2020-2021初中数学命题与证明的基础测试题含答案(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学命题与证明的基础测试题含答案(1)
一、选择题
1.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1
a
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;
B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;
C. 若a>|b|,则a2>b2,正确;
D. a<1,如a=-1,此时a=1
a
,故D选项错误,
故选C.
【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.
2.下列定理中,逆命题是假命题的是()
A.在一个三角形中,等角对等边
B.全等三角形对应角相等
C.有一个角是60度的等腰三角形是等边三角形
D.等腰三角形两个底角相等
【答案】B
【解析】
【分析】
先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.
【详解】
解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;
B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;
C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;
D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.
3.下列命题是假命题的是()
A .同角(或等角)的余角相等
B .三角形的任意两边之和大于第三边
C .三角形的内角和为180°
D .两直线平行,同旁内角相等
【答案】D
【解析】
【分析】
利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.
【详解】
A 、同角(或等角)的余角相等,正确,是真命题;
B 、三角形的任意两边之和大于第三边,正确,是真命题;
C 、三角形的内角和为180°,正确,是真命题;
D 、两直线平行,同旁内角互补,故错误,是假命题,
故选D .
【点睛】
考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.
4.下列命题是假命题的是( )
A .四个角相等的四边形是矩形
B .对角线相等的平行四边形是矩形
C .对角线垂直的四边形是菱形
D .对角线垂直的平行四边形是菱形
【答案】C
【解析】
试题分析:A .四个角相等的四边形是矩形,为真命题,故A 选项不符合题意; B .对角线相等的平行四边形是矩形,为真命题,故B 选项不符合题意;
C .对角线垂直的平行四边形是菱形,为假命题,故C 选项符合题意;
D .对角线垂直的平行四边形是菱形,为真命题,故D 选项不符合题意.
故选C .
考点:命题与定理.
5.下列命题中,是假命题的是( )
A .若a>b ,则-a<-b
B .若a>b ,则a+3>b+3
C .若a>b ,则44
a b
D .若a>b ,则a 2>b 2
【答案】D
【解析】
【分析】
利用不等式的性质分别判断后即可确定正确的选项.
【详解】
A 、若a >b ,则-a <-b ,正确,是真命题;
B 、若a >b ,则a+3>b+3,正确,是真命题;
C 、若a >b ,则
44
a b ,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;
故选:D .
【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.
6.下列命题正确的是( )
A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.
B .两个全等的图形之间必有平移关系.
C .三角形经过旋转,对应线段平行且相等.
D .将一个封闭图形旋转,旋转中心只能在图形内部.
【答案】A
【解析】
【分析】
根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.
【详解】
解:A 、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;
B 、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;
C 、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;
D 、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误. 故选:A.
【点睛】
本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
7.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.
A .5个
B .4个
C .3个
D .2个
【解析】
【分析】
利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.
【详解】
解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;
②两直线平行,内错角相等,故错误,是假命题;
③两点之间线段最短,正确,是真命题;
④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;
⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.
【点睛】
本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.
8.以下说法中:(1)多边形的外角和是360 ;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()
A.0 B.1 C.2 D.3
【答案】C
【解析】
【分析】
利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.
【详解】
解:(1)多边形的外角和是360°,正确,是真命题;
(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;
(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,
真命题有2个,
故选:C.
【点睛】
考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.
9.下列命题是真命题的是()
A.若两个数的平方相等,则这两个数相等B.同位角相等
C.同一平面内,垂直于同一直线的两条直线平行D.相等的角是对顶角
【答案】C
【解析】
根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】
A.若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A选项错误;
B.只有两直线平行的情况下,才有同位角相等,故B选项错误;
C.同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;
D.相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D选项错误,
故选C.
【点睛】
本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.
10.下列说法正确的是( )
A.相等的角是对顶角
B.在平面内,经过一点有且只有一条直线与已知直线平行
C.两条直线被第三条直线所截,内错角相等
D.在平面内,经过一点有且只有一条直线与已知直线垂直
【答案】D
【解析】
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】
解:相等的角不一定是对顶角,故A错误;
在平面内,经过直线外一点有且只有一条直线与已知直线平行,故B错误;
两直线平行,内错角相等,故C错误;
在平面内,经过一点有且只有一条直线与已知直线垂直,故D正确;
故答案为D.
【点睛】
此题主要考查了命题的真假判断,掌握定理并灵活运用是解题的关键.
11.交换下列命题的题设和结论,得到的新命题是假命题的是()
A.两直线平行,内错角相等; B.相等的角是对顶角;
C.所有的直角都是相等的;D.若a=b,则a-1=b-1.
【答案】C
【解析】
【分析】
【详解】
分析:写出原命题的逆命题,根据相关的性质、定义判断即可.
详解:交换命题A的题设和结论,得到的新命题是内错角相等,两直线平行,是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等,是真命题;
交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角,是假命题;
交换命题D的题设和结论,得到的新命题是若a﹣1=b﹣1,则a=b,是真命题.
故选C.
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
12.下列命题中,其中真命题的个数是()
①平面直角坐标系内的点与实数对一一对应;
②内错角相等;
③平行于同一条直线的两条直线互相平行;
④对顶角相等
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
正确的命题是真命题,根据真命题的定义依次进行判断.
【详解】
①平面直角坐标系内的点与有序实数对一一对应,是假命题;
②两直线平行,内错角相等,是假命题;
③平行于同一条直线的两条直线不一定相互平行,是真命题;
④对顶角相等,是真命题;
故选:B.
【点睛】
此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.
13.下列命题中,真命题的是()
A.两条直线被第三条直线,同位角相等
B.若a⊥b,b⊥c,则a⊥c
C.点p(x,y),若y=0,则点P在x轴上
D a,则a=﹣l
【答案】C
【解析】
【分析】
根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.
【详解】
A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;
B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;
C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;
D a,则a=0或a=1,所以D选项为假命题.
故选:C.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
14.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()
A.1 B.2 C.3 D.4
【答案】A
【解析】
【分析】
根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】
①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;
②两点之间线段最短;真命题;
③相等的圆心角所对的弧相等;假命题;
④平分弦的直径垂直于弦;假命题;
真命题的个数是1个;
故选:A.
【点睛】
考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
15.下列命题的逆命题是真命题的是( )
A .若a b =,则a b =
B .AB
C ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆
C .若0a =,则0ab =
D .四边相等的四边形是菱形
【答案】D
【解析】
【分析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;
B 、该命题的逆命题为:若△AB
C 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;
C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;
D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;
故选:D .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
16.下列命题中,假命题是( )
A .平行四边形的对角线互相垂直平分
B .矩形的对角线相等
C .菱形的面积等于两条对角线乘积的一半
D .对角线相等的菱形是正方形
【答案】A
【解析】
【分析】
不正确的命题是假命题,根据定义依次判断即可.
【详解】
A. 平行四边形的对角线互相平分,故是假命题;
B. 矩形的对角线相等,故是真命题;
C. 菱形的面积等于两条对角线乘积的一半,故是真命题;
D. 对角线相等的菱形是正方形,故是真命题,
故选:A.
【点睛】
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
17.下列命题的逆命题不正确...
的是( ) A .相等的角是对顶角
B .两直线平行,同旁内角互补
C .矩形的对角线相等
D .平行四边形的对角线互相平分
【答案】C
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A 、逆命题是:对顶角相等.正确;
B 、逆命题是:同旁内角互补,两直线平行,正确;
C 、逆命题是:对角线相等的四边形是矩形,错误;
D 、逆命题是:对角线互相平分的四边形是平行四边形,正确.
故选:C .
【点睛】
本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.
18.交换下列命题的题设和结论,得到的新命题是假命题的是( )
A .两直线平行,同位角相等
B .相等的角是对顶角
C .所有的直角都是相等的
D .若a=b ,则a ﹣3=b ﹣3
【答案】C
【解析】
【分析】
写出原命题的逆命题,根据相关的性质、定义判断即可.
【详解】
解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;
交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,
故选C .
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
19.下面说法正确的个数有( )
①方程329x y +=的非负整数解只有1
3x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122
A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.
A .0个
B .1个
C .2个
D .3个
【答案】A
【解析】
【分析】 根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.
【详解】
解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;
②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;
③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.
⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,
故选A.
【点睛】
此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.
20.已知命题:等边三角形是等腰三角形.则下列说法正确的是( )
A .该命题为假命题
B .该命题为真命题
C .该命题的逆命题为真命题
D .该命题没有逆命题
【答案】B
【解析】分析:首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.
详解:等边三角形是等腰三角形,正确,为真命题;
其逆命题为等腰三角形是等边三角形,错误,为假命题,
故选:B .
点睛:本题考查了命题与定理的知识,解题的关键是能够写出该命题的逆命题,难度不大.。