安徽省蚌埠市第二中学高三数学等差数列测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为
( ) A .2
B .
43
C .4
D .4-
2.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200
B .100
C .90
D .80
3.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
825
两 B .
845两 C .
865两 D .
88
5两 4.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -
B .
3
22
n - C .
3122
n - D .
3122
n + 5.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160
B .180
C .200
D .220
6.已知数列{}n a 的前n 项和n S 满足()
12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭
的前10项的和为
( ) A .
89
B .
910
C .10
11
D .
1112
7.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29
B .38
C .40
D .58
8.设等差数列{}n a 的前n 项和为n S ,10a <且11101921
a a =,则当n S 取最小值时,n 的值为( ) A .21
B .20
C .19
D .19或20
9.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
10.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( )
A .2m
B .21m +
C .22m +
D .23m +
11.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( ) A .10
B
C .64
D .4
12.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15
B .20
C .25
D .30
13.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21S
B .20S
C .19S
D .18S
14.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60
B .11
C .50
D .55
15.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >
D .70S <,且80S <
16.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若
p m n q <<<且()
*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )
A .22p p S p a =⋅
B .p q m n a a a a >
C .1111p q m n
a a a a +<+ D .1111p q m n
S S S S +>+ 17.已知数列{x n }满足x 1=1,x 2=23,且
11112n n n
x x x -++=(n ≥2),则x n 等于( ) A .(
23
)n -1
B .(
23)n C .
21
n + D .
1
2
n + 18.已知数列{}n a 的前n 项和为n S ,且()1
1213n n n n S S a n +++=+-+,现有如下说法:
①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0
B .1
C .2
D .3
19.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60
B .120
C .160
D .240
20.已知等差数列{}n a 中,前n 项和2
15n S n n =-,则使n S 有最小值的n 是( )
A .7
B .8
C .7或8
D .9
二、多选题
21.已知数列{}n a 满足:12a =,当2n ≥
时,)
2
12n a =
-,则关于数列
{}n a 的说法正确的是 ( )
A .27a =
B .数列{}n a 为递增数列
C .2
21n a n n =+-
D .数列{}n a 为周期数列
22.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
23.已知数列{}n a 满足112a =-,11
1n n
a a +=-,则下列各数是{}n a 的项的有( )
A .2-
B .
2
3
C .
32
D .3
24.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >
D .若67S S >则56S S >.
25.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4
B .5
C .7
D .8
26.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=
B .27S S =
C .5S 最小
D .50a =
27.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-
B .310n
a n
C .2
28n S n n =- D .2
4n S n n =-
28.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且32019
11
111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <
29.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
30.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >
B .170S <
C .1819S S >
D .190S >
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.C 【分析】
由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:
()111116
11111322
a a S a
+⨯=
==,
612a ∴=,
又
5620a a +=,
58a ∴=,
654d a a ∴=-=.
故选:C . 2.C 【分析】
先求得1a ,然后求得10S . 【详解】
依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 3.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
8106
100
a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得
长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1
176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式. 4.C 【分析】
根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】
因为数列{}n a 为等差数列,11a =,34a =, 则公差为313
22
a a d -=
=, 因此通项公式为()331
11222
n a n n =+-=-. 故选:C. 5.B 【分析】
把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】
由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020
()10181802
S a a =+=⨯=. 故选:B 6.C 【分析】
首先根据()12n n n S +=得到n a n =,设1
1111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】
当1n =时,111a S ==, 当2n ≥时,()()11122
n n n n n n n a S S n -+-=-=
-=. 检验111a S ==,所以n a n =. 设()11111
11
n n n b a a n n n n +=
==-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
…. 故选:C 7.A 【分析】
根据等差中项的性质,求出414a =,再求10a ; 【详解】
因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 8.B 【分析】 由题得出1392
a d =-,则2202n d
S n dn =-,利用二次函数的性质即可求解.
【详解】
设等差数列{}n a 的公差为d ,
由
111019
21
a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392
a d =-
,10a <,0d ∴>,
()211+2022n n n d
S na d n dn -∴==-,对称轴为20n =,开口向上,
∴当20n =时,n S 最小.
故选:B. 【点睛】
方法点睛:求等差数列前n 项和最值,由于等差数列
()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 9.B 【分析】
根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】
因为各项不为0的等差数列{}n a 满足2
6780a a a -+=,
所以2
7720a a -=,解得72a =或70a =(舍);
又数列{}n b 是等比数列,且772b a ==,
所以3
3810371178b b b b b b b ===.
故选:B. 10.C 【分析】
首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】
由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++=
=
+,
()()()1232322323<02
m m m m a a S m a +++++==+, ()()()()1222212211>02
m m m m m a a S m a a ++++++=
=
++.
故选:C.
【点睛】
关键点睛:本题的第一个关键是根据公式11
,2
,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,
第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 11.D 【分析】
利用等差中项法可知,数列{}
3n a 为等差数列,根据11a =,22a =可求得数列{}
3
n a 的公
差,可求得3
10a 的值,进而可求得10a 的值. 【详解】
对*n N ∀∈都有3
3
3
122n n n a a a ++=+,由等差中项法可知,数列{}
3
n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33
217d a a =-=,
所以,33
101919764a a d =+=+⨯=,因此,104a .
故选:D. 12.B 【分析】
设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入求和公式即可求解 【详解】
设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()51154
55254202
S a d a d ⨯=+=+=⨯= 故选:B 13.B 【分析】
设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系139
2
a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】
设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392
a d =-. 又10a >,所以0d <,因此
222120(20)2002222n d d d d
S n a n n dn n d ⎛⎫=
+-=-=-- ⎪⎝
⎭, 所以20S 最大. 故选:B. 14.D 【分析】
根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】
因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()
1111161111552
a a S a +===.
故选:D. 15.A 【分析】
根据已知条件,结合等差数列前n 项和公式,即可容易判断.
【详解】
依题意,有170a a +>,180a a +< 则()177702a a S +⋅=
>
()()1881884
02
a a S a a +⋅=
=+<
故选:A . 16.D 【分析】
利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】
对于A 选项,由于()
()1221222
p p
p p p p a a S
p a a pa ++=
=+≠,故选项A 错误;
对于B 选项,由于m p q n -=-,则
()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦
()()()()()2
2m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦
()()()2
220q n n m d q n d =-----<,故选项B 错误;
对于C 选项,由于
1111
p q m n m n p q p q p q m n m n
a a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则
()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,
由于2
2
2
2
22p q m n p q pq m n mn +=+⇔++=++,故2222
p q m n +>+.
()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,
故()()22221122
p q m n p q p q m n m n
S S p q a d m n a d S S +--+--+=++>++=+.
()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d
--+---⎡
⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦
()()()22
1121124mn m n mn p q mna a d d
+---<+
+()()()22
1121124m n mn m n mn m n mna a d d S S +---<++=,
由此
1111p q m n p q p q m n m n
S S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】
关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 17.C 【分析】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫
⎨⎬⎩⎭
的通项公式,进而得出答案. 【详解】
由已知可得数列1n x ⎧⎫
⎨⎬⎩⎭
是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21
n x n =+
故选:C 18.D 【分析】
由()
1
1213n n n n S S a n +++=+-+得到()
1
1132n n n a a n ++=-+-,再分n 为奇数和偶数得
到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】
因为()1
1213n n n n S S a n +++=+-+,
所以()
1
1132n n n a a n ++=-+-,
所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,
从而15941a a a a ===⋅⋅⋅=,
22162k k a a k ++=-,222161k k a a k ++=++,
则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,
()()()()234538394041...a a a a a a a a =++++++++,
()()20
1411820622
k k =+⨯=-=
=
∑1220,
故①②③正确. 故选:D 19.B 【分析】
利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】
因为7916+=a a ,
所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()
11515815151581202
a a S a +===⨯=. 故选:B 20.C 【分析】
215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.
【详解】
2
2
152251524n S n n n ⎛⎫=-=--
⎪⎝
⎭,
∴数列{}n S 的图象是分布在抛物线2
1522524y x ⎛⎫=--
⎪⎝
⎭上的横坐标为正整数的离散的
点.
又抛物线开口向上,以15
2x =为对称轴,且1515|
7822
-=-|, 所以当7,8n =时,n S 有最小值. 故选:C
二、多选题
21.ABC 【分析】
由)
2
12n a =
-1=,再利用等差数列的定义求
得n a ,然后逐项判断. 【详解】
当2n ≥时,由)
2
12n a =-,
得)
2
21n a +=
,
1=,又12a =,
所以
是以2为首项,以1为公差的等差数列,
2(1)11n n =+-⨯=+,
即2
21n a n n =+-,故C 正确;
所以27a =,故A 正确;
()2
12n a n =+-,所以{}n a 为递增数列,故正确;
数列{}n a 不具有周期性,故D 错误; 故选:ABC 22.ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题. 23.BD 【分析】
根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】
因为数列{}n a 满足112
a =-,111n n a a +=-,
212131()
2
a ∴=
=--;
32
1
31a a =
=-;
41311
12
a a a =
=-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-
,2
3
,3; 故选:BD . 【点睛】
本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 24.BC 【分析】
根据等差数列的前n 项和性质判断. 【详解】
A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;
B 对:n S 对称轴为
n =7;
C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;
D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】
关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()
2
n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 25.BD 【分析】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:
()()
111110022n n n d n n S na na --=+
=+= 整理得1200
21a n n
=
+-, 因为1a *
∈N ,所以n 为200的因数,()200
12n n
+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD.
【点睛】
关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 26.BD 【分析】
设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】
设等差数列{}n a 的公差为d ,则81187
88282
S a d a d ⨯=+
=+,91198
99362
S a d a d ⨯=+
=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,
解得14a d =-,()()115n a a n d n d ∴=+-=-,()()21
9122
n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2
8
88942
d S d -⨯=
=-,A 选项错误; 对于B 选项,()2
2
29272
d S
d -⨯=
=-,()2
7
79772
d S
d -⨯=
=-,B 选项正确;
对于C 选项,()2
298192224n d d S n n n ⎡⎤
⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
.
若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】
在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 27.AD 【分析】
设等差数列{}n a 的公差为d ,根据已知得1145
460
a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故
25n a n =-,24n S n n =-.
【详解】
解:设等差数列{}n a 的公差为d ,因为450,5S a ==
所以根据等差数列前n 项和公式和通项公式得:11
45
460a d a d +=⎧⎨+=⎩,
解方程组得:13,2a d =-=,
所以()31225n a n n =-+-⨯=-,2
4n S n n =-.
故选:AD. 28.AC 【分析】 将
3201911111a a e e +≤++变形为320191111
01212
a a e e -+-≤++,构造函数()11
12
x f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由
3201911111a a e e +≤++,可得32019
111101212a a e e -+-≤++,令()11
12
x f x e =-+, ()()1111101111
x x x x x e f x f x e e e e --+=+-=+-=++++,
所以()1112
x
f x e =
-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()
320192*********
a a S +=
≥;
当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021
202110110T a =>.
故选:AC 【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 29.ABD 【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确.
故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 30.ABD 【分析】
先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则
190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质
和求和公式可知()0117917917
217
172
2
a a a S a <+⨯⨯=
=
=,()11910191019
219
1902
2
a a a S a +⨯⨯=
=
=>,故BD 正确. 【详解】
根据题意可知数列为递增数列,90a <,100a >,
∴前9项的和最小,故A 正确;
()117917917
217
17022a a a S a +⨯⨯===<,故B 正确; ()1191019
1019219
1902
2
a a a S a +⨯⨯=
=
=>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.
故选:ABD . 【点睛】
本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。