④
D .①③④
二、填空题
13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.
15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 16.=38A ∠︒,则A ∠的补角的度数为______.
17.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙
桶中的油倒出
1
8
给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

18.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
19.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.
20.计算221b a a b a b ⎛
⎫÷- ⎪-+⎝⎭
的结果是______ 21.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.
22.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 23.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.
24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .
三、解答题
25.解方程:
(1)3524x x -=- (2)4132
y y
-+= 26.计算:
(1)23(1)27|2|-+-+- (2)2
3
11
(6)()232
-⨯-- 27.解方程:131
142
x x x +-+
=- 28.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).
29.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.
(1)填空:AB = ,BC = .
(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC AB -的值是否随着时间t 的变化而改变? 请说明理由。

(3)现有动点P Q 、都从A 点出发,点P 以每秒1个单位长度的速度向终点C 移动:当点
P 移动到B 点时,点Q 才从A 点出发,并以每秒3个单位长度的速度向右移动,且当点P
到达C 点时,点Q 就停止移动.设点P 移动的时间为t 秒,请试用含t 的式了表示P Q 、两点间的距离(不必写过程,直接写出结果).
30.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.
四、压轴题
31.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.
(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;
(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.
32.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a . 请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.
(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;
②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.
33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以
3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从
点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;
(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】
根据题意知:花了10a 元,剩下(b ﹣10a )元. 【详解】
购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元. 故选D . 【点睛】
本题考查了列代数式,能读懂题意是解答此题的关键.
2.B
解析:B 【解析】 【分析】 【详解】
∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,
∴这四个数中绝对值最小的数对应的点是点N . 故选B .
3.C
解析:C 【解析】 【分析】
利用max
}
2,x x 的定义分情况讨论即可求解.
【详解】
解:当max }
21
,2
x x =
时,x ≥0
1
2,解得:x =14
>x >x 2,符合题意;
②x 2=12,解得:x =2
x >x 2,不合题意;
③x =
1
2
x >x 2,不合题意;
故只有x =
1
4
时,max }
21,2
x x =
. 故选:C . 【点睛】
此题主要考查了新定义,正确理解题意分类讨论是解题关键.
4.C
解析:C 【解析】 【分析】
设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】
解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】
本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).
5.C
解析:C 【解析】 【分析】
由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】
解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】
本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
6.C
解析:C 【解析】 【分析】
分别利用直线的性质以及射线的定义和垂线定义分析得出即可. 【详解】
A .连接两点的线段的长度叫做两点间的距离,错误;
B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;
C .对顶角相等,正确;
D .线段AB 的延长线与射线BA 不是同一条射线,错误. 故选C . 【点睛】
本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.
7.C
解析:C 【解析】 【分析】
观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】
观察可知,奇数项系数为正,偶数项系数为负,
∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】
本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.
8.B
解析:B 【解析】
A. 2x 2x 1-+是二次三项式,故此选项错误;
B. 32x 1+是三次二项式,故此选项正确;
C. 2x 2x -是二次二项式,故此选项错误;
D. 32x 2x 1-+是三次三项式,故此选项错误; 故选B.
9.C
解析:C 【解析】 【分析】
根据面动成体可得长方形ABCD 绕CD 边旋转所得的几何体. 【详解】
解:将长方形ABCD 绕CD 边旋转一周,得到的几何体是圆柱, 故选:C . 【点睛】
此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.
10.C
解析:C 【解析】 【分析】
由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可. 【详解】
3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)
=4;
故选C.
【点睛】
代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.
11.A
解析:A
【解析】
【分析】
分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.
【详解】
①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,
解得:t=2;
(2)当两车相遇后,两车又相距50千米时,
根据题意,得120t+80t=450+50,
解得t=2.5.
综上,t的值为2或2.5,
故选A.
【点睛】
本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.
12.B
解析:B
【解析】
【分析】
根据圆锥、圆柱、球、五棱柱的形状特点判断即可.
【详解】
圆锥,如果截面与底面平行,那么截面就是圆;
圆柱,如果截面与上下面平行,那么截面是圆;
球,截面一定是圆;
五棱柱,无论怎么去截,截面都不可能有弧度.
故选B.
二、填空题
13.-3
【解析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.
【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
解析:-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,
所以最小的整数是﹣3.
故答案为:﹣3.
【点睛】
本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.
14.80°
【解析】
【分析】
由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG=
解析:80°
【解析】
【分析】
由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG=160°
∴∠BOG=1
2
×160°=80°.
故答案为80°.
【点睛】
本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键.
【解析】
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为0.09.
【点睛】
本题考查了近似数和
解析:09.
【解析】
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为0.09.
【点睛】
本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
16.【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
,
的补角的度数为:,
故答案为:.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
解析:142︒
【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
∠=,
38
A
∴A
∠的补角的度数为:18038142
-=,
故答案为:142︒.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
17.6
【解析】
【分析】
根据题意设原来乙桶中的油量为,甲桶中的油量为,则可列出方程求出答案. 【详解】
设原来乙桶中的油量为,甲桶中的油量为
第一次:把甲桶中的油倒出一半给乙桶,转移的油量为
甲桶剩
解析:6
【解析】
【分析】
根据题意设原来乙桶中的油量为1,甲桶中的油量为x,则可列出方程求出答案.
【详解】
设原来乙桶中的油量为1,甲桶中的油量为x
第一次:把甲桶中的油倒出一半给乙桶,转移的油量为1 2 x
甲桶剩余油量:
11
22 x x x -=
乙桶剩余油量:1
1 2
x+
第二次:把乙桶中的油倒出1
8
给甲桶,转移的油量为
1111
1
82168
x x
⎛⎫
+=+

⎝⎭
甲桶剩余油量:11191 2168168 x x x
⎛⎫
++=+

⎝⎭
乙桶剩余油量:
11177 1
2168168
x x x
⎛⎫⎛⎫
+-+=+ ⎪ ⎪
⎝⎭⎝⎭
此时甲乙桶中油量相等

9177 168168 x x
+=+
∴6
x=
故原来甲桶中的油量是乙桶中的6倍
【点睛】
本题考查一元一次方程的应用,解题关键在于转移油量之后,要减去,然后联立方程求出倍数关系即可.
18.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元
解析:(23)a b
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 19.5
【解析】
【分析】
首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.
【详解】
解:∵AB=5,BC =3,
∴AC=5+3
解析:5
【解析】
【分析】
首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.
【详解】
解:∵AB =5,BC =3,
∴AC =5+3=8;
∵点D 是AC 的中点,
∴AD =8÷2=4;
∵点E 是AB 的中点,
∴AE =5÷2=2.5,
∴ED =AD ﹣AE =4﹣2.5=1.5.
故答案为:1.5.
【点睛】
此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.
20.【解析】
【分析】
先将括号内进行通分计算,再将除法变乘法约分即可.
【详解】
解:原式=
=
=
故答案为:.
【点睛】
本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b
- 【解析】
【分析】
先将括号内进行通分计算,再将除法变乘法约分即可.
【详解】
解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭
b a b a a b a b a b a b =
()()+⋅-+b a b a b a b b =1a b
- 故答案为:
1a b
-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.
21.-5
【解析】
【分析】
根据题意确定出a 的最大值,b 的最小值,即可求出所求.
【详解】
解:,

,,
故答案为
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
解析:-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
<<,
解:459
23
∴<<,
∴=,b3
=,
a2
=-=-,
则原式495
-
故答案为5
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
22.两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直
解析:两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.
故答案为:两点确定一条直线.
【点睛】
考核知识点:两点确定一条直线.理解课本基本公理即可.
23.4
【解析】
【分析】
根据题中所给的定义进行计算即可
∵32=9,记作(3,9)=2,(−2)4=16,
∴(−2,16)=4.
【点睛】
本题考查的知识点是零指数幂,解题的关键是熟练的
解析:4
【解析】
【分析】
根据题中所给的定义进行计算即可
【详解】
∵32=9,记作(3,9)=2,(−2)4=16,
∴(−2,16)=4.
【点睛】
本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.
24.5
【解析】
【分析】
【详解】
根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.
考点:几何体的三视图.
解析:5
【解析】
【分析】
【详解】
根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.
考点:几何体的三视图.
三、解答题
25.(1)1x =;(2)1y =.
【解析】
【分析】
(1)先移项,再合并同类项,最后化系数为1即可;
(2)先去分母,再去括号并移项与合并同类项,最后化系数为1即可.
【详解】
解:(1)3524x x -=-
移项得:3425x x +=+
合并同类项得:77x =
化系数为1得:1x =.
(2)
4132
y y -+= 去分母得:2(4)3(1)y y -=+ 去括号得:8233y y -=+
移项得:2338y y --=-
合并同类项得:55y -=-
化系数为1得:1y =.
【点睛】
本题考查解一元一次方程,熟练掌握解一元一次方程的解题步骤是解题关键.
26.(1)0;(2)-14
【解析】
【分析】
(1)根据平方、立方根及绝对值的运算法则计算即可;
(2)根据有理数的混合运算法则计算即可.
【详解】
(1)2(1)|2|--
132=-+
0=
(2)23
11
(6)()232-⨯-- 113636832
=⨯-⨯- 12188=--
14=-
【点睛】
本题考查实数的运算,熟练掌握运算法则是解题关键.
27.x=-3
【解析】
【分析】
方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.
【详解】
去分母得,4+(1+3x )=4x-2(x-1),
去括号得,4+1+3x=4x-2x+2,
移项得,3x+2x-4x=2-4-1,
合并同类项得,x=-3.
【点睛】
此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.
28.﹣3
23
. 【解析】
【分析】 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.
【详解】
解:原式=﹣8﹣
23+5=﹣323
. 【点睛】
此题考查的是有理数的混合运算..熟记有理数混合运算法则是关键.
29.(1)14,20;(2)BC AB -的值不会随时间t 的变化而变化,理由见解析;(3)t ,422t - 或242t -
【解析】
【分析】
(1)根据数轴上任意两点间的距离公式等于这两点所表示的数的差的绝对值而得出结论; (2)先分别求出t 秒后A 、B 、C 三点所对应的数,就可以表示出BC ,AB 的值,从而求出BC-AB 的值而得出结论;
(3)先求出经过t 秒后,P 、Q 两点所对应的数,分类讨论①当0<t ≤14时,点Q 还在点A 处,②当14<t ≤21时,点P 在点Q 的右边,③当21<t ≤34时,点Q 在点P 的右边,从而得出结论.
【详解】
解:(1)由题意,得AB=-10-(-24)=14,BC=10-(-10)=20.
故答案为:14,20;
(2)答:不变.
∵经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,
∴BC=(10+7t )-(-10+3t )=4t+20,
AB=(-10+3t )-(-24-t )=4t+14,
∴BC-AB=(4t+20)-(4t+14)=6.
∴BC-AB 的值不会随着时间t 的变化而改变.
(3)经过t秒后,P、Q两点所对应的数分别是-24+t,-24+3(t-14),
由-24+3(t-14)-(-24+t)=0解得t=21,
①当0<t≤14时,点Q还在点A处,
∴PQ=t,
②当14<t≤21时,点P在点Q的右边,
∴PQ=(-24+t)-[-24+3(t-14)]=-2t+42,
③当21<t≤34时,点Q在点P的右边,
∴PQ=[-24+3(t-14)]-(-24+t)=2t-42.
【点睛】
本题考查线段的动点问题以及线段的长度的运用,数轴的运用,两点间的距离的运用,熟练运用数形结合思维分析是解题的关键.
30.见解析
【解析】
【分析】
由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.
【详解】
解:如图所示.
从正面看从侧面看
【点睛】
本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
四、压轴题
31.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】
【分析】
(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;
(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对
值符号的一元一次方程,解之即可得出结论;
(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.
【详解】
解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,
∴3A3A4=12,
∴A3A4=4.
又∵a3=20,
∴a2=a3﹣4=16.
故答案为:4;16.
(2)由(1)可得:a1=12,a2=16,a4=24,
∴a2+a4=40.
又∵|a1﹣x|=a2+a4,
∴|12﹣x|=40,
∴12﹣x=40或12﹣x=﹣40,
解得:x=﹣28或x=52.
(3)根据题意可得:A1A20=19A3A4=76.
设线段MN的运动速度为v单位/秒,
依题意,得:9v=76+5,
解得:v=9.
答:线段MN的运动速度为9单位长度/秒.
【点睛】
本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.
32.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变
【解析】
【分析】
(1)根据点的移动规律在数轴上作出对应的点即可;
(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;
②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.
【详解】
(1)A,B,C三点的位置如图所示:

(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-
(-4)=9,AC =12-(-4)=16.
②3AC -4AB 的值不变.
当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.
即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.
【点睛】
本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.
33.(1)AC=4cm, BC=8cm ;(2)当45
t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)3519
1cm.224t PQ =当为,,时, 【解析】
【分析】
(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;
(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;
(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.
【详解】
(1)AC=4cm, BC=8cm.
(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,
即3t 43t t =-+,解得4t 5=
. 所以当4t 5
=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.
所以当t 2=时,P 与Q 第一次相遇.
(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,
35t t 22
解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,
193t 4t 1122,t 4
+++=⨯=则解得, 3519t PQ 1cm.224
所以当为,,时,= 【点睛】
此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是
解决问题的关键.。

相关文档
最新文档