高考物理稳恒电流题20套(带答案)及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理稳恒电流题20套(带答案)及解析
一、稳恒电流专项训练
1.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:
x /mm
600 700 800 900 1000 1200
1400
1600
1800
2000
2100
2200
2300
2400
U/V
3.95
4.50
5.10
5.90
6.50
6.65
6.82
6.93
7.02
7.15
7.85
8.50
9.05
9.75
⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比
较.
【答案】(1)如图所示; (2)电阻率的允许范围:
a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅
b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅
c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅
通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】
(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随
OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ
=可得S U S R l I l
ρ=⋅=⋅. 66
3
(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 6
73
(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 6
63
(9.77.1)0.2010 1.04101.25(24002000)10
c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.
2.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:
(1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】
(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A
(2)根据热功率公式
,可得固定电阻的发热功率:=12W
(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V
电动机消耗的功率:
=18W
一部分是线圈内阻的发热功率:=4W
另一部分转换为机械功率输出,则
=14W
【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程
,求出热功率;(3)电动机消耗的电功率有两个去向:一部
分是线圈内阻的发热功率;另一部分转化为机械功率输出。

3.四川省“十二五”水利发展规划指出,若按现有供水能力测算,我省供水缺口极大,蓄引提水是目前解决供水问题的重要手段之一。

某地要把河水抽高20m ,进入蓄水池,用一台电动机通过传动效率为80%的皮带,带动效率为60%的离心水泵工作。

工作电压为380V ,
此时输入电动机的电功率为19kW ,电动机的内阻为0.4。

已知水的密度为
,重力加速度取10
2。


(1)电动机内阻消耗的热功率; (2)将蓄水池蓄入864
的水需要的时间(不计进、出水口的水流速度)。

【答案】(1)3
110r p W =⨯(2)4210t s =⨯
【解析】
试题分析:(1) 设电动机的电功率为P ,则P UI =
设电动机内阻r 上消耗的热功率为r P ,则2
r P I r = 代入数据解得3
110r P W =⨯
(2) 设蓄水总质量为M ,所用抽水时间为t .已知抽水高度为h ,容积为V ,水的密度为
ρ,则
M V =ρ
设质量为M 的河水增加的重力势能为p E ∆, 则 p E Mgh ∆=
设电动机的输出功率为0P ,则0? r P P P =- 根据能量守恒定律得060%80%p P t E ⨯⨯∆= 代入数据解得4210t s =⨯。

考点:能量守恒定律、电功、电功率
【名师点睛】根据电动机的功率和电压求解出电流,再根据焦耳定律求解发热功率;水增加的重力势能等于消耗的电能(要考虑效率),根据能量守恒定律列式求解;本题关键是根据能量守恒定律列方程求解,要熟悉电功率和热功率的区别。

4.能量守恒是自然界基本规律,能量转化通过做功实现。

研究发现,电容器存储的能最表达式为c E =
21
CU 2
,其中U 为电容器两极板间的电势差.C 为电容器的电容。

现将一电容器、电源和某定值电阻按照如图所示电路进行连接。

已知电源电动势为0E ,电容器电容为
0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。

现将开关S 闭合,一段时
间后,电路达到稳定状态。

求:在闭合开关到电路稳定的过程中,该电路因电磁辐射、电流的热效应等原因而损失的能量。

【答案】
201
2
CE 【解析】 【详解】
根据电容定义,有C=
Q
U
,其中Q 为电容器储存的电荷量,得:Q=CU 根据题意,电容器储存能量:E C =
12
CU 2 利用电动势为E 0的电源给电容器充电,电容器两极间电压最终为E 0, 所以电容器最终储存的能量为:E 充=
201
2
CE , 则电容器最终储存的电荷量为:Q=CE 0,
整个过程中消耗消耗能量为:E 放=W 电源=E 0It=E 0Q=C 2
0E 根据能量守恒得:E 损=E 放-E 充=C 2
0E -2012CE =201
2
CE
5.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:
①电路中的感应电动势;
②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少. 【答案】(1)2V (2)4J 【解析】
(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为:
0.40.2
20.1
E V V t ∆Φ-=
==∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为: Q=I 2Rt=0.22×10×10J=4J
6.利用如图所示的电路可以测量电源的电动势和内电阻。

当滑动变阻器的滑片滑到某一位置时,电流表和电压表的示数分别为I 1和U 1。

改变滑片的位置后,两表的示数分别为I 2和U 2。

写出这个电源电动势和内电阻的表达式。

【答案】:E=1221
2
1
U I U I I I -- r=1221U U I I --
【解析】 【分析】
由闭合电路欧姆定律列出两次的表达式,联立即可求解. 【详解】
由全电路欧姆定律得: E=U 1+I 1r E=U 2+I 2r 解得: E=1221
21U I U I I I --
r=
12
21
U U I I --
7.一根粗细均匀的金属导线,两端加上恒定电压10 V 时,通过金属导线的电流为2 A ,求:
①金属导线电阻;
②金属导线在10 s 内产生的热量. 【答案】(1)5 Ω (2)200 J
【解析】试题分析:根据欧姆定律和焦耳定律即可解题。

(1)根据欧姆定律: 10
52
U R I =
=Ω=Ω。

(2)产生的热量为: 2
Q I Rt =,代入数据得: 200Q J = 点睛:本题主要考查了欧姆定律和焦耳定律,此题为基础题。

8.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:
(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有
电流)
(2)电源电动势E和内电阻r各是多少?
【答案】(1)1V 1Ω(2)10 V ;2Ω
【解析】
试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧
R3断开前R1上电压U1=R1I=4V
U1= U2 + U3
所以 U2=1V
U2:U3 = R2:R3 =1:3
R2=1Ω
(2)R3断开前总电流I1=3A
E = U1 + I1r
R3断开后总电流I2=2.5A
E = U2 + I2r
联解方程E= 10 V r=2Ω
考点:闭合电路的欧姆定律
【名师点睛】
9.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻的理解其物理本质。

一段长为l、电阻率为ρ、横截面积为S的细金属直导线,单位体积内有n个自由电子,电子电荷量为e、质量为m。

(1)当该导线通有恒定的电流I时:
①请根据电流的定义,推导出导线中自由电子定向移动的速率v;
②经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用可等效为施加在电子上的一个沿导线的平均阻力。

若电子受到的平均阻力大小与电子定向移动的速率成正比,比例系数为k。

请根据以上的描述构建物理模型,推导出比例系数k 的表达式。

(2)将上述导线弯成一个闭合圆线圈,若该不带电的圆线圈绕通过圆心且垂直于线圈平面的轴匀速率转动,线圈中不会有电流通过,若线圈转动的线速度大小发生变化,线圈中会有电流通过,这个现象首先由斯泰瓦和托尔曼在1917年发现,被称为斯泰瓦—托尔曼效应。

这一现象可解释为:当线圈转动的线速度大小均匀变化时,由于惯性,自由电子与线圈中的金属离子间产生定向的相对运动。

取线圈为参照物,金属离子相对静止,由于惯性影响,可认为线圈中的自由电子受到一个大小不变、方向始终沿线圈切线方向的力,该力的作用相当于非静电力的作用。

已知某次此线圈匀加速转动过程中,该切线方向的力的大小恒为F。

根据上述模型回答下列问题:
①求一个电子沿线圈运动一圈,该切线方向的力F做功的大小;
②推导该圆线圈中的电流'I的表达式。

【答案】(1)①I
v neS
=;② ne 2ρ;(2)① Fl ;② 'FS I e ρ=。

【解析】 【分析】 【详解】
(1)①一小段时间t ∆内,流过导线横截面的电子个数为:
N n Sv t ∆=⋅∆
对应的电荷量为:
Q Ne n Sv t e ∆=∆=⋅∆⋅
根据电流的定义有:
Q
I neSv t
∆=
=∆ 解得:I v neS
=
②从能量角度考虑,假设金属中的自由电子定向移动的速率不变,则电场力对电子做的正功与阻力对电子做的负功大小相等,即:
0Ue kvl -=
又因为:
neSv l
U IR nev l S
ρρ⋅==
= 联立以上两式得:2k ne ρ=
(2)①电子运动一圈,非静电力做功为:
2W F r Fl π=⋅=非
②对于圆线圈这个闭合回路,电动势为:
W Fl
E e e
=
=非 根据闭合电路欧姆定律,圆线圈这个闭合回路的电流为:
E
I R
'=
联立以上两式,并根据电阻定律:
l R S
ρ
= 解得:FS I e ρ
'=
10.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B 、R 0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B ,需先测量磁敏电阻处于磁场中的电阻值R B .请按要求完成下列实验.
(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:
A.磁敏电阻,无磁场时阻值R0=150 Ω
B.滑动变阻器R,总电阻约为20 Ω
C.电流表A,量程2.5 mA,内阻约30 Ω
D.电压表V,量程3 V,内阻约3 kΩ
E.直流电源E,电动势3 V,内阻不计
F.开关S,导线若干
(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:
123456
U(V)0.000.450.91 1.50 1.79 2.71
I(mA)0.000.300.60 1.00 1.20 1.80
根据上表可求出磁敏电阻的测量值R B=______Ω.
结合题图可知待测磁场的磁感应强度B=______T.
(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?
________________________________________________________________________.
(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?
___________________________________________________________________________.【答案】(1)见解析图
(2)1500;0.90
(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在
11. 4~1.0T范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化)
(4)磁场反向,磁敏电阻的阻值不变.
【解析】
(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻
器选择分压式接法;由于x
V
A x
R R R R >,所以电流表应内接.电路图如图所示.
(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:
130.4515000.3010R -=Ω=Ω⨯,2
30.91
1516.70.6010R -=Ω=Ω⨯,33
1.50
15001.0010R -=Ω=Ω⨯,
431.791491.71.2010R -=
Ω=Ω⨯,5
3
2.71
15051.8010R -=Ω=Ω⨯, 故电阻的测量值为12345
15035
R R R R R R ++++=
Ω=Ω(1500-1503Ω都算正确.)
由于
0150010150
R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).
(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);
(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.
本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.
12.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻
分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;
(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;
(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.
【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)
203
Q J =
【解析】 【分析】
t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】
(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T
(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s 感应电动势为:E 2=BLv 2=12 V 根据闭合电路欧姆定律:2
24MN PQ
E I A R R ==+
安培力为:F 安=BI 2L =8 N
规定沿斜面向上为正方向,对PQ 进行受力分析可得: F 2+F 安cos 37°=mg sin 37°
代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)
(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,
安培力做功:120
23
MN PQ BLv W BL x J R R =-⋅⋅=-+安
【点睛】
本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.
13.麦克斯韦的电磁场理论告诉我们:变化的磁场产生感生电场,该感生电场是涡旋电场;变化的电场也可以产生感生磁场,该感生磁场是涡旋磁场.
(1)如图所示,在半径为r 的虚线边界内有一垂直于纸面向里的匀强磁场,磁感应强度大小随时间的变化关系为B =kt (k >0且为常量).将一半径也为r 的细金属圆环(图中未画出)与虚线边界同心放置.
①求金属圆环内产生的感生电动势ε的大小.
②变化的磁场产生的涡旋电场存在于磁场内外的广阔空间中,在与磁场垂直的平面内其电场线是一系列同心圆,如图中的实线所示,圆心与磁场区域的中心重合.在同一圆周上,涡旋电场的电场强度大小处处相等.使得金属圆环内产生感生电动势的非静电力是涡旋电场对自由电荷的作用力,这个力称为涡旋电场力,其与电场强度的关系和静电力与电场强度的关系相同.请推导金属圆环位置的涡旋电场的场强大小E 感.
(2)如图所示,在半径为r 的虚线边界内有一垂直于纸面向里的匀强电场,电场强度大小随时间的变化关系为E =ρt (ρ>0且为常量).
①我们把穿过某个面的磁感线条数称为穿过此面的磁通量,同样地,我们可以把穿过某个面的电场线条数称为穿过此面的电通量.电场强度发生变化时,对应面积内的电通量也会发生变化,该变化的电场必然会产生磁场.小明同学猜想求解该磁场的磁感应强度B 感的方法可以类比(1)中求解E 感的方法.若小明同学的猜想成立,请推导B 感在距离电场中心为a (a <r )处的表达式,并求出在距离电场中心
2
r
和2r 处的磁感应强度的比值B 感1:B 感2

②小红同学对上问通过类比得到的B 感的表达式提出质疑,请你用学过的知识判断B 感的表达式是否正确,并给出合理的理由.
【答案】(1)①2k r π ②kr
2
;(2)①1:1②不正确. 【解析】 【分析】
(1)①根据法拉第电磁感应定律求解金属圆环内产生的感生电动势ε的大小.②在金属圆环内,求解非静电力对带电量为-q 的自由电荷所做的功,求解电动势,从而求解感应电场强度;(2)①类比(1)中求解E 感的过程求解 两处的磁感应强度的比值;②通过量纲分析表达式的正误. 【详解】
(1)①根据法拉第电磁感应定律得
()2B S B
S k r t t t
επ∆⋅∆Φ∆=
===∆∆∆ ②在金属圆环内,非静电力对带电量为-q 的自由电荷所做的功W 非=qE 感·2πr 根据电动势的定义W q
非ε=
解得感生电场的场强大小22
kr
E r t π∆Φ=
=∆感 (2)①类比(1)中求解E 感的过程,在半径为R 处的磁感应强度为2e
B R t
π∆Φ=
∆感 在R=a 时,2
e E a πΦ=,解得2
a
B ρ=

在R=2r 时, 2
12e r E π⎛⎫Φ= ⎪⎝⎭
,解得14r B ρ=感 将R=2r 时, 2
2e E r πΦ=,解得24
r
B ρ=

所以
121
1
B B =感感 ② 上问中通过类比得到的B 感的表达式不正确;
因为通过量纲分析我们知道:用基本物理量的国际单位表示2e
B R t
π∆Φ=
∆感的导出单位为
2
4
kg m A s
⋅⋅ ;又因为F B IL =,用基本物理量的国际单位表示F B IL =的导出单位为2kg
A s ⋅.可见,通过类比得到的
B 感的单位是不正确的,所以2e B R t π∆Φ=
∆感的表达式不正确. 【点睛】
考查电磁学综合运用的内容,掌握法拉第电磁感应定律、电场强度和磁感应强度的应用,会用类比法解决问题以及用物理量的量纲判断表达式的正误.
14.如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg、总电阻R=0.25W的单匝矩形金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m.从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终
未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数,重力加速度g取10 m/s2.求:
(1)线框受到的拉力F的大小;
(2)匀强磁场的磁感应强度B的大小;
(3)线框在斜面上运动的过程中产生的焦耳热Q.
【答案】(1)F="1.5" N(2)(3)
【解析】
试题分析:(1)由v-t图象可知,在0~0.4s时间内线框做匀加速直线运动,进入磁场时的速度为v1=2.0m/s,所以:
………………①
………………②
联解①②代入数据得:
F="1.5" N ………………③
(2)由v-t图象可知,线框进入磁场区域后以速度v1做匀速直线运动,由法拉第电磁感应定律和欧姆定律有:E=BLv1…④
由欧姆定律得:…⑤
对于线框匀速运动的过程,由力的平衡条件有:…⑥
联解④⑤⑥代入数据得:…⑦
(3)由v-t图象可知,线框进入磁场区域后做匀速直线运动,并以速度v1匀速穿出磁场,说明线框的宽度等于磁场的宽度,即为:⑧
线框在减速为零时,有:
所以线框不会下滑,设线框穿过磁场的时间为t,则:…⑨
…⑩
联解④⑤⑥代人数据得: (11)
考点:导体切割磁感线时的感应电动势;力的合成与分解的运用;共点力平衡的条件及其
应用;闭合电路的欧姆定律.
15.如图所示的电路中,电源的电动势E=80 V ,内电阻r=2Ω,R1=4Ω,R2为滑动变阻器.问:
(1)R2阻值为多大时,它消耗的功率最大?
(2)如果要求电源输出功率为600 W ,外电路电阻R2应取多少?此时电源效率为多少? (3)该电路中R2取多大时,R1上功率最大? 【答案】(1)6Ω;(2)2Ω, 75%;(3)0Ω 【解析】
试题分析:(1)将1R 视为电源的内电阻处理,则根据电源的输出功率随外电阻变化的特点,知道当21R R r =+时电源的输出功率最大(即外电阻2R 消耗的电功率最大):
21426R R r =+=+Ω=Ω(); 222
12212280••4600 42
P I R R R R W R R r E R ==+=+=++++(
)()()(),解得22R =Ω;,
则得1280
10422
I R r E A A R =
==++++
电源的效率2100%100%75%600102
600P P η=
⨯=⨯=+⨯出
总。

(4)20R =Ω时,电路中电流最大,则1R 上功率最大。

考点:闭合电路的欧姆定律、电功、电功率
【名师点睛】本题关键要掌握电源的总功率、内部消耗的功率和输出功率的计算公式,以及三者之间的关系,并理解掌握电源输出功率最大的条件。

相关文档
最新文档