滨湖区第四高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滨湖区第四高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知i z 311-=,i z +=32,其中i 是虚数单位,则2
1
z z 的虚部为( ) A .1- B .
54 C .i - D .i 5
4 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.
2. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1
B .2
C .3
D .4
3. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则
=( )
A .
B .
C .
D .±
4. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )
A .(﹣2,﹣1)∪(1,2)
B .(﹣2,﹣1)∪(0,1)∪(2,+∞)
C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
5. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( ) A .135° B .90° C .45° D .75°
6. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆
1)1()3(22=-++y x 上,使得2
π
=
∠APB ,则31≤≤n ;命题:函数x x
x f 3log 4
)(-=
在区间 )4,3(内没有零点.下列命题为真命题的是( )
A .)(q p ⌝∧
B .q p ∧
C .q p ∧⌝)(
D .q p ∨⌝)( 7. 复数z 为纯虚数,若(3﹣i )•z=a+i (i 为虚数单位),则实数a 的值为( )
A .﹣
B .3
C .﹣3
D .
8. 直线: (为参数)与圆:(为参数)的位置关系是( )
A .相离
B .相切
C .相交且过圆心
D .相交但不过圆心
9. 已知菱形ABCD 的边长为3,∠B=60°,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( ) A .15π B

C

π
D .6π
10.在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为
36p , 则正方体棱长为( )
A .2
B .3
C .4
D .5
【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 11.在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形
B .等边三角形
C .等腰直角三角形
D .等腰三角形
12.已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3
D .﹣1或﹣3
二、填空题
13.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .
14.已知x ,y 为实数,代数式222
2)3(9)2(1y x x y ++-++-+的最小值是 .
【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.
15.设,y x 满足约束条件2110y x x y y ≤⎧⎪
+≤⎨⎪+≥⎩
,则3z x y =+的最大值是____________.
16.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,
在90组数对(x i ,y i )(1≤i ≤90,i ∈N *
)中,
经统计有25组数对满足,则以此估计的π值为.
17.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则|+|=.
18.设双曲线﹣=1,F1,F2是其两个焦点,点M在双曲线上.若∠F1MF2=90°,则△F1MF2的面积是.
三、解答题
19.定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),则
(1)求f(0);
(2)证明:f(x)为奇函数;
(3)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.
20.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.
21.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
22.已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.
23.已知函数.
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.
24.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,求直线l的方程.
滨湖区第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】B
【解析】由复数的除法运算法则得,i i i i i i i i z z 54
531086)3)(3()3)(31(33121+=+=-+-+=++=,所以2
1z z 的虚部为54.
2. 【答案】B
【解析】解:∵M ∩{1,2,4}={1,4}, ∴1,4是M 中的元素,2不是M 中的元素. ∵M ⊆{1,2,3,4}, ∴M={1,4}或M={1,3,4}. 故选:B .
3. 【答案】D
【解析】解:△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,
∴A 与B 为双曲线的两焦点,
根据双曲线的定义得:|AC ﹣BC|=2a=8,|AB|=2c=10,
则=

=±.
故选:D .
【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.
4. 【答案】D
【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图
则不等式xf (x )<0的解为:

解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D .
5. 【答案】D
【解析】解:由正弦定理知=

∴sinA==
×
=

∵a <b , ∴A <B , ∴A=45°,
∴C=180°﹣A ﹣B=75°, 故选:D .
6. 【答案】A 【解析】
试题分析:命题p :2
π
=
∠APB ,则以AB 为直径的圆必与圆()
()1132
2
=-++y x 有公共点,所以
121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()x
x
x f 3log 4-=
,()0log 144
3<-=f ,()0log 3
4
333>-=
f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .
考点:复合命题的真假.
【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2
π
=
∠APB ,因此在以AB 为直径的圆上,又点P 在圆
1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数
x x
x f 3log 4
)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.
7. 【答案】D
【解析】解:∵(3﹣i )•z=a+i ,


又z 为纯虚数,
∴,解得:a=.
故选:D .
【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
8.【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化
【试题解析】将参数方程化普通方程为:直线:圆:
圆心(2,1),半径2.
圆心到直线的距离为:,所以直线与圆相交。

又圆心不在直线上,所以直线不过圆心。

故答案为:D
9.【答案】A
【解析】解:如图所示,设球心为O,在平面ABC中的射影为F,E是AB的中点,OF=x,则CF=,EF=
R2=x2+()2=(﹣x)2+()2,
∴x=
∴R2=
∴球的表面积为15π.
故选:A.
【点评】本题考查球的表面积,考查学生的计算能力,确定球的半径是关键.
10.【答案】C
11.【答案】D
【解析】解:∵A+B+C=180°,
∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,
∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,
∴A=C 即为等腰三角形.
故选:D.
【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.
12.【答案】A
【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,
所以=≠,
解得a=﹣3,或a=1.
故选:A.
二、填空题
13.【答案】
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC中,根据正弦定理得:BC==海里,
则这时船与灯塔的距离为海里.
故答案为.
14.
【解析】
15.【答案】73
【解析】
试题分析:画出可行域如下图所示,由图可知目标函数在点12,
33A ⎛⎫
⎪⎝⎭
处取得最大值为73.
考点:线性规划.
16.【答案】.
【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所
围成的弓形面积S1,由图知,,又,所以
【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.
17.【答案】4.
【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,
再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),
∴2||=4,
故答案为:4.
【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.18.【答案】9.
【解析】解:双曲线﹣=1的a=2,b=3,
可得c2=a2+b2=13,
又||MF
|﹣|MF2||=2a=4,|F1F2|=2c=2,∠F1MF2=90°,
1
在△F1AF2中,由勾股定理得:
|F1F2|2=|MF1|2+|MF2|2
=(|MF1|﹣|MF2|)2+2|MF1||MF2|,
即4c2=4a2+2|MF1||MF2|,
可得|MF1||MF2|=2b2=18,
即有△F1MF2的面积S=|MF1||MF2|sin∠F1MF2=×18×1=9.
故答案为:9.
【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)在f(x+y)=f(x)+f(y)中,
令x=y=0可得,f(0)=f(0)+f(0),
则f(0)=0,
(2)令y=﹣x,得f(x﹣x)=f(x)+f(﹣x),
又f(0)=0,则有0=f(x)+f(﹣x),
即可证得f(x)为奇函数;
(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,
f(k•3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),
即有k•3x<﹣3x+9x+2,得,
又有,即有最小值2﹣1,
所以要使f(k•3x)+f(3x﹣9x﹣2)<0恒成立,只要使即可,
故k的取值范围是(﹣∞,2﹣1).
20.【答案】
【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:
①得x∈∅;
②得0<x≤;
③得…
综上:不等式f(x)<g(x)的解集为…
(2)∵a>,x∈[,a],
∴f(x)=4x+a﹣1…
由f(x)≤g(x)得:3x≤4﹣a,即x≤.
依题意:[,a]⊆(﹣∞,]
∴a≤即a≤1…
∴a的取值范围是(,1]…
21.【答案】
【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,
奖金的可能取值是0,30,60,240,
∴一等奖的概率P(ξ=240)=,
P(ξ=60)=
P(ξ=30)=,
P(ξ=0)=1﹣
∴变量的分布列是ξ
0 30 60 240
∴E ξ==20
(2)由(1)可得乙一次抽奖中奖的概率是1﹣
四次抽奖是相互独立的
∴中奖次数η~B(4,)
∴Dη=4×
【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.
22.【答案】
【解析】解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),
要使函数有意义,则
由解得:﹣1<x<1.
由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,
∵x+1>0,
∴x+1<2﹣2x<10x+10,
∴.
由,得:.
(2)当x∈[1,2]时,2﹣x∈[0,1],
∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),
由单调性可知y∈[0,lg2],
又∵x=3﹣10y,
∴所求反函数是y=3﹣10x,x∈[0,lg2].
23.【答案】
【解析】解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞),
因为,所以,,所以,a=1.
所以,,.由f'(x)>0解得x>2;由f'(x)<0,解得0<x<2.所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2).
(Ⅱ),由f'(x)>0解得;由f'(x)<0解得.
所以,f(x)在区间上单调递增,在区间上单调递减.
所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,
所以,即可.则.由解得.
所以,a的取值范围是.
(Ⅲ)依题得,则.
由g'(x)>0解得x>1;由g'(x)<0解得0<x<1.
所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.
又因为函数g(x)在区间[e﹣1,e]上有两个零点,所以,
解得.所以,b的取值范围是.
【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值.
24.【答案】
【解析】
【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;
(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;
【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.
(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.。

相关文档
最新文档