【高考数学三轮复习冲刺模型通关训练】二项分布为背景的概率模型的解析思路(原卷版)(新高考专用)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布为背景的概率模型的解析思路
第一步:根据题意设出随机变量.
第二步:分析随机变量服从二项分布.
第三步:找到参数n,p.
第四步:写出二项分布的概率表达式.
第五步:求解相关概率.
【易错提醒】二项分布与超几何分布的关系
在n次试验中,某事件A发生的次数X可能服从超几何分布或二项分布.
【典例】(2022·陕西高三模拟)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不
低于8.5分,则称该人的幸福度为“很幸福”.
(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;
(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记X 表示抽到“很幸福”的人数,求X的分布列及()
E X.
二项分布的均值与方差.
(1)如果ξ~B(n,p),则用公式E(ξ)=np;D(ξ)=np(1-p)求解,可大大减少计算量.
(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).
1.【与五育并举融合】2023年亚运会在中国杭州举办,开幕式门票与其他赛事门票在网上开始预定,亚奥理事会规定:开幕式门票分为A、B两档,当预定A档未成功时,系统自动
进入B档预定,已知获得A档门票的概率是1
5
,若未成功,仍有
1
4
的概率获得B档门票的
模拟训练方法总结
机会;而成功获得其他赛事门票的概率均为1
,且获得每张门票之间互不影响.甲预定了一
2
张A档开幕式门票,一张赛事门票;乙预定了两张赛事门票.
(1)求甲乙两人都没有获得任何门票的概率;
(2)求乙获得的门票数比甲多的概率.
.
2.【与频率分布直方图融合】为了响应教育部门疫情期间“停课不停学”的号召,某校实施网络授课,为了检验学生上网课的效果,在高三年级进行了一次网络模拟考试,从中抽取了100人的数学成绩,绘制成频率分布直方图(如下图所示),其中数学成绩落在区间[110,120),[120,130),[130,140]的频率之比为4:2:1.
(1)根据频率分布直方图求学生成绩在区间[110,120)的频率,并求抽取的这100名同学数学成绩的中位数
(2)若将频率视为概率,从全校高三年级学生中随机抽取3个人,记抽取的3人成绩在[100,130)内的学生人数为X,求X的分布列与数学期望.
3.【决策问题】某学校在50年校庆到来之际,举行了一次趣味运动项目比赛,比赛由传统运动项目和新增运动项目组成,每位参赛运动员共需要完成3个运动项目.对于每一个传统运动项目,若没有完成,得0分,若完成了,得30分.对于新增运动项目,若没有完成,得0分,若只完成了1个,得40分,若完成了2个,得90分.最后得分越多者,获得的资金越多.现有两种参赛的方案供运动员选择.方案一:只参加3个传统运动项目.方案二:先参加1个传统运动项目,再参加2个新增运动项目.已知甲、乙两位运动员能完成每个传
()()()()()22n ad bc a b c d a c b d χ-=
++++(其中n a b c d =+++)
6.【结构不良问题】甲、乙两人各进行3次射击,甲每次击中目标的概率为23
,乙每次击中目标的概率为12.假设两人射击是否击中目标,互不影响;每次射击是否击中目标,互不影响.
(1)记甲击中目标的次数为X ,求X 的分布列;
(2)在①甲恰好比乙多击中目标2次,②乙击中目标的次数不超过2次,③甲击中目标3次且乙击中目标2次这三个条件中任取一个,补充在横线中,并解答问题.求___________事件的概率.
(注:如果选择多个条件分别解答,按第一个解答计分)
7.【与条形图融合】第24届冬季奥林匹克运动会,于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目相同次数的训练测试,成绩分别为A 、B 、C 、D 、E 五个等级,分别对应的分数为5、4、3、2、1.甲、乙两位同学在这个项目的测试成绩统计结果如图所示.
(1)根据上图判断,甲、乙两位同学哪位同学的单板滑雪成绩更稳定?(结论不需要证明)
(2)求甲单板滑雪项目各次测试分数的众数和平均数;
(3)若甲、乙再同时参加两次测试,设甲的成绩为4分并且乙的成绩为3分或4分的次数为X ,
求X的分布列(频率当作概率使用).
8.【与分层抽样融合】今年上海疫情牵动人心,大量医务人员驰援上海.现从这些医务人员
25,50内的男、女医务人员各100人,以他们的年龄作为中随机选取了年龄(单位:岁)在[]
样本,得出女医务人员的年龄频率分布直方图和男医务人员的年龄频数分布表如下:
年龄(单位:岁)频数
[)
25,3030
[)
30,3520
[)
35,4025
[)
40,4515
[]
45,5010
(1)求频率分布直方图中a的值:
25,35内的女医务人员中抽取8人,从年龄在(2)在上述样本中用分层抽样的方法从年龄在[)
[)
25,35内的男医务人员中抽取5人.记这13人中年龄在[)
30,35内的医务人员有m人,再从这m人中随机抽取2人,求这2人是异性的概率:
40,50内的男医务人员中随机抽取(3)将上述样本频率视为概率,从所有驰援上海的年龄在[]
45,50内的人数,求X的数学期望及方差.
8人,用X表示抽到年龄在[]
9.【与对立事件融合】已知某机床的控制芯片由()n n *
∈N 个相同的单元组成,每个单元正常工作的概率为p ,且每个单元正常工作与否相互独立.
(1)若14,3
n p ==,求至少有3个单元正常工作的概率; (2)若12
p =,并且n 个单元里有一半及其以上的正常工作,这个芯片就能控制机床,其概率记为()P n .
①求()7P 的值;
②若()12
P n =
,求n 的值.
10.【与折线图融合】2022年冬季奥林匹克运动会在北京胜利举行,北京也成为了第一个同时举办过夏季奥林匹克运动会和冬季奥林匹克运动会以及亚洲运动会三项国际赛事的城市.为推广普及冰雪运动,深入了解湖北某地中小学学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,随机选取了10所学校进行研究,得到如下图数据:
(1)在这10所学校中随机选取3所来调查研究,求在抽到学校至少有一个参与“自由式滑雪”超过40人的条件下,“单板滑雪”不超过30人的概率;
(2)现在有一个“单板滑雪”集训营,对“滑行、转弯、停止”这3个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这3个动作中至少有2个动作达到“优秀”.则该轮测试记为“优秀”,在集训测试中,小明同学滑行,转弯,停止三个动作达到“优秀”的概率。