上海民办嘉一联合中学人教版(七年级)初一上册数学期末测试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海民办嘉一联合中学人教版(七年级)初一上册数学期末测试题及答案
一、选择题
1.以下选项中比-2小的是( ) A .0 B .1
C .-1.5
D .-2.5
2.将方程35
32
x x --
=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=
D .6352x x --=
3.王老师有一个实际容量为(
)
20
1.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28
B .30
C .32
D .34
4.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )
A .97
B .102
C .107
D .112
5.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50° B .130° C .50°或 90° D .50°或 130° 6.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1
B .﹣1
C .3
D .﹣3 7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )
A .22()m n -
B .2(2m-n)
C .22m n -
D .2(2)m n -
8.下列各数中,有理数是( ) A .2 B .π C .3.14 D .37 9.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 10.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6 B .6- C .6-或6 D .无法确定 11.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒
B .75︒
C .115︒
D .95︒
12.如图的几何体,从上向下看,看到的是( )
A .
B .
C .
D .
13.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元
B .200元
C .225元
D .259.2元
14.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )
A .a =32
b
B .a =2b
C .a =
52
b D .a =3b
15.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )
A .A
B 上 B .B
C 上 C .C
D 上
D .AD 上
二、填空题
16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.
17.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 189________
19.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个
b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++

⎪⎝⎭
元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.
20.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.
21.若方程
11
222
m x x --=++有增根,则m 的值为____. 22.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若
OC 6=,则线段AB 的长为______.
23.若a 、b 是互为倒数,则2ab ﹣5=_____.
24.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.
25.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.
26.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)
27.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 28.规定:用{m }表示大于 m 的最小整数,例如{5
2
}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[
7
2
]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.
29.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是
______.
30.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
三、压轴题
31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.
(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟
解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.
小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.
(2)请你根据他们的谈话内容,求出图1中∠MON的度数.
类比拓展
受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出
∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.
(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.
32.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)求a、b、c的值;
(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;
(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.
33.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6
a +|2b+12|+(c﹣4)2=0.
(1)求B、C两点的坐标;
(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;
(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的1
3
?直接写出此时点P 的坐标.
34.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()2
25350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;
(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;
(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)
35.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)
(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)
(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.
36.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)
(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:
(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求
PQ
AB
的值.
(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1
CD AB 2
=
,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN
的值不变;②MN
AB
的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并
求值.
37.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).
(1)当甲追上乙时,x = .
(2)请用含x的代数式表示y.
当甲追上乙前,y= ;
当甲追上乙后,甲到达C之前,y= ;
当甲到达C之后,乙到达C之前,y= .
问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.
(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.
(2)若从4:00起计时,求几分钟后分针与时针第一次重合.
38.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】
根据有理数比较大小法则:负数的绝对值越大反而越小可得答案. 【详解】 根据题意可得:
2.52 1.501-<-<-<<, 故答案为:D. 【点睛】
本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.
2.C
解析:C 【解析】 【分析】
方程两边都乘以2,再去括号即可得解. 【详解】
35
32
x x --
= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】
本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.
3.B
解析:B 【解析】 【分析】
根据同底数幂的乘除法法则,进行计算即可. 【详解】
解:(1.8−0.8)×220=220(KB ), 32×211=25×211=216(KB ), (220−216)÷215=25−2=30(首), 故选:B . 【点睛】
本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.
4.B
解析:B
【解析】
【分析】
观察图形,正确数出个数,再进一步得出规律即可.
【详解】
摆成第一个“H”字需要2×3+1=7个棋子,
第二个“H”字需要棋子2×5+2=12个;
第三个“H”字需要2×7+3=17个棋子;
第n个图中,有2×(2n+1)+n=5n+2(个).
∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.
故B.
【点睛】
通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.5.D
解析:D
【解析】
【分析】
根据题意画出图形,再分别计算即可.
【详解】
根据题意画图如下;
(1)
∵OC⊥OD,
∴∠COD=90°,
∵∠AOC=40°,
∴∠BOD=180°﹣90°﹣40°=50°,
(2)
∵OC ⊥OD , ∴∠COD=90°, ∵∠AOC=40°, ∴∠AOD=50°,
∴∠BOD=180°﹣50°=130°, 故选D . 【点睛】
此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.
6.B
解析:B 【解析】 【分析】
将1x =-代入2ax x -=,即可求a 的值. 【详解】
解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.
7.C
解析:C 【解析】 【分析】
根据题意可以用代数式表示m 的2倍与n 平方的差. 【详解】
用代数式表示“m 的2倍与n 平方的差”是:2m-n 2, 故选:C . 【点睛】
本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.
8.C
解析:C
【解析】
【分析】
根据有理数及无理数的概念逐一进行分析即可得.
【详解】
B. π是无理数,故不符合题意;
C. 3.14是有理数,故符合题意;
D.
故选C.
【点睛】
本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.
9.A
解析:A
【解析】
∵+5米表示一个物体向东运动5米,
∴-3米表示向西走3米,
故选A.
10.C
解析:C
【解析】
【分析】
由题意直接根据根据绝对值的性质,即可求出这个数.
【详解】
-或6.
解:如果一个有理数的绝对值是6,那么这个数一定是6
故选:C.
【点睛】
本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
11.B
解析:B
【解析】
【分析】
由题意直接根据互补两角之和为180°求解即可.
【详解】
解:∵∠A=105°,
∴∠A的补角=180°-105°=75°.
故选:B.
【点睛】
本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.
12.A
解析:A
【解析】
【分析】
根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.
【详解】
从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,
故选:A.
【点睛】
本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.13.A
解析:A
【解析】
【分析】
设这种商品每件进价为x元,根据题中的等量关系列方程求解.
【详解】
设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】
本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
14.B
解析:B
【解析】
【分析】
从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】
由图形可知,
S2=(a-b)2+b(a+b)+ab=a2+2b2,
S1=(a+b)2-S2=2ab-b2,
∵S2=2S1,
∴a2+2b2=2(2ab﹣b2),
∴a2﹣4ab+4b2=0,
即(a﹣2b)2=0,
∴a=2b,
故选B.
本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
15.D
解析:D
【解析】
【分析】
根据题意列一元一次方程,然后四个循环为一次即可求得结论.
【详解】
解:设乙走x秒第一次追上甲.
根据题意,得
5x-x=4
解得x=1.
∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;
设乙再走y秒第二次追上甲.
根据题意,得5y-y=8,解得y=2.
∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;
同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;
∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;
乙在第5次追上甲时的位置又回到AB上;
∴2020÷4=505
∴乙在第2020次追上甲时的位置是AD上.
故选:D.
【点睛】
本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.
二、填空题
16.8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
解析:8
【解析】
【分析】
根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.
【详解】
设多边形有n条边,
则n−2=6,
解得n=8.
故答案为8.
【点睛】
此题考查多边形的对角线,解题关键在于掌握计算公式.
17.-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.
【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
解析:-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,
所以最小的整数是﹣3.
故答案为:﹣3.
【点睛】
本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.
18.【解析】
【分析】
根据算术平方根的定义,即可得到答案.
【详解】
解:∵,
∴的算术平方根是;
故答案为:.
【点睛】
本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.
【解析】
【分析】
根据算术平方根的定义,即可得到答案.
【详解】
3=,

【点睛】
本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.
19.33
【解析】
【分析】
根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.
【详解】
解:设6斤重的西瓜卖x 元
解析:33
【解析】
【分析】
根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再
根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝
⎭元”可得出(12+6)斤重西瓜的定价. 【详解】
解:设6斤重的西瓜卖x 元,
则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++
元, 又12斤重的西瓜卖21元,
∴2x+1=21,解得x=10.
故6斤重的西瓜卖10元.
又18=6+12,
∴(6+12)斤重的西瓜定价为:6121021=3336
⨯++(元).
故答案为:33.
【点睛】
本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 20.三
【解析】
【分析】
由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.
【详解】
解:设原价为x ,
两次提价后方案一:;
方案二:;
方案三:.
综上可知三种方案提价最多的是方
解析:三
【解析】
【分析】
由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.
【详解】
解:设原价为x ,
两次提价后方案一:(110%)(130%) 1.43x x ++=;
方案二:(130%)(110%) 1.43x x ++=;
方案三:(120%)(120%) 1.44x x ++=.
综上可知三种方案提价最多的是方案三.
故填:三.
【点睛】
本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.
21.2
【解析】
【分析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值
【详解】
去分母得:m-1-1=2x+4
将x=-2代入得:m-2=-4
解析:2
【解析】
【分析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值
【详解】
去分母得:m-1-1=2x+4
将x=-2代入得:m-2=-4+4
解得:m=2
故答案为:2
【点睛】
此题考查分式方程的增根,掌握运算法则是解题关键
22.4或36
【解析】
【分析】
分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.
【详解】
解:,
设,,
若点C 在线段AB 上,则,
点O 为AB 的中点,
解析:4或36
【解析】
【分析】
分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.
【详解】
解:
AC 2BC =,
∴设BC x =,AC 2x =,
若点C 在线段AB 上,则AB AC BC 3x =+=,
点O 为AB 的中点,
3AO BO x 2∴==,x CO BO BC 6x 12AB 312362
∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,
点O 为AB 的中点,
x AO BO 2∴==,3CO OB BC x 6x 4AB 42
∴=+==∴=∴= 故答案为4或36
【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.
23.-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒
解析:-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.
24.26,5,
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;

解析:26,5,4 5
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;
若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;
若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=4
5;
若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−1
25
(负数,
舍去);
故满足条件的正数x值为:
26,5,4
5.
【点睛】
本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.
25.3(x﹣2)=2x+9
【解析】
【分析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x﹣2)
解析:3(x﹣2)=2x+9
【解析】
【分析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x﹣2)=2x+9.
故答案是:3(x﹣2)=2x+9.
【点睛】
本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.
26.>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:,,

故答案为:
【点睛】
本题考查了多重符号化简和有理数的大小比较,
解析:>
【解析】
【分析】
根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.
【详解】
解:(9)9--=,(9)9-+=-,
(9)(9)∴-->-+.
故答案为:>
【点睛】
本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
27.5或11
【解析】
【分析】
由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.
【详解】
由于C 点的位置不确定,故要分两种情况讨论:
当C 点在B 点右侧时,如图所示:
AC=AB+
解析:5或11
【解析】
【分析】
由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.
【详解】
由于C 点的位置不确定,故要分两种情况讨论:
当C 点在B 点右侧时,如图所示:
AC=AB+BC=8+3=11cm ;
当C 点在B 点左侧时,如图所示:
AC=AB ﹣BC=8﹣3=5cm ;
所以线段AC 等于11cm 或5cm.
28.4
【解析】
【分析】
由题意可得,求解即可.
【详解】
解:
解得
故答案为:4
【点睛】
本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.
解析:4
【解析】
【分析】
由题意可得{}[]1,x x x x =+=,求解即可.
【详解】
解:{}[]
323(1)25323x x x x x +=++=+=
解得4x =
故答案为:4
【点睛】
本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 29.【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第个单项式的系数是;

解析:()21n
n x - 【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;
单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;
第n 个单项式是()21n
n x -; 故答案为()21n
n x -. 【点睛】
此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.
30.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.
三、压轴题
31.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣
12x °)+x °+(45°﹣
12x °)=135°. 【解析】
【分析】
(1)由题意可得,∠MON =
12×90°+90°,∠MON =12∠AOC +12
∠BOD +∠COD ,即可得出答案;
(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;
(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.
【详解】
解:(1)图2中∠MON=1
2
×90°+90°=135°;图3中∠MON=
1 2∠AOC+
1
2
∠BOD+∠COD=
1
2
(∠AOC+∠BOD)+90°=
1
2
90°+90°=135°;
故答案为:135,135;
(2)∵∠COD=90°,
∴∠AOC+∠BOD=180°﹣∠COD=90°,
∵OM和ON是∠AOC和∠BOD的角平分线,
∴∠MOC+∠NOD=1
2
∠AOC+
1
2
∠BOD=
1
2
(∠AOC+∠BOD)=45°,
∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,
设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,
∴∠MOC=1
2
∠AOC=
1
2
(180°﹣x°)=90°﹣
1
2
x°,
∠BON=1
2
∠BOD=
1
2
(90°﹣x°)=45°﹣
1
2
x°,
∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣1
2
x°)+x°+(45°﹣
1
2
x°)=135°.
【点睛】
本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.
32.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-44
3
或4;(3) 当Q点开始运动后第
6、21秒时,P、Q两点之间的距离为8,理由见解析
【解析】
【分析】
(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;
(2)分两种情况讨论可求点P的对应的数;
(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.
【详解】
(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,
解得:a=-24,b=-10,c=10;
(2)-10-(-24)=14,
①点P在AB之间,AP=14×
2
21
=
28
3

-24+28
3
=-
44
3

点P的对应的数是-44
3

②点P在AB的延长线上,AP=14×2=28,
-24+28=4,
点P的对应的数是4;
(3)∵AB=14,BC=20,AC=34,
∴t P=20÷1=20(s),即点P运动时间0≤t≤20,
点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;
当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);
当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=46
3
<17(舍去);
当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=62
3
>20(舍去),
当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,
解得t=21;
综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.
【点睛】
此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.
33.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣
3t+21(3)当t为2秒或13
3
秒时,△OPM的面积是长方形OBCD面积的
1
3
.此时点P的坐
标是(0,﹣4)或(8
3
,﹣6)
【解析】
【分析】
(1)根据绝对值、平方和算术平方根的非负性,求得a,b,c的值,即可得到B、C两点的坐标;
(2)分两种情况:①P在OB上时,直接根据三角形面积公式可得结论;②P在BC上时,。

相关文档
最新文档