函数及其图象单元达标测试1含答案(谢)

合集下载

八年级数学下册《函数的图像》单元测试卷(附带答案)

八年级数学下册《函数的图像》单元测试卷(附带答案)

八年级数学下册《函数的图像》单元测试卷(附带答案)一 单选题1.下列图形中的曲线不能表示y 是x 的函数的是( )A .B .C .D .2.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是( )A .清晨5时体温最低B .17时,小明体温是37.5℃C .从5时至24时,小明体温一直是升高的D .从0时至5时,小明体温一直是下降的3.第十七届省运会在金华隆重举行.一批射击运动员分别乘坐甲乙两辆大巴同时从居住地前往比赛场馆.行驶过程中,大巴甲因故停留一段时间后继续驶向比赛场馆,大巴乙全程匀速驶向比赛场馆.两辆大巴的行程()km s 随时间()h t 变化的图象(全程)如图所示.依据图中信息,下列说法错误..的是( )A .大巴甲比大巴乙先到达比赛场馆B .大巴甲中途停留了0.5hC .大巴甲停留后用1.5h 追上大巴乙D .大巴甲停留后的平均速度是60km/h4.星期天,小王去朋友家借书,如图是他离家的距离y (千米)与时间x (分钟)的关系图像.根据图像信息,下列说法正确的是( ).A .小王去时的速度大于回家的速度B .小王在朋友家停留了10分钟C .小王去时花的时间少于回家所花的时间D .小王去时走下坡路,回家时走上坡路5.如图1,在长方形ABCD 中,动点P 从点B 出发,沿BC CD DA 运动至点A 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .246.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为100米 ①火车的速度为30米/秒 ①火车整体都在隧道内的时间为25秒 ①隧道长度为1050米.其中正确的结论是( )A .①①B .①①C .①①D .①①7.周末,小陈去超市购物 如图是他离家的距离y (千米)与时间x (分钟)的关系图象,根据图象信息:下列说法正确的是( )A .小陈去时的速度为6千米/小时B .小陈在超市停留了15分钟C .小陈去时花的时间少于回家所花的时间D .小陈去时走下坡路,回家时走上坡路8.如图等腰Rt ABC △,AC=BC ,90C ∠=︒点P 由点B 开始沿BC 边匀速运动到点C ,再沿CA 边匀速运动到点A 为止,设运动时间为t ,ABP 的面积为S ,则S 与t 的大致图象是( )A .B .C .D .9.小李和小陆从A 地出发,骑自行车沿同一条路行驶到B 地,小李先出发行驶0.5h 后小陆出发,他们离出发地的距离s (km )和行驶时间t (h )之间的关系图像如图所示,根据图中的信息,有下列说法: ①他们都行驶了20km ①小陆全程共用了2h①小陆出发后1h ,小陆和小李相遇 ①小李在途中停留了0.5h其中正确的有( )A .1个B .2个C .3个D .4个10.甲 乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠 进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用1y元,在乙园采摘需总费用2y元.1y2y与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘草莓更多二填空题11.如图,斑马奔跑的路程与奔跑时间的关系,请你根据图象计算,斑马奔跑5分钟跑了______km.第11题图第11题图第11题图12.某通讯公司有两种电话计费方式:A套餐是月租20元,B套餐是月租0元,一个月内本地通话时间t(分)与费用S(元)的函数关系如图所示.下列结论正确的是______.①A方式的最低消费20元①当通话100分钟时,两种方式的费用都是30元①当打出电话150分钟时,每分钟收费A方式比B方式便宜0.1元.13.甲无人机从地面起飞,乙无人机从距离地面20m高的楼顶起飞,两架无人机同时匀速上升10s.甲乙两架无人机所在的位置距离地面的高度y(单位:m)与无人机上升的时间x(单位:s)之间的关系如图所示,甲无人机的飞行速度为___________m/s14.小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离(单位:米)与时间(单位:分钟)的对应关系如图所示,则小张骑车的速度为_______米/分钟.15.某人从某地出发,骑车前往B地办事,先上坡到达A地后,休息8 min 然后下坡到达B地,8 min办完事,行程情况如图.随后原路返回,若返回时,上下坡速度与原来保持不变,且在A地休息10 min,则他从B地返回到出发地所用的时间是__________min.三解答题16.甲乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,则:(1)A,B两城相距______千米(2)乙车速度为______千米/小时(3)乙车出发后______小时追上甲车.17.小明某天离家,先在A处办事后,再到B处购物,购物后回家,下图描述了他离家的距离s(米)与离家后的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)A 处与小明家距离是_________________,小明从家到A 处过程的速度是______________.(2)小明在B 处购物的时间是______________分钟,他从B 处回家过程中速度是_____________.(3)如果小明家 A 处和B 处在一条直线上,那么小明从离家到回家这一过程的平均速度是__________米/分.18.某段时间内,汽车离开甲地到达乙地,并返回甲地,折线ABCDE 描述了汽车的行驶过程中汽车离甲地的路程s (千米)和行驶时间t (小时)之间的关系,根据图中提供的信息,解答下列问题:(1)甲地与乙地之间的路程是______千米,汽车在行驶途中停留了______小时(2)汽车在行驶过程中,哪段时间行驶速度最慢:______(填“AB 段”“CD 段”或“DE 段”),此段时间共行驶______千米(3)汽车在返回时的平均速度是多少?19.小颖根据学习函数的经验,对函数11y x =--的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.(1)列表: x …2- 1- 0 1 2 3 4 … y …2- a 0 b 0 1- c …①=a ___________ b = ___________ c = ___________.①若()6,4A -,(),4B m -为该函数图象上不同的两点,则m =___________(2)描点并画出该函数的图象.(3)①根据函数图象可得,当x =___________时,该函数y 的最大值为___________①观察函数11y x =--的图象,写出该图象的两条性质:___________ ___________参考答案1.B2.C3.C4.B5.B6.A7.A8.B9.B10.D11.612.①①13.814.30015.47.216.(1)解:由图像可得,A ,B 两城两城相距300千米.故答案为300(2)由图像可得,乙车从A 城出发匀速行驶至B 城所需的时间为:413-=(小时)①乙车的速度为:3003100÷=(千米/小时).故答案为100(3)由图像可得,甲车从A 城出发匀速行驶至B 城所需的时间为5小时①甲车的速度为:300560÷=(千米/小时)设乙车出发后a 小时追上甲车①()601100a a +=解得: 1.5a =即乙车出发后1.5小时追上甲车.故答案为1.5.17.解:(1)由图象可知A 处与小明家距离是200m小明从家到A 处过程的速度是200540m /min ÷=.故答案为200m ,40m /min(2)由图象可知小明在B 处购物的时间是20155-=分钟他从B 处回家过程中速度是800(2520)160m /min ÷-=.故答案为5,160m /min(3)由图象可知小明从离家到回家这一过程的路程为80021600m ⨯=,总时间为25min①小明从离家到回家这一过程的平均速度是16002564÷=米/分.18.(1)解:由函数图象可知,甲地与乙地之间的路程是120千米,汽车在行驶途中停留了2 1.50.5-=小时故答案为120,0.5(2)解:AB 段的速度为16080 1.5km /h 3÷=,CD 段的速度为1208040km/h 32-=-,DE 段的速度为12080km /h 4.53=- ①CD 段行驶速度最最慢,此段时间共行驶1208040-=千米故答案为CD 段,40(3)解:由(2)可知汽车在返回时的平均速度是80km /h答:汽车在返回时的平均速度是80km /h .19.(1)解:①当=1x -时,111121a =---=-=-当1x =时,111101b =--=-=当4x =时,141132c =--=-=-故答案为-1,1,-2①()6,4A -,(),4B m -为该函数图象上不同的两点,即411m -=--整理得4m =-(2)解:如图所示:(3)解:①由图象可得当1x =,该函数y 的最大值为1①观察图象可得:该函数的图象是轴对称图形 当1x <时,y 随x 的增大而增大,当1x >时,y 随x 的增大而减小.。

函数及其图象(一次函数)单元测试题

函数及其图象(一次函数)单元测试题

函数及其图象(一次函数)单元测试题一.选择题(每小题4分,共10小题,满分40分)1.(4分)函数y=中自变量x的取值范围是()A.x≤3B.x≥3C.x≠3D.x=32.(4分)已知正比函数y=kx的图象经过点A(2,6),则k的值是()A.B.﹣3C.D.33.(4分)点(3,b)在一次函数y=2x﹣7的图象上,则b的值为()A.13B.1C.5D.﹣14.(4分)函数y=﹣7x﹣1与y=﹣7x的图象在同一平面直角坐标系中的位置关系是()A.相交B.互相垂直C.互相平行D.无法确定5.(4分)下列函数中:①y=3x+4;②;③;④y=x2+2,其中y是x的一次函数有()A.1个B.2个C.3个D.4个6.(4分)关于一次函数y=﹣4x+8,下列结论不正确的是()A.y随x的增大而减小B.图象与y轴的交点坐标是(0,8)C.图象经过第一、二、四象限D.图象与x轴的交点坐标是(﹣2,0)7.(4分)如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x<﹣4B.x>0C.x>﹣4D.x<08.(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解集为()A.x<﹣3B.x<﹣1C.x>﹣3D.x>﹣19.(4分)已知A(1,a)、B(﹣2,b)是一次函数图象上两点,则a与b大小关系是()A.a<bB.a=bC.a>bD.a与b的大小关系无法确定10.(4分)如图,图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s (单位:米)和t(单位:秒)分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①甲让乙先跑了12米;②射线AB表示甲的路程与时间的函数关系;③甲的速度比快乙1.5米/秒;④8秒钟后,甲超过了乙.其中正确的说法有()A.1个B.2个C.3个D.4个二.填空题(每小题4分,共6小题,24分)11.(4分)已知函数y=(m﹣1)x m+1是一次函数,则m=.12.(4分)已知直线y=kx﹣3与y=2x+b交点为(﹣1,2),则方程组的解.13.(4分)在平面直角坐标系中,将函数y=﹣3x的图象向下平移4个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式是.14.(4分)已知等腰三角形的底角为y°,顶角为x°,写出y与x之间函数关系式.15.(4分)若直线y=x+b与两坐标轴围成的三角形面积为18,则b=.16.(4分)在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:,则点P(3,﹣3)到直线的距离为.三、解答题(共9小题,满分86分)17.(8分)画一次函数y=﹣2x+4的图象.18.(8分)已知一次函数y=(4+2k)x+k﹣4,求:(1)k为何值时,函数图象经过第一、三、四象限?(2)k为何值时,函数图象与y轴的交点在x轴下方?19.(8分)已知:y与x+2成正比例,且x=2时,y=﹣8.(1)求y关于x的函数表达式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.(8分)在平面直角坐标系内有三个点A(﹣1,4),B(﹣4,0),C(0,6),判断点A、B、C这三个点是否在同一条直线上,并说明理由.21.(8分)如图,直线l经过点A(2,6)和点B(﹣4,﹣2).(1)求直线l的解析式;(2)求△AOB的面积.22.(10分)某药研究所开发了一种新药,在实际用药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(小时)变化情况如图所示.(1)求每毫升血液中含药量y(毫克)与时间x(小时)的函数关系式;(2)如果每毫升血液中含药量6毫克或6毫克以上时,治疗疾病最有效,那么这个有效时间是多少小时?(毫克)23.(10分)初二年段组织师生参加春游,准备租用A、B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客300人;3辆A型和4辆B型车坐满后共载客320人.(1)每辆A型车、B型车坐满后各载客多少人?(2)若年段计划租用A型和B型两种客车共14辆,总租金不高于7800元,并将全年段610名师生载至目的地.则年段有几种租车方案?哪种租车方案最省钱?24.(12分)如图,直线y=﹣2x+b与x轴,y轴分别交于A、B两点,点B的坐标为(0,4),点C的坐标为(﹣4,0);(1)直线AB所表示的一次函数的解析式为;(2)若点P(x,y)是第一象限内的直线AB上的一个动点,当点P运动时,设△P AC 的面积为S,用含x的式子表示S,写出x的取值范围,画出函数S的图象.(3)在(2)的条件下,△P AC的面积能大于12吗?请说明理由.25.(14分)已知如图,点A和点B分别在x轴和y轴上,且,OB=8.(1)求直线AB的函数表达式;(2)若△CDE是等腰直角三角形,点C在直线AB上且横、纵坐标相等,点D是y轴上一动点,且∠CDE=90°;①如图1,当点D运动到原点时,求点E的坐标;②是否存在点D,使得点E落在直线AB上.若存在,请求出点D的坐标;若不存在,请说明理由.。

人教版高中数学必修第一册第三单元《函数概念与性质》检测卷(包含答案解析)(1)

人教版高中数学必修第一册第三单元《函数概念与性质》检测卷(包含答案解析)(1)

一、选择题1.已知()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,则(1)(2)f g +=( )A .5B .6C .8D .102.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆O (O 为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.则下列函数中一定是“优美函数”的为( )A .1()f x x x=+B .1()f x x x=-C .()22()ln 1f x x x =++D .()2()ln 1f x x x =++3.已知()2xf x x =+,[](),M a b a b =<,(){}4,N yy f x x M ==∈∣,则使得MN 的实数对(),a b 有( )A .0个B .1个C .2个D .3个4.函数2()1sin 12xf x x ⎛⎫=-⎪+⎝⎭的图象大致形状为( ). A . B .C .D .5.已知函数()()2265m m m f x x-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断6.函数y x=的值域是( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[]0,1C .10,2⎡⎤⎢⎥⎣⎦D .[)0,+∞7.函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,那么( ) A .可能不存在单调区间 B .()f x 是R 上的增函数 C .不可能有单调区间D .一定有单调区间8.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (ab ),有()()0f a f b a b -<-,则不等式()0f x x<的解集是( )A .()()2021,02021,-+∞B .()()2021,00,2021-C .()(),20212021,-∞-+∞D .()(),20210,2021-∞-9.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<- D .(4)(0)(4)f f f <<-10.定义在R 上的奇函数()f x 满足当0x <时,3(4)f x x =+,则(1),(2),()f f f π的大小关系是( ) A .(1)(2)()f f f π<< B .(1)()(2)f f f π<< C .()(1)(2)f f f π<<D .()(2)(1)f f f π<<11.已知函数()f x 的定义域为,(4)R f x +是偶函数,(6)3f =,()f x 在(,4]-∞上单调递减,则不等式(24)3f x -<的解集为( ) A .(4,6)B .(,4)(6,)-∞⋃+∞C .(,3)(5,)-∞⋃+∞D .(3,5)12.函数f (x )的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43]13.已知2()log (1)f x x =-,若()2120f x x -+-<,则x 的取值范围为( )A .(,0)(1,)-∞⋃+∞B.⎝⎭C.115,01,22⎛⎫⎛+ ⎪ ⎪ ⎝⎭⎝⎭D .(1,0)(1,2)-14.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( )A .[]4,0-B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.17.函数()40ay x a x=+>在[]1,2上的最小值为8,则实数a =______. 18.已知函数246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,则()()2f f -=______. 19.已知函数()y f x =是奇函数,当0x <时,2()(R)f x x ax a =+∈,(2)6f =,则a = .20.幂函数()223m m f x x --=在0,上单调递减且为偶函数,则整数m 的值是______.21.如果函数f (x )=(2)1,1,1xa x x a x -+<⎧⎨≥⎩满足对任意12x x ≠,都有()()1212f x f x x x -->0成立,那么实数a 的取值范围是________.22.已知函数()f x =ln 2x x +,则()232f x -<的解集为_____.23.已知函数()f x 是定义在R 上的奇函数,且满足x R ∀∈,都有()()2f x f x +=-,当[]0,1x ∈时,()21xf x =-,则()15f =______.24.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:(1)()0f 是函数的最大值;(2)()f x 的图像关于点()1,0P 对称;(3)()f x 在[]2,3上是减函数;(4)()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)25.已知函数1()22x x f x =-,则满足()()2560f x x f -+>的实数x 的取值范围是________. 26.函数()93x xf x =+()1t x t ≤≤+,若()f x 的最小值为2,则()f x 的最大值为________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先由()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,得到32()()231f x g x x x x -+-=-+-+,求出()f x 和()g x ,再求(1)(2)f g +【详解】因为32()()231f x g x x x x +=+++,所以32()()231f x g x x x x -+-=-+-+.又()f x 是奇函数,()g x 是偶函数,所以32()()231f x g x x x x -+=-+-+,则32()23,()1f x x x g x x =+=+,故(1)(2)5510f g +=+=.故选:D 【点睛】 函数奇偶性的应用:(1)一般用()()f x f x =-或()()f x f x =-;(2)有时为了计算简便,我们可以对x 取特殊值: (1)(1)f f =-或(1)(1)f f =-.2.D解析:D 【分析】根据题意可知优美函数的图象过坐标原点,图象关于坐标原点对称,是奇函数,再分别检验四个选项的正误即可得正确选项. 【详解】根据优美函数的定义可得优美函数的图象过坐标原点,图象关于坐标原点对称,是奇函数,对于选项A :1()f x x x=+的定义域为{}|0x x ≠,所以不过坐标原点,不能将周长和面积同时平分,故选项A 不正确;对于选项B :1()f x x x=-的定义域为{}|0x x ≠,所以不过坐标原点,不能将周长和面积同时平分,故选项B 不正确;对于选项C :()22()ln 1f x x x =++定义域为R ,()()22()ln 1f x x x f x -=++=,是偶函数,图象关于y 轴对称,故选项C 不正确;对于选项D :(2()ln 1f x x x =+定义域为R ,((22()()ln 1ln 1ln10f x f x x x x x -+=-++++==,所以()()f x f x -=-,所以(2()ln 1f x x x =+图象过坐标原点,图象关于坐标原点对称,是奇函数,符合优美函数的定义,选项D 正确,故选:D 【点睛】关键点点睛:本题解题的关键点是由题意得出优美函数具有的性质:图象过坐标原点,是奇函数图象关于原点对称.3.D解析:D 【分析】 先判断函数()2xf x x =+是奇函数,且在R 上单调递增;根据题中条件,得到()()44f a a f b b a b ⎧=⎪=⎨⎪<⎩,求解,即可得出结果. 【详解】 因为()2xf x x =+的定义域为R ,显然定义域关于原点对称, 又()()22x xf x f x x x --==-=--++, 所以()f x 是奇函数, 当0x ≥时,()21222x x f x x x x ===-+++显然单调递增;所以当0x <时,()2xf x x =-+也单调递增; 又()00f =,所以函数()2xf x x =+是连续函数; 因此()2xf x x =+在R上单调递增; 当[],x M a b ∈=时,()()()44,4y f x f a f b =∈⎡⎤⎣⎦,因为(){}4,N yy f x x M ==∈∣,所以为使M N ,必有()()44f a af b b a b ⎧=⎪=⎨⎪<⎩,即4242aa ab b b a b⎧=⎪+⎪⎪=⎨+⎪⎪<⎪⎩,解得22a b =-⎧⎨=⎩或20a b =-⎧⎨=⎩或02a b =⎧⎨=⎩, 即使得M N 的实数对(),a b 有()2,2-,()2,0-,()0,2,共3对.故选:D. 【点睛】 关键点点睛:求解本题的关键在于先根据函数解析式,判断函数()f x 是奇函数,且在R 上单调递增,得出[],x M a b ∈=时,()4y f x =的值域,列出方程,即可求解.4.B解析:B 【分析】首先判断函数的奇偶性,再判断0πx <<时,函数值的正负,判断得选项. 【详解】因为2()1sin 12x f x x ⎛⎫=- ⎪+⎝⎭,所以12()sin 12xxf x x -=⋅+, ()()()2221sin 1sin 1212x x xf x x x -⎛⎫⨯⎛⎫-=--=-- ⎪ ⎪++⎝⎭⎝⎭()()21221sin 12x x x ⎛⎫+- ⎪=-- ⎪+⎝⎭221sin 1sin 1212xxx x ⎛⎫⎛⎫=--=- ⎪ ⎪++⎝⎭⎝⎭()f x =,所以函数是偶函数,关于y 轴对称,排除C ,D , 令()0f x =,则21012x-=+或sin 0x =,解得()x k k Z π=∈,而0πx <<时,120x -<,120x +>,sin 0x >,此时()0f x <.故排除A.故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.5.A解析:A 【分析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解. 【详解】∵函数()()2265m m m f x x-=--是幂函数,∴25=1m m --,解得:m = -2或m =3. ∵对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,∴函数()f x 为增函数, ∴260m ->, ∴m =3(m = -2舍去) ∴()3=f x x 为增函数.对任意a ,b R ∈,且0a b +>, 则- a b >,∴()()()f a f b f b >-=- ∴()()0f a f b +>. 故选:A 【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1; (2)函数的单调性和奇偶性是函数常用性质,通常一起应用.6.C解析:C 【分析】令t =,转化为21ty t =+,0t ≥,根据均值不等式求解即可. 【详解】令t =,则0t ≥,当0t =时,0y =, 当0t ≠时,2110112t y t t t <==≤=++,当且仅当1t =时,即2x =时等号成立,综上102y ≤≤, 故选:C 【点睛】关键点点睛:注意含根号式子中,经常使用换元法,利用换元法可简化运算,本题注意均值不等式的使用,属于中档题.7.A解析:A 【分析】根据题意,举出两个满足()12f x f x ⎛⎫<+ ⎪⎝⎭的例子,据此分析选项可得答案. 【详解】根据题意,函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭, 则()f x 的解析式可以为:()2,1 1.51,0.510,00.5x f x x x ⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩,满足()12f x f x ⎛⎫<+ ⎪⎝⎭,不是增函数,没有单调区间,也可以为()f x x =,满足()12f x f x ⎛⎫<+ ⎪⎝⎭, 是增函数,其递增区间为R ,则()f x 可能存在单调区间,也可能不存在单调区间, 则A 正确;BCD 错误; 故选:A. 【点睛】关键点睛:本题考查函数单调性的定义,构造反例是解决本题的关键.8.C解析:C 【分析】首先判断函数在()0,∞+的单调性,然后根据函数是奇函数,可知函数在(),0-∞的单调性和零点,最后结合函数的零点和单调性,求解不等式. 【详解】对任意的正数a ,b (ab ),有()()0f a f b a b-<-,()f x ∴在()0,∞+上单调递减,定义在R 上的奇函数()f x 满足()20210f =,()f x ∴在(),0-∞单调递减,且()()202120210f f -=-=, ()0f x x <等价于()00x f x >⎧⎨<⎩ 或()00x f x <⎧⎨>⎩, 解得:2021x >或2021x <-, 所以不等式解集是()(),20212021,-∞-+∞.故选:C 【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点: 若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,+∞的单调性,去掉“f ”,转化为一般不等式求解.9.C解析:C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【详解】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.10.A解析:A 【分析】根据函数奇偶性先将0x >时的解析式求解出来,然后根据0x >时函数的单调性比较出(1),(2),()f f f π的大小关系.【详解】当0x >时,0x -<,所以()43f x x -=-+,又因为()f x 为奇函数,所以()()43f x f x x -=-=-+,所以()43f x x =-, 显然0x >时,()43f x x =-是递增函数,所以()()()12f f fπ<<, 故选:A.【点睛】思路点睛:已知函数奇偶性,求解函数在对称区间上的函数解析式的步骤:(1)先设出对称区间上x 的取值范围,然后分析x -的范围;(2)根据条件计算出()f x -的解析式;(3)根据函数奇偶性得到()(),f x f x -的关系,从而()f x 在对称区间上的解析式可求. 11.D解析:D【分析】由题知函数()f x 的图象关于直线4x =对称,则有()f x 在[4,)+∞上单调递增,且有(6)(2)3f f ==,再利用单调性解不等式即可得结果.【详解】因为(4)f x +是偶函数,所以函数()f x 的图象关于直线4x =对称,则(6)(2)3f f ==. 因为()f x 在(,4]-∞上单调递减,所以()f x 在[4,)+∞上单调递增,故(24)3f x -<等价于224x <-6<,解得35x <<.故选:D【点睛】关键点睛:本题的关键是能得出函数()f x 的图象关于直线4x =对称,进而判断出函数的单调性来,要求学生能够熟悉掌握函数性质的综合应用.12.C解析:C【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合. 13.C解析:C【分析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数()f x 的定义域需满足210240x x x ->⎧⎨-+≥⎩,解得:1x >, 并且在区间()1,+∞上,函数单调递增,且()22f =,所以()()()2212012f x x f x x f -+-<⇔-+<, 即221112x x x x ⎧-+>⎨-+<⎩,解得:151x +<<1502x -<<. 故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域. 14.A解析:A【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围.【详解】因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩, 当()212f x x ax a =+-在[)2,+∞上单调递增时,22a -≤,所以4a ≥-,当()222f x x ax a =-+在()0,2上单调递增时,02a ≤,所以0a ≤, 且()()12224f f ==,所以[]4,0a ∈-,故选:A.【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤:(1)先分析每一段函数的单调性并确定出参数的初步范围;(2)根据单调性确定出分段点处函数值的大小关系;(3)结合(1)(2)求解出参数的最终范围.15.B解析:B【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意; 对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意;对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对 解析:9【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误.【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩, ()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=, 故答案为:9.【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.17.3【分析】由已知结合对勾函数的性质讨论已知函数在区间上单调性进而可求出结果【详解】令解得当时即函数在上单调递减则符合题意;当时即函数在上单减在上单增解得(舍);当时即函数在上单调递增解得(舍)综上得 解析:3【分析】由已知结合对勾函数的性质,讨论已知函数在区间[]1,2上单调性,进而可求出结果.【详解】 令4a x x=,解得x =±2时,即1a ≥, 函数在[]1,2上单调递减,min 228y a =+=,则3a =,符合题意;当12<<时,即114a <<,函数在⎡⎣上单减,在2⎡⎤⎣⎦上单增,min 8y ==,解得4a =(舍);当1≤时,即14a ≤,函数在[]1,2上单调递增,min 148y a =+=,解得74a =(舍),综上得3a =.故答案为:3.【点睛】 本题主要考查了对勾函数单调性的应用,体现了分类讨论思想的应用,属于中档题. 18.11【分析】用分段函数的解析式先求出从而可得的值【详解】解:∵且∴∴故答案为:【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对抽象思维 解析:11【分析】用分段函数的解析式先求出()2f - ,从而可得()()2f f -的值.【详解】 解:∵ 246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,且20-<,∴ ()222log 10f -=->=∴ ()()()42116111f f f -==++=. 故答案为:11.【点睛】 本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.19.5【分析】先根据函数的奇偶性求出的值然后将代入小于0的解析式建立等量关系解之即可【详解】函数是奇函数而则将代入小于0的解析式得解得故答案为5解析:5【分析】先根据函数的奇偶性求出(2)f -的值,然后将2x =-代入小于0的解析式,建立等量关系,解之即可.【详解】∴函数()y f x =是奇函数,()()f x f x ∴-=-,而(2)6f =,则(2)(2)6f f -=-=-,将2x =-代入小于0的解析式得(2)426f a -=-=-,解得5a =,故答案为5.20.1【分析】根据幂函数的定义与性质列不等式求出的取值范围再验证是否满足条件即可【详解】幂函数在上单调递减所以的整数值为0或12;当时不是偶函数;当时是偶函数;当时不是偶函数;所以整数的值是1故答案为: 解析:1【分析】根据幂函数的定义与性质,列不等式求出m 的取值范围,再验证是否满足条件即可.【详解】幂函数223()m m f x x --=在(0,)+∞上单调递减,所以2230m m --<,13m -<<,m 的整数值为0或1,2;当0m =时,3()-=f x x 不是偶函数;当1m =时,4()f x x -=是偶函数;当2m =时,3()-=f x x 不是偶函数;所以整数m 的值是1.故答案为:1.【点睛】本题主要考查了幂函数的定义与性质的应用问题,意在考查学生对这些知识的理解掌握水平.21.【分析】先由条件判断出在R 上是增函数所以需要满足和单调递增并且在处对应的值大于等于对应的值解出不等式组即可【详解】对任意都有>0所以在R 上是增函数所以解得故实数a 的取值范围是故答案为:【点睛】本题考 解析:3,22⎡⎫⎪⎢⎣⎭【分析】先由条件判断出()y f x =在R 上是增函数,所以需要满足(2)1y a x =-+和x y a = 单调递增,并且在1x =处x y a =对应的值大于等于(2)1y a x =-+对应的值,解出不等式组即可.【详解】对任意12x x ≠,都有()()1212f x f x x x -->0,所以()y f x =在R 上是增函数,所以201(2)11a a a a ->⎧⎪>⎨⎪-⨯+≤⎩,解得322a ≤<, 故实数a 的取值范围是3,22⎡⎫⎪⎢⎣⎭. 故答案为:3,22⎡⎫⎪⎢⎣⎭.【点睛】本题考查含有参数的分段函数根据单调性求参数范围问题,需要满足各部分单调并且在分段处的函数值大小要确定,属于中档题. 22.【分析】可判断出函数在上单调递增将不等式化为可得出解出即可【详解】因为单增单增所以函数在区间上单增而==等价于所以即解得或即的解集为故答案为:【点睛】解函数不等式:首先根据函数的性质把不等式转化为的解析:(()2,3,2- 【分析】可判断出函数()f x 在()0,∞+上单调递增, 将不等式化为()()231f x f -<,可得出2031x <-<,解出即可.【详解】因为ln y x =单增,2x y =单增,所以函数()f x 在区间()0,∞+上单增.而()1f =1ln12+=()22,32f x -<等价于()()231f x f -<,所以2031x <-<,即234x <<,解得2x -<<2x <<.即()232f x -<的解集为(()2,3,2-.故答案为:(()2,3,2-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内 23.【分析】根据函数为奇函数有结合可得是以4为周期的周期函数将所求函数值转化成已知解析式区间上的函数值即可求解【详解】由函数是定义在上的奇函数则又所以则所以是以4为周期的周期函数所以故答案为:【点睛】考 解析:1-【分析】根据函数为奇函数有()()f x f x =--,结合()()2f x f x +=-,可得()f x 是以4为周期的周期函数,将所求函数值转化成已知解析式区间上的函数值,即可求解.【详解】由函数()f x 是定义在R 上的奇函数,则()()f x f x =--又()()2f x f x +=-,所以()()2f x f x +=-则()()()()4222f x f x f x f x +=++=-+=⎡⎤⎣⎦所以()f x 是以4为周期的周期函数.所以()()()()()1151611121=1f f f f =-=-=-=--- 故答案为:1-【点睛】考查函数奇偶性和周期性的综合应用,具体数值求解,有一定综合性,属于中档题. 24.(2)(3)(4)【分析】(1)利用定义在R 上的偶函数在上是减函数即可判断;(2)根据偶函数的定义和条件即可判断;(3)利用函数的周期为4在-20上是减函数即可判断;(4)利用可得的图象关于直线对称解析:(2)(3)(4)【分析】(1)利用定义在R 上的偶函数()f x 在[]2,0-上是减函数,即可判断;(2)根据偶函数的定义和条件()()2f x f x +=-,即可判断;(3)利用函数的周期为4,()f x 在[-2,0]上是减函数,即可判断;(4)利用()()()22f x f x f x -+=--=+,可得()f x 的图象关于直线2x =对称,即可判断.【详解】(1)∵定义在R 上的偶函数()f x 在[]2,0-上是减函数,故()()20f f ->,()0f 不可能是函数的最大值,故错;(2)由定义在R 上的偶函数()f x 得()()f x f x -=,又()()2f x f x +=-,故()()20f x f x ++-=,即图象关于()10,对称,故正确; (3)由于()()2f x f x +=-,则()()()42f x f x f x +=-+=,故()f x 为周期函数,且4为它的一个周期,由在[20]-,上是减函数,可得()f x 在[2]4,上是减函数,故正确; (4)由于()()2f x f x +=-,则()()()42f x f x f x +=-+=,又()()f x f x -=,故()()4f x f x +=-,即图象关于直线2x =对称,故正确.故答案为:(2)(3)(4).【点睛】本题主要考查了抽象函数的函数的奇偶性、周期性和对称性,考查了转化思想,属于中档题.25.【分析】根据题意由奇函数的定义可得函数为奇函数由函数单调性的性质可得函数在上为减函数;据此可得解可得的取值范围即可得答案【详解】解:根据题意函数即函数为奇函数又由在上为减函数在上增函数与则函数在上为 解析:(2,3)【分析】根据题意,由奇函数的定义可得函数()f x 为奇函数,由函数单调性的性质可得函数()f x 在R 上为减函数;据此可得()()()22560(5)6f x x f f x x f -+>⇒->-22(5)(6)56f x x f x x ⇒->-⇒-<-,解可得x 的取值范围,即可得答案.【详解】 解:根据题意,函数1()22x x f x =-,11()2(2)()22x x x x f x f x ---=-=--=-,即函数()f x 为奇函数, 又由12x y =在R 上为减函数,2x y =-在R 上增函数与,则函数()f x 在R 上为减函数, 则()()2560f x x f -+>()2(5)6f x x f ∴->-2(5)(6)f x x f ∴->-256x x ∴-<-,解可得:23x <<,即x 的取值范围为(2,3);故答案为:(2,3)【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于x 的不等式,属于基础题. 26.12【分析】首先设将原函数转化为再根据二次函数的单调性即可得到答案【详解】设因为所以则函数转化为因为在为增函数所以解得或(舍去)即所以故答案为:【点睛】本题主要考查根据函数单调性求最值同时考查了换元 解析:12【分析】首先设3x m =,将原函数转化为()2g m m m =+,()133t t m +≤≤,再根据二次函数的单调性即可得到答案.【详解】设3x m =,因为1t x t ≤≤+,所以133t t m +≤≤.则函数()93x x f x =+()1t x t ≤≤+转化为()2g m m m =+,()133t t m +≤≤.因为()g m 在13,3t t +⎡⎤⎣⎦为增函数,所以()()()2min 3332t t t g m g ==+=,解得31t =或32t =-(舍去). 即0t =.所以()()()1max 3312t f x g g +===.故答案为:12【点睛】本题主要考查根据函数单调性求最值,同时考查了换元法,属于中档题.。

新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(1)

新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(1)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)3.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -4.若函数()f x =在[]1,3-上具有单调性,则实数a 的可能取值是( )A .4-B .5C .14D .235.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >6.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .67.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值8.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭9.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14, 10.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 11.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B .()0,2C .(0,4)D .(,2)-∞12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.设函数()x f x e =()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________. 14.函数()()02f x x =-的定义域为______.15.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________16.对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,则实数t 的取值范围是________________.17.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.18.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.19.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.20.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.三、解答题21.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[2,4]上单调递增,求m 的取值范围; (2)求()f x 在区间[1,1]-上的最小值()g m ;22.已知函数()y f x =是定义在R 上的奇函数,且当0x ≥时,()22f x x x =+.(1)求函数()f x 的解析式;(2)指出函数()f x 在R 上的单调性(不需要证明);(3)若对任意实数m ,()()20f m f m t +->恒成立,求实数t 的取值范围.23.已知函数()y f u =的定义域为A ,值域为B .如果存在函数()u g x =,使得函数[]()y f g x =的值域仍为B ,则称()u g x =是函数()y f u =的一个“等值域变换”.(1)若函数2()1y f u u ==+,1()u g x x x==+(x >0),请判断()u g x =是不是函数()y f u =的一个“等值域变换”?并说明理由;(2)已知单调函数()y f u =的定义域为{}12A u u =≤≤,若221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”,求实数a 的取值范围.24.已知函数12()12x xa f x -⋅=+是R 上的奇函数(a 为常数),()22.g x x x m m R =-∈+, (1)求实数a 的值;(2)若对任意12[]1x -∈,,总存在2]3[0x ∈,,使得12()()f x g x =成立,求实数m 的取值范围.25.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值;(3)求函数()22f x x x =-的所有的“和谐区间”.26.已知函数()f x 对一切实数,x y 都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =.(1)求(0)f 的值,及()f x 的解析式;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =, 当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数21y x =-值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.3.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.4.C解析:C 【分析】令函数()218g x x ax =-++,则只需使当[]1,3x ∈-时,()0g x ≥且单调,然后针对()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩两种情况讨论求解. 【详解】由题意可设()218g x x ax =-++,则当[]1,3x ∈-时,()218g x x ax =-++单调,且()0g x ≥恒成立,因为()218g x x ax =-++的对称轴方程为2a x =, 则()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩,解得617a ≤≤或32a --≤≤,即[][]6,173,2a ∈--,则只有14满足题意. 故选:C . 【点睛】本题考查根据复合函数的单调性求参数的取值范围,解答时注意不仅要使原函数在所给区间上单调,且必须使原函数在所给区间上有意义.5.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.6.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值. 【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意; (2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C. 【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.7.D解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.8.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.9.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.10.A解析:A 【分析】由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x <的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;11.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =,不等式()80f xx ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得20x x <⎧⎨>⎩,解得02x <<,所以不等式()80f x x->的解集为()0,2. 故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.12.C解析:C 【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值. 【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A . 所以()h x 的最小值为4811.故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.二、填空题13.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立, 则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.且【分析】由中根式内部的代数式大于等于00指数幂的底数不为0联立不等式组求解【详解】由解得且x≠2∴函数的定义域是】且即答案为】且【点睛】本题考查函数的定义域及其求法是基础题解析:{|1x x ≥-且}2x ≠ 【分析】由中根式内部的代数式大于等于0,0指数幂的底数不为0,联立不等式组求解. 【详解】由1020x x +≥⎧⎨-≠⎩,解得1x ≥-且x≠2.∴函数()()02f x x =-的定义域是】{|1x x ≥-且}2x ≠.即答案为】{|1x x ≥-且}2x ≠ 【点睛】本题考查函数的定义域及其求法,是基础题.15.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--.所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩. 【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.16.【分析】令由题意得出解出该不等式组即可得出实数的取值范围【详解】对于任意的不等式恒成立即不等式恒成立令则解得或因此实数的取值范围是故答案为:【点睛】本题考查不等式恒成立问题涉及主元思想的应用将问题转 解析:()(),52,-∞-+∞【分析】令()()224f m t m t =-+-,由题意得出()10230f f ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪>⎩,解出该不等式组,即可得出实数t 的取值范围. 【详解】对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,即不等式()2240t m t -+->恒成立,令()()224f m t m t =-+-,则()()()()()()2211524202223324250f t t t t f t t t t ⎧⎛⎫⎛⎫=-+-=-+>⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪=-+-=-+>⎩, 解得5t <-或2t >,因此,实数t 的取值范围是()(),52,-∞-+∞.故答案为:()(),52,-∞-+∞.【点睛】本题考查不等式恒成立问题,涉及主元思想的应用,将问题转化为一次函数不等式恒成立是解题的关键,考查运算求解能力,属于基础题.17.【分析】先令则求解的值然后再分类讨论求解的值【详解】令则当时有无解当时有解得或所以或当时故无解;当时若则得若则即无解综上所述:故答案为:【点睛】本题考查分段函数的应用考查根据函数值求参难度一般解答时【分析】先令()f a t =,则()2f t =,求解t 的值,然后再分类讨论,求解a 的值. 【详解】令()f a t =,则()2f t =,当0t >时,有22t -=,无解, 当0t ≤时,有2222t t ++=,解得0t =,或2t =-,所以()0f a =或()2f a =-,当()0f a =时,()2222110a a a ++=++>,20a -<,故 ()0f a =无解;当()2f a =-时,若0a >,则22a -=-,得a =若0a ≤,则2222a a ++=-,即2240a a ++=,无解,综上所述:a =【点睛】本题考查分段函数的应用,考查根据函数值求参,难度一般,解答时注意分类讨论思想的运用.18.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.19.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.20.【分析】分析的奇偶性根据的结果求解出的值【详解】令因为为上的奇函数且也为上的奇函数所以为上的奇函数所以所以且所以故答案为:【点睛】结论点睛:已知(1)当为奇数时且此时为奇函数;(2)当为偶数时为偶函数 解析:12-【分析】分析()()2h x g x =-的奇偶性,根据()()22h h +-的结果求解出()2g -的值. 【详解】令()()()2h x g x af x bx =-=+,因为()f x 为R 上的奇函数,且y bx =也为R 上的奇函数,所以()()2h x g x =-为R 上的奇函数,所以()()220h h +-=, 所以()()22220g g -+--=,且()216g =,所以()212g -=-, 故答案为:12-. 【点睛】结论点睛:已知()(),0nf x x a n Z n =+∈≠,(1)当n 为奇数时,且0a =,此时()f x 为奇函数; (2)当n 为偶数时,()f x 为偶函数.三、解答题21.(1)[4,)-+∞;(2)226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. 【分析】(1)计算二次函数的对称轴,然后根据单调性可得122m -≤,计算即可. (2)分类讨论112m -≤-,1112m -<-<,112m -≥,分别计算即可. 【详解】(1)由题可知,函数2()7f x x mx m =++-()m R ∈开口向上,对称轴的方程为2mx =-,若使得函数()f x 在[2,4]上单调递增, 则满足122m -≤,解得4m ≥-,即实数m 的取值范围[4,)-+∞. (2)①当112m -≤-即2m ≥时, 函数()y f x =在区间[1,1]-单调递增,所以函数()y f x =的最小值为()(1)6g m f =-=-; ②当1112m -<-<,即22m -<<时, 函数()y f x =在区间11,2m ⎡⎤--⎢⎥⎣⎦单调递减,在区间1,12m ⎡-⎤⎢⎥⎣⎦上单调递增, 所以函数()y f x =的最小值为21()724m g m f m m ⎛⎫=-=-+- ⎪⎝⎭; ③当112m -≥即2m ≤-时, 函数()y f x =在区间[1,1]-单调递减,所以函数()y f x =的最小值为()(1)26g m g m ==-,综上可得,函数的最小值为226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. 【点睛】结论点睛:二次函数在区间上的最值问题:(1)动轴定区间;(2)定轴动区间;(3)动轴动区间;对本题属于动轴动区间问题需要讨论对称轴与所给区间位置关系.22.(1)()222,02,0x x x f x x x x ⎧-+<=⎨+≥⎩;(2)增函数;(3)14t <-.【分析】(1)当0x <时,0x ->,求出()f x -,根据奇函数得到()f x ; (2)由解析式可直接写出;(3)先根据奇函数的性质化不等式为()()2f m f t m>-,利用单调性脱去“f ”,转化为2t m m <+恒成立,求出2m m +的最小值即可.【详解】(1)当0x <时,0x ->,又()f x 是奇函数, ∴()()()22f x x x f x -=--=-∴()()220f x x x x =-+<,∴()222,02,0x x x f x x x x ⎧-+<=⎨+≥⎩(2)由()f x 的解析式以及二次函数、分段函数的性质可知()f x 为R 上的增函数: (3)由()()210f m f m +->和()f x 是奇函数得()()()22f m f m t f t m>--=-,因为()f x 为R 上的增函数, ∴2m t m >-,221124t m m m ⎛⎫<+=+- ⎪⎝⎭,∴14t <-. 【点睛】方法点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法. 23.(1)不是;证明见详解.(2)∅ 【分析】(1)求出2()1y f u u ==+的值域以及[]()y f g x =的值域,根据题中定义即可判断.(2)根据题意可得221()1x ax g x x x ++=++的值域与u 的取值范围相同,转化为()2211x ax u x x ++=++,从而可得0∆≥,再由12u ≤≤,利用韦达定理即可求解.【详解】(1)1()u g x x x==+(x >0) 不是函数()y f u =的一个“等值域变换”, 证明如下:2()11y f u u ==+≥,()f u ∴的值域为[)1,+∞,又[]22211()13y f g x x x x x ⎛⎫==++=++ ⎪⎝⎭,2212x x +≥=,当且仅当1x =时取等号, []221()35y f g x x x+∴==+≥, 即[]()y f g x =的值域为[)5,+∞, 两函数的值域不同,∴1()u g x x x==+(x >0) 不是函数()y f u =的一个“等值域变换”. (2)()y f u =在定义域[]1,2上为单调函数,∴()y f u =在两端点处取得最值,又221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”, ∴[]()y f g x =与()y f u =值域相同,()12g x ∴≤≤,即()g x 的值域与u 的取值范围相同,由2211x ax u x x ++=++得()2211x ax u x x ++=++,()()2110u x a u x u ∴-+-+-=有根,()()22410a u u ∴∆=---≥,即()2232840u a u a +-+-≤,又12u ≤≤,1,2∴是方程()2232840u a u a +-+-=的两个根,228121324123a a a a a -⎧+=-⎧⎪=-⎪⎪∴⇒⇒∈∅⎨⎨-⎪⎪∈∅⨯=⎩⎪⎩, 所以实数a 的取值范围是∅. 【点睛】方法点睛:本题考查了函数的值域求法,常见方法如下: (1)利用函数的单调性求值域. (2)对于分式型的值域利用分离常数法.(3)换元法. (4)数形结合法. (5)判别式法.24.(1)1;(2)82[,]35-. 【分析】(1)()f x 为R 上的奇函数,由()00f =得解;(2)由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”得到等价命题是 “()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集”,分别求出两个函数的值域得解. 【详解】(1)因为()f x 为R 上的奇函数, 所以()00f =,即102a-=,解得1a = (2)因为[]20,3x ∈,且()g x 在[]0,1上是减函数,在[]1,3上为增函数 所以()g x 在[]0,3上的取值集合为[]1,3m m -+.由122()11221x x x f x -==-+++得()f x 是减函数, 所以()f x 在[]1,2-上是减函数所以()f x 在[]1,2-上的取值集合为31[,]53-.由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集,即[]31[,]1,353m m -⊆-+. 则有315m -≤-,且133m +≥,解得:8235m -≤≤. 即实数m 的取值范围是82[,]35-. 【点睛】探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围;类似的,对于不等式()()0(0)f x g m -≥≤,也可仿效此法.25.(1)[]1,0-、[]0,1、[]1,1-;(2)2;(2)[]1,0-和[]1,3-. 【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令312x x -=,解得25x =或2,最后绘出函数图像,结合函数图像即可得出结果; (3)本题可令22x x x -=,解得0x =或3,然后结合函数图像即可得出结果.【详解】(1)函数()3f x x =是增函数,定义域为R , 令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、[]0,1、[]1,1-. (2)因为()312f x x =-,所以()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩, 因为[]()0,0m m >为函数()312f x x =-的一个“和谐区间”, 所以可令312x x -=,解得25x =或2, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当2x =时满足题意,故m 的值为2.(3)函数()22f x x x =-,定义域为R , 令22x x x -=,解得0x =或3,如图所示,绘出函数图像:结合图像易知,函数()f x 的所有“和谐区间”为[]1,0-和[]1,3-.【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.26.(1)()02f =-;()22f x x x =+-;(2)2a ≤. 【分析】(1)通过对抽象函数赋值,令1,1x y =-=进行求解,即得(0)f ;令0y =可消去y ,再结合()0f 的值,即求得解析式;(2)先讨论1x =时不等式恒成立,21x 时,再通过分离参数法求得a 的取值范围即可.【详解】解:(1)令1,1x y =-=,可得()()()01121f f -=--++,又由()10f =,解得()02f =-;令0y =,得()()()01f x f x x -=+,又因()02f =-,解得()22f x x x =+-;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,即()213x a x -≤+,若1x =时不等式即04≤,显然成立;若21x 时,10x ->,故231x a x +≤-恒成立,只需2min31x a x ⎛⎫+≤ ⎪-⎝⎭, 设()()()22121434()12111x x x g x x x x x---++===-+----,设(]1,0,3t x t =-∈ 则4()2g t t t=+-是对勾函数,在()0,2递减,在()2,3递增,故2t =时,即1x =-时min ()2g x =,故2a ≤,综上, a 的取值范围为2a ≤.【点睛】方法点睛:抽象函数通常利用赋值法求函数值或者求解析式;二次函数含参恒成立的问题,一般是通过分离参数进行求解,当然也可以根据判别式法进行求解,视具体情况而定.。

2023年浙教版数学函数图像练习题及答案

2023年浙教版数学函数图像练习题及答案

2023年浙教版数学函数图像练习题及答案第一题:已知函数f(x) = x^2 + 2x + 1,求函数f(x)的图像关于y轴的对称点的坐标。

解答:我们知道,函数图像关于y轴的对称点,可以通过将x坐标变为-x 来得到。

所以我们只需要将x^2 + 2x + 1中的x变为-x即可得到关于y 轴的对称点。

将x变为-x:f(-x) = (-x)^2 + 2(-x) + 1 = x^2 - 2x + 1所以,函数f(x)关于y轴的对称点坐标为(-x^2 + 2x + 1, 0)。

第二题:已知函数g(x) = 2^x,求函数g(x)的图像关于x轴的对称点的坐标。

解答:函数图像关于x轴的对称点,可以通过将y坐标变为-y来得到。

所以我们只需要将2^x中的y变为-y即可得到关于x轴的对称点。

将y变为-y:g(x) = -2^x所以,函数g(x)关于x轴的对称点坐标为(x, -2^x)。

第三题:已知函数h(x) = |x|,求函数h(x)的图像关于原点的对称点的坐标。

解答:函数图像关于原点的对称点,可以通过将x坐标变为-x,y坐标变为-y来得到。

所以我们只需要将|h(x)|中的x变为-x,y变为-y即可得到关于原点的对称点。

将x变为-x,y变为-y:h(-x) = |-x| = x-h(x) = -|x| = -x所以,函数h(x)关于原点的对称点坐标为(-x, -y)。

第四题:已知函数j(x) = sqrt(x),求函数j(x)的图像关于y=x的对称点的坐标。

解答:函数图像关于y=x的对称点,可以通过将x和y坐标交换来得到。

所以我们只需要将sqrt(x)中的x和y坐标交换即可得到关于y=x的对称点。

将x和y坐标交换:j(x) = x^2所以,函数j(x)关于y=x的对称点坐标为(x^2, x)。

总结:通过以上练习题,我们学习了不同函数图像的对称性质及其对称点的坐标计算方法。

熟练掌握这些知识,可以帮助我们更好地理解数学函数的图像变换和性质,为解决相关问题提供便利。

最新北师大版高中数学必修一第二单元《函数》测试题(包含答案解析)(1)

最新北师大版高中数学必修一第二单元《函数》测试题(包含答案解析)(1)

一、选择题1.已知函数()21f x mx mx =++的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x 的最大值为27-,无最小值C .()F x 的最大值为727-,无最小值D .()F x 的最大值为3,最小值为-1 3.以下说法正确的有( ) (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .66.函数sin y x x =的图象可能是( )A .B .C .D .7.函数()21xf x x =-的图象大致是( ) A .B .C .D .8.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( )A .[]1,4B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦9.已知定义在R 上的函数()f x 满足:对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,且()2f x +是偶函数,不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,则实数m 的取值范围是( )A .[]4,6-B .[]4,3-C .(][),46,-∞-+∞D .(][),43,-∞-⋃+∞10.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .11.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .12.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.若函数()y f x =的定义域是[0,2],则函数()1g x x =-______. 14.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.15.已知定义在 +R 上的函数 ()f x 同时满足下列三个条件:① ()31f =-;②对任意x y +∈R , 都有 ()()()f xy f x f y =+;③ 1x > 时 ()0f x <,则不等式()()612f x f x <-- 的解集为___________.16.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.17.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________18.已知函数()f x 在定义域(0,)+∞上是单调函数,若对任意(0,)x ∈+∞,都有1()2f f x x ⎡⎤-=⎢⎥⎣⎦,则12020f ⎛⎫⎪⎝⎭的值是______________. 19.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.20.若y =y 的取值范围是________三、解答题21.已知函数()()210f x x x a=-+>. (1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围. 22.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 23.已知函数2()21,[1,3]f x ax bx x =++∈(,a b ∈R 且,a b 为常数) (1)若1a =,求()f x 的最大值;(2)若0a >,1b =-,且()f x 的最小值为4-,求a 的值.24.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k . 25.已知二次函数2()1(,)f x ax bx a b R =++∈,x ∈R .(1)若函数()f x 的最小值为(1)0f -=,求()f x 的解析式,并写出单调区间; (2)在(1)的条件下,()f x x k >+在区间[-3,-1]上恒成立,试求k 的取值范围.26.已知函数()()20,,f x ax bx c a b c R =++>∈满足1(0)()1f f a==.(1)求()f x 表达式及其单调区间(不出现b ,c );(2)设对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意; 当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 2.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =+或27x =-.3.B解析:B 【分析】 根据AB 为点集,可判断(1)的正误;根据奇函数的性质,可判断(2)的正误;分解反比例函数的单调性,可判断(3)的正误;根据映射的概念,可判断(4)的正误. 【详解】 (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}(3,1)AB =,所以(1)错误;(2)若()f x 是定义在R 上的奇函数,则()00f =,所以(2)正确; (3)函数1y x=的单调区间是(),0-∞和()0,∞+,所以(3)错误; (4)设A 中元素为(,)x y ,由题意可知1031x y -=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以A 中元素是()1,2,所以(4)正确;所以正确命题的个数是2个, 故选:B. 【点睛】关键点点睛:该题考查的是有关命题的真假判断,在解题的过程中,关键点是要熟练掌握基础知识,此类题目综合性较强,属于中档题目.4.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.5.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值. 【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意; (2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C. 【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.6.A解析:A 【分析】先判断函数奇偶性,排除CD ,再结合函数在()0,π的正负选出正确答案 【详解】设()sin y f x x x ==,求得()sin f x x x -=,故函数为偶函数,排除CD ,由三角函数图像特征可知在()0,π时sin 0x >,故在()0,π时()0f x >,故A 正确 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.7.C解析:C 【分析】由1x >时,()0f x <,排除B 、D ;由函数()f x 在区间(0,1)上的单调性,排除A ,即可求解. 【详解】由题意,函数()21xf x x =-有意义,满足210x -≠,解得1x ≠±, 又由当1x >时,()0f x <,排除B ,D ; 当01x <<时,()21xf x x=-, 设1201x x ,则2112212122222121(1)()()()11(1)(1)x x x x x x f x f x x x x x +--=-=----, 因为2221122110,10,10,0x x x x x x ->->+>->,所以21()()0f x f x ->,即12()()f x f x <,所以函数()f x 在(0,1)上单调递增,所以A 不符合,C 符合. 故选:C. 【点睛】知式选图问题的解答方法:从函数的定义域,判定函数图象的左右位置,从函数的值域判断图象的上下位置; 从函数的单调性(有时借助导数),判断函数的图象的变换趋势; 从函数的奇偶性,判断图象的对称性; 从函数的周期性,判断函数的循环往复;从函数的特殊点(与坐标轴的交点,经过的定点,极值点等),排除不和要求的图象.8.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦. 故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.9.C解析:C 【分析】根据已知条件可知()f x 在(,2]-∞上单调递减,在[2,)x ∈+∞上单调递增,由不等式在[]1,0x ∈-恒成立,结合()f x 的单调性、对称性即可求m 的取值范围.【详解】对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,知:()f x 在[2,)x ∈+∞上单调递增,()2f x +是偶函数,知:()f x 关于2x =对称,∴()f x 在(,2]-∞上单调递减,在[2,)x ∈+∞上单调递增;∵不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,且3211x -≤-≤-, ∴max (1)(21)(3)f m f x f +≥-=-即可,而根据对称性有(1)(7)f m f +≥, ∴综上知:13m +≤-或17m +≥,解得(][),46,x ∈-∞-+∞,故选:C 【点睛】结论点睛:注意抽象函数单调性、对称性判断 对任意的()1212,x x x x ≠:()()21210f x f x x x ->-有()f x 单调递增;()()21210f x f x x x -<-有()f x 单调递减;当()f x n +是偶函数,则()f x 关于x n =对称;思路点睛:对称型函数不等式在一个闭区间上恒成立:在对称轴两边取大于或小于该闭区间最值即可,结合函数区间单调性求解.10.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.【分析】根据抽象函数的定义域的求法结合函数列出不等式组即可求解【详解】由题意函数的定义域是即则函数满足解得即函数的定义域是故答案为:【点睛】求抽象函数定义域的方法:已知函数的定义域为求复合函数的定义解析:31,2⎛⎤⎥⎝⎦【分析】根据抽象函数的定义域的求法,结合函数()g x =. 【详解】由题意,函数()y f x =的定义域是[0,2],即02x ≤≤,则函数()g x =021210x x ≤-≤⎧⎨->⎩,解得312x <≤,即函数()g x =31,2⎛⎤⎥⎝⎦. 故答案为:31,2⎛⎤ ⎥⎝⎦. 【点睛】求抽象函数定义域的方法:已知函数()f x 的定义域为[],a b ,求复合函数()[]f g x 的定义域时:可根据不等式()a g x b ≤≤解得x ,则x 的取值范围即为所求定义域;已知复合函数()[]f g x 的定义域为[],a b ,求函数()f x 的定义域,求出函数()y g x =([,])x a b ∈的值域,即为()y f x =的定义域.14.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x =-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可.【详解】若存在[1,)x ∈+∞,不等式2212a x x x -+成立,即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x =-+,[1,)x ∈+∞,问题转化为求()f x 的最大值, 而2117()2()48f x x=-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>; ()f x m <有解min ()f x m ⇔<.15.【分析】用赋值法由已知得到把转化为即再用定义法证明在上为减函数利用单调性可得答案【详解】因为对任意有令得所以令则所以可等价转化为即设当时则所以所以在上为减函数故由得得又所以原不等式的解集为故答案为:解析:()13, 【分析】用赋值法由已知得到()()()9332f f f =+=-,把()()612f x f x <--转化为()()61(9)f x f x f <-+,即()()699f x f x <-,再用定义法证明()f x 在(0,)+∞上为减函数,利用单调性可得答案. 【详解】因为对任意12,(0,)x x ∈+∞,有()()()f xyf x f y =+,令x y ==fff =+,得()231f f ==-,所以12f =-, 令3x y ==,则()()()9332f f f =+=-,所以()()612f x f x <--可等价转化为()()61(9)f x f x f <-+,即()()699f x f x <-,设120x x <<,12,(0,)x x ∈+∞,当1x > 时 ()0f x <,则()()()22211111·x x f x f x f f x f x x x ⎛⎫⎛⎫==+< ⎪ ⎪⎝⎭⎝⎭,所以()12()f x f x >,所以()f x 在(0,)+∞上为减函数,故由()()699f x f x <-, 得699x x >-,得3x <,又1x >,所以原不等式的解集为(1,3). 故答案为:(1,3) 【点睛】 思路点睛:确定抽象函数单调性解函数不等式的基本思路: 第一步(定性)确定函数在给定区间上的单调性和奇偶性;第二步(转化)将函数不等式转化为不等式类似()()f M f N <等形式;第三步(去)运用函数的单调性“去掉”函数的抽象符号f “”,转化成一般的不等式或不等式组;第四步(求解)解不等式或不等式组确定解集.16.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.17.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--. 所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩. 【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.18.2021【分析】由已知条件利用换元法求出f (x )然后代入计算即可求解【详解】已知函数f (x )在定义域(0+∞)上是单调函数且对任意x ∈(0+∞)都有ff (x )﹣=2可设f (x )﹣=c 故f (x )=+c解析:2021 【分析】由已知条件,利用换元法求出f (x ),然后代入计算即可求解. 【详解】已知函数f (x )在定义域(0,+∞)上是单调函数,且对任意x ∈(0,+∞),都有f [f (x )﹣1x]=2, 可设f (x )﹣1x =c ,故f (x )=1x +c ,且f (c )=c +1c=2(c >0),解可得c =1,f (x )=1x+1, 则f (12020)=2021. 故答案为:2021 【点睛】本题主要考查了利用函数的单调性求函数值,函数解析式的求法,注意函数性质的合理应用,属于中档题.19.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.20.【分析】首先求出的取值范围令将函数转化为三角函数再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为所以解得令则所以因为所以所以所以故答案为:【点睛】本题考查函数的值域的计算换元法的应用三角解析:【分析】首先求出x 的取值范围,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦将函数转化为三角函数,再根据三角恒等变换及三角函数的性质计算可得; 【详解】解:因为y =所以401830x x -≥⎧⎨-≥⎩解得46x ≤≤,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦则y t t ==3t π⎛⎫=+ ⎪⎝⎭所以3y t π⎛⎫=+ ⎪⎝⎭, 因为0,2t π⎡⎤∈⎢⎥⎣⎦,所以5,336t πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以1sin ,132t π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以y ∈故答案为:【点睛】本题考查函数的值域的计算,换元法的应用,三角函数及三角恒等变换公式的应用,属于中档题.三、解答题21.(1)答案见详解;(2)0a <. 【分析】(1)根据定义法证明函数单调性即可; (2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果. 【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<,()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增; (2)()20f x x +≥,即2120x x a -++≥,即212x x a≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <. 【点睛】对于函数恒成立或者有解求参的问题,常用方法有: (1)分离参数法:参变分离,转化为函数最值问题;(2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果.22.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式.【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析. 23.(1)答案见解析;(2)19. 【分析】(1)讨论2b -<和2b -≥两种情况根据二次函数性质求解; (2)讨论11a ≤,113a<<和13a ≥三种情况结合二次函数的单调性求解.【详解】(1)1a =时,2()21f x x bx =++,对称轴为x b =-,二次函数()f x 的图象开口向上,当2b -<,即2b >-时,max ()(3)106f x f b ==+; 当2b -≥,即2b ≤-时,max ()(1)22f x f b ==+.(2)2()21f x ax x =-+,对称轴为1x a=,二次函数()f x 的图象开口向上, 当11a≤,即1a ≥时,()f x 在[]1,3单调递增,()()min 114f x f a ==-=-,解得3a =-,不符合;当113a <<,即113a <<时,2min 112()14f x f a a a a ⎛⎫⎛⎫==⋅-+=- ⎪ ⎪⎝⎭⎝⎭,解得15a =,不符合;当13a ≥,即103a <≤时,()f x 在[]1,3单调递减,()()min 3954f x f a ==-=-,解得19a =,符合,综上,19a =.【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路; (1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b+的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.24.(1)()223f x x x =+-;(2)()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩.【分析】(1)由①可知函数()f x 的图象关于直线14x =-对称,由②可知()10f =,可得出关于a 、c 的方程组,进而可得出函数()f x 的解析式;(2)求得()()22413g x x k x =++-,求得该函数的对称轴为直线()1x k =-+,对实数k 的取值进行分类讨论,分析函数()g x 在区间[]1,3上的单调性,进而可求得()h k 关于k的表达式. 【详解】(1)由①可得,函数14f x ⎛⎫- ⎪⎝⎭是偶函数, 将函数14f x ⎛⎫-⎪⎝⎭的图象向左平移14个单位长度可得到函数()f x 的图象, 所以,函数()f x 的图象关于直线14x =-对称,则有1124a -=-,可得2a =. 由②可得:1x =是方程20ax x c ++=的一个解,则有10a c ++=,得3c =-. 于是:()223f x x x =+-;(2)依题意有:()()22413g x x k x =++-,对称轴为()1x k =-+.当()13k -+≥时,即4k ≤-时,()g x 在[]1,3单调递减,于是()()min 31227g x g k ==+;当()113k <-+<时,即4-<<-2k 时,()g x 在()1,1k -+⎡⎤⎣⎦单调递减,在()1,3k -+⎡⎤⎣⎦单调递增,于是()()2min 1245g x g k k k =--=---;当()11k -+≤时,即2k ≥-时,()g x 在[]1,3单调递增, 于是()()min 143g x g k ==+.综上:()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.25.(1)2(1)2f x x x =++;单调递增区间为[-1,+∞),单调递减区间为(-∞,-1];(2)(-∞,1). 【分析】(1)由1x =-时二次函数最小值为0,求出,a b 得函数解析式,写单调区间即可;(2)可转化为21k x x <++在区间[-3,-1]上恒成立,求出21y x x =++最小值即可.【详解】(1)由题意知12(1)10ba f ab ⎧-=-⎪⎨⎪-=-+=⎩,解得12a b =⎧⎨=⎩,∴2(1)2f x x x =++.由2()(1)f x x =+知函数()f x 的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,221x x x k ++>+在区间[-3,-1]上恒成立, 即21k x x <++在区间[-3,-1]上恒成立,令2()1g x x x =++,x ∈[-3,-1],由213()()24g x x =++知 g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1, 所以k <1,故k 的取值范围是(-∞,1). 【点睛】关键点点睛:二次函数的解析式求法,大多用到待定系数法,本题需根据当1x =-时二次函数最小值为0,建立方程组求解,即可求出函数解析式.26.(1)()21f x ax x =-+,减区间为1,2a ⎛-∞⎫ ⎪⎝⎭,递增区间为1,2a ⎛⎫+∞ ⎪⎝⎭;(2)50,4⎛⎤ ⎥⎝⎦. 【分析】(1)由()101a f f ⎛⎫⎪⎝⎭==,整理得()21f x ax x =-+,结合二次函数的性质,即可求解;(2)把“对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立”转化为()()max min 8f x f x -≤在[]1,3上恒成立,结合二次函数的图象与性质,分类讨论,即可求解.【详解】(1)由()101a f f ⎛⎫ ⎪⎝⎭==,可得()11(0)()f x a x x a -=--, 整理得()21f x ax x =-+, 因为0a >,则函数()21f x ax x =-+开口向上,对称轴方程为12x a =, 所以()f x 单调递减区间为1,2a ⎛-∞⎫ ⎪⎝⎭,()f x 单调递增区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)因为“对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立”,即()()max min 8f x f x -≤在[]1,3上恒成立,由(1)知函数()21f x ax x =-+,①当12a ≥时,函数()f x 在区间[]1,3上单调递增 可得()()()()max min 31828f x f x f f a -=-=-≤,解得54a ≤,即1524a ≤≤; ②当106a <≤时,函数()f x 在区间[]1,3上单调递减 可得()()()()max min 13288f x f x f f a -=-=-≤,解得34a ≥-,即106a <≤; ③当1162a <<时,函数()f x 在区间11,2a ⎡⎤⎢⎥⎣⎦单调递减,在区间1,32a ⎡⎤⎢⎥⎣⎦单调递增, 可得()()(){}max max 1,3f x f f =,()min 1124f x f a a ⎛⎫==- ⎪⎝⎭则()()112118243113932824f f a a a f f a a a ⎧⎛⎫-=-+≤≤ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=-+≤≤ ⎪⎪⎝⎭⎩,解得1162a <<, 综上所述:实数a 的取值范围是50,4⎛⎤ ⎥⎝⎦. 【点睛】由 恒成立求参数取值范围的思路及关键:一般有两个解题思路:一时分离参数法;二是不分离参数,采用最值法;两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否能分离,两种思路的依据为:()a f x ≥恒成立max ()a f x ⇔≥,()a f x ≤恒成立max ()a f x ⇔≤.。

2019-2020学年度华东师大版数学八年级下册第十七章 《函数及其图像》(含解析)第17章 单元测试

2019-2020学年度华东师大版数学八年级下册第十七章    《函数及其图像》(含解析)第17章  单元测试

第十七章函数及其图像单元测试班级:姓名:学号:成绩:一、选择题1.对于圆的面积公式S=πR2,下列说法中,正确的为()A. π是自变量B. R是常量C. R是自变量D. π和R是都是常量.其中y是x函数的是() 2.关于变量x,y有如下关系:①x−y=5;②y2=2x;③:y=|x|;④y=3xA. ①②③B. ①②③④C. ①③D. ①③④3.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.4.如图,是反比例函数y1=k和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()xA. 1<x<6B. x<1C. x<6D. x>15.关于函数y=−2x+1,下列结论正确的是()A. 图象必经过点(−2,1)B. 图象经过第一、二、三象限C. 图象与直线y=−2x+3平行D. y随x的增大而增大6.已知反比例函数y=−2,下列结论不正确的是()xA. 图象经过点(−2,1)B. 图象在第二、四象限C. 当x<0时,y随着x的增大而增大D. 当x>−1时,y>27.当x=−3时,函数y=x2−3x−7的函数值为()A. −25B. −7C. 8D. 11(k≠0)的图象经过点(2,−3),则k的值为()8.若反比例函数y=kxA. 5B. −5C. 6D. −69.若反比例函数y=2k+1的图象位于第一、三象限,则k的取值可以是()xA. −3B. -2C. -1D. 010.在平面直角坐标系中,点P(-2,3-π)所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米12.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.二、填空题13. 王明在班级的座位是“第3列第5排”,若用(3,5)表示,则(5,3)表示的实际意义是______. 14. 在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是______.15. 若一次函数y =−2x +b(b 为常数)的图象经过第二、三、四象限,则b 的值可以是 (写出一个即可).16. 已知点P(x,y)在第四象限,且到y 轴的距离为3,到x 轴的距离为5,则点P 的坐标是 . 17. 已知y =(k −1)x +k 2−1是正比例函数,则k = . 18. 函数y =√x+2−√3−x 中自变量x 的取值范围是 .19. 如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,−1)和(−3,1),那么“卒”的坐标为 .20.如图,在平面直角坐标系中,A是x轴上的任意一点,BC平行于x轴,分别交y=4x (x>0),y=kx(x<0)的图象于B,C两点若△ABC的面积为3,则k的值为______.三、解答题21.已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式.(2)若图象与x轴交与点A,与y轴交与点B,求出点A、B的坐标,并画出图象。

(完整版)函数及其图像测试题(含答案)

(完整版)函数及其图像测试题(含答案)

函数及其图像测试题班级: 姓名: 学号:一、单项选择(每题3分,共24分)1. 下列图像中,表示y 是x 的函数的是( )Y y y yx x xA B C D2.下列函数中,分别是一次函数和反比列函数的是( )A.y 2=2x +1和y =x 5B.y =1x +1和y =π2C.|y |=x +2和y =4xD.y =34+x 和y =5x −1 3.已知函数y =√2−x 1−x ,则自变量x 的取值范围是( )A.x ≠1B.x ≤2C.x ≠1且x ≤2D.任意实数4.已知一次函数y =k 2x +k (k 为常数),则这个函数的图像可能经过( )A.第一、二、三象限或第一、三、四象限B.第一、二、三象限或第二、三、四象限C.第一、二、四象限或第一、三、四象限D.第二、三、四象限或第一、三、四象限5.在平面直角坐标系中,点A (2a+3,1-b )与点B(2-3a,4b-1)关于y 轴对称,则点C(a+1,b+2) 在( )A.第一象限B.第二象限C.第三象限D.第四象限6.函数y =kx +b 和函数y =kx (k ≠0,k 为常数)在同一指教坐标系内的图像可能是( ) y y y yxA B C 7.在匀速直线运动中,有公式v =s t ,其中v 表示速度,s 表示路程,t 表示时间,则s 与t 的关系是( )A.不是函数关系B.正比列函数关系C.反比例函数关系D.是不能确定的函数关系8.如右图,MN ⊥PQ,垂足为点O ,点A 、C 在直线MN 上运动,点B 、D 在直线PQ 上运动。

顺次连结点A 、B 、C 、D ,围成四边形ABCD 。

当四边形ABCD 的面积为12时,设AC 长为x, BD 长为y ,则下图能表示x 与y关系的图像是( )yy3xA By yx x C D二、填空题(每小题3分,共24分)1.一次函数y =4x 与反比例函数y =16x 的交点坐标是 。

2.已知函数y =(m +1)x 2−|m |+n +4是正比列函数,则m= ,n= 。

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案一、单选题1.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S (千米)与离家的时间t (分钟)之间的函数关系的是( )A .B .C .D .2.已知函数 225y x =-,不在该函数图象上的点是( )A .(3,4)B .(4,-3)C .(4,3)D .(-3,4)3.下列关系式中,y 不是x 的函数的是( )A .2x y =B .22y x =C .(0)y x x =D .||(0)y x x =4.如果点A 在直线y=x-1上,则A 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,-1)D .(1,0)5.若一次函数的y =kx+b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( )A .y 1<y 2B .y 1>y 2C .y 1≤y 2D .y 1≥y 26.下列函数中,当x <0时y 随x 的增大而增大的是( )A .y=﹣3x+4B .1243y x =-- C .2y x =- D .23y x= 7.如图60MAN ∠=︒ ,点B 在射线 AN 上, 2AB =点P 在射线 AM 上运动(点P 不与点A 重合),连接 BP ,以点B 为圆心, BP 为半径作弧交射线 AN 于点Q ,连接 PQ .若AP x PQ y ==, ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .8.已知点()2A m -,,点()31B m +,,且直线AB x 轴,则m 的值为( ) A .1- B .1 C .3- D .39.当5x =时一次函数2y x k =+和3y kx =-4的值相同,则k 和y 的值分别为( )A .1,11B .19-,C .5,15D .3,3 10.关于反比例函数y=4x的图象,下列说法正确的是( ) A .必经过点(1,1) B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 二、填空题11.已知2()1f x x =-,那么(1)f -的值是 . 12.如图所示,一次函数y=kx+b (k≠0)与反比例函数y= m x (m≠0)的图象交于A 、B 两点,则关于x 的不等式kx+b < m x的解集为 .13.已知点 ()21A -,在正比例函数的图象上,则这个函数的解析式为 . 14.一次函数y=kx+b 的图象如图所示,则关于x 的方程4kx+4b=0的解为 ;方程kx+b+3=5的解为15.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底” a :任意两点横坐标差的最大值,“铅垂高” h :任意两点纵坐标的最大值,则“矩面积” S ah = .例如:三点坐标分别为A (1,2)、B (-3,1)、C (2,-2),则“水平底” a =5,“铅垂高” h =4,“矩面积”S=20.若D (1,2)、E (-2,1),F (0,t )三点的“矩面积”S=15,则的 t 值为 .三、解答题16.如图,直线PA 是一次函数y=x+1的图象,直线PB 是一次函数y=﹣2x+2的图象.(1)求A 、B 、P 三点的坐标;(2)求四边形PQOB 的面积.17.乐乐从家出发骑自行车去上学,当他以往常的速度骑了一段路后,突然想起要买文具,于是又折回到刚经过的文具店,买到文具后继续骑车去学校.如图是他本次上学所用的时间与离家的距离之间的关系图.根据图中提供的信息,解答下列问题:(1)乐乐在文具店停留了 分钟,文具店到学校的距离是 米;(2)在整个上学途中,哪个时间段乐乐骑车速度最快?最快的速度是多少?(3)如果乐乐不买文具,以往常的速度去学校,需要多长时间?18.2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.19.国际上广泛使用“身体体重指数(BMI )”作为判断人体健康状况的一个指标:这个指数B 等于人体的体重G (kg )除以人体的身高h (m )的平方所得的商,即B =2G h .身体体重指数范围身体属型 B <18不健康瘦弱 18≤B <20偏瘦 20≤B <25正常 25≤B <30超重 B ≥30 不健康肥胖(1)上表是国内健康组织提供的参考标准,若林老师体重G =81kg ,身高h =1.80m ,请问他的体型属于哪一种,请说明理由.(2)赵老师的身高为1.6m ,那么他的体重在什么范围内时体型属于正常?四、综合题20.2022年翻开序章,冬奥集结号已经吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.21.阅读下列材料:现给如下定义:以x 为自变量的函数用y=f (x )表示,对于自变量x 取值范围内的一切值,总有f (﹣x )=f (x )成立,则称函数y=f (x )为偶函数.用上述定义,我们来证明函数f (x )=x 2+1是偶函数.证明:∵f (﹣x )=(﹣x )2+1=x 2+1=f (x )∴f (x )是偶函数.根据以上材料,解答下面的问题:已知函数 ()1(0)212x a f x x x ⎛⎫=+≠ ⎪-⎝⎭(1)若f (x )是偶函数,且 ()312f = ,求f (﹣1); (2)若a=1,求证:f (x )是偶函数.22.如图,函数y 1=﹣x+4的图象与函数y 2= k x(x >0)的图象交于A (a ,1)、B (1,b )两点.(1)求k 的值;(2)利用图象分别写出当x >1时①y 1和y 2的取值范围;②y 1和y 2的大小关系.23.如图,一次函数()20y kx k =+≠的图象与反比例函数()00m y m x x=≠>,的图象交于点()2A n ,,与y 轴交于点B ,与x 轴交于点()40C -,.(1)求k 与m 的值;(2)点P 是x 轴正半轴上一点,若BP BC =,求PAB 的面积.24.如图,在平面直角坐标系 xoy 中,函数 (0)k y x x=< 的图象经过点(-6,1),直线 y mx m =+ 与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n)作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)k y x x=< 的图象于点B. ①当n =-1时判断线段PA 与PB 的数量关系,并说明理由;②若PB≥2PA ,结合函数的图象,直接写出n 的取值范围.答案解析部分1.【答案】C【解析】【解答】∵小李距家3千米,∴离家的距离随着时间的增大而增大.∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合.故答案为:C.【分析】根据小李距家3千米,路程随着时间的增大而增大即可确定合适的函数图象。

2012年中考复习 第三章 函数及其图象测试(含答案)

2012年中考复习 第三章 函数及其图象测试(含答案)

第三章 《函数及其图象》自我测试[时间:90分钟 分值:100分]一、选择题(每小题3分,满分30分) 1.(2011·衡阳)函数y =x +3x -1中自变量x 的取值范围是( )A .x ≥-3B .x ≥-3且x ≠1C .x ≠1D .x ≠-3且x ≠1 2.(2011·芜湖)二次函数y =ax 2+bx +c 的图象如图所示, 则反比例函数y =ax 与一次函数y =bx +c 在同一坐标系中的大致图象是( )A B C D3.(2011·广州)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A .y =x 2B .y =x -1C .y =34xD .y =1x4.(2011·东营)如图,直线l 和双曲线y =kx (k >0)交于A 、B 两点,P是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 面积是S 1、△BOD 面积是S 2、△POE 面积是S 3、则( ) A. S 1<S 2<S 3 B .S 1>S 2>S 3 C .S 1=S 2>S 3 D .S 1=S 2<S 35.(2011·黄石)设一元二次方程(x -1)(x -2)=m (m >0)的两实根分别为α、β,则α、β满足( )A .1<α<β<2B .1<α<2 <βC .α<1<β<2D .α<1且β>26.(2011·桂林)在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( )A .y =-(x +1)2+2B .y =-(x -1)2+4C .y =-(x -1)2+2D .y =-(x +1)2+47.(2011·泰州)某公司计划新建一个容积V (m 3)一定的长方体污水处理池,池的底面积S (m 2)与其深度h (m)之间的函数关系式为S =Vh(h ≠0),这个函数的图象大致是( )A B C D8.(2011·菏泽)如图为抛物线y =ax 2+bx +c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )A. a +b =-1 B .a -b =-1 C .b <2a D .ac <0(第8题) (第9题) (第10题)9.(2010·常州)如图,一次函数y =-12x +2的图象上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为a (0<a <4且a ≠2),过点A 、B 分别作x 的垂线,垂足为C 、D ,△AOC 、△BOD 的面积分别为S 1、S 2,则S 1、S 2的大小关系是( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .无法确定10.(2011·宜宾)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A B C D 二、填空题(每小题3分,满分30分)11.(2011·广州)已知反比例函数y =kx的图象经过(1,-2),则k =________.12.(2011·上海)一次函数y =3x -2的函数值y 随自变量x 值的增大而________(填“增大”或“减小”).13.(2011·黄冈)如图,点A 在双曲线y =k x上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k =______.(第13题) (第17题) (第18题) 14.(2011·黄冈)已知函数y ={ ()x -12-1()x ≤3, ()x -52-1()x >3,则使y =k 成立的x 值恰好有三个,则k 的值为________.15.(2011·黄石)若一次函数y =kx +1的图象与反比例函数y =1x 的图象没有公共点,则实数k 的取值范围是________.16.(2011·潍坊)一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y随x 的增大而减小.这个函数解析式为____________________(写出一个即可). 17.(2011·内江)在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y =kx +b 的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上.若点B 1的坐标为(1,1),点B 2的坐标为(3,2),则点A n 的坐标为____________.18.(2011·衢州)在直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,sin ∠AOB =35,反比例函数y =kx (k >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为_______________.19.(2011·广安)如图所示,直线OP 经过点P (4, 4 3),过x 轴上的点1、3、5、7、9、11……分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S 1、S 2、S 3……S n 则S n 关于n 的函数关系式是________.(第19题) (第20题) 20.(2010·兰州)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为__________米.三、解答题(21~22题各6分,23题8分,24~25题各10分)21.(2011·菏泽)已知一次函数y =x +2与反比例函数y =kx ,其中一次函数y =x +2的图象经过点P (k,5).(1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标.22.(2011·日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机 电冰箱 甲连锁店 200 170 乙连锁店160150设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?23.(2011·扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示______槽中的深度与注水时间之间的关系,线段DE表示________槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B的纵坐标表示的实际意义是______________________________________________________;(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).24.(2011·温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B 的坐标为(0,b)(b>0). P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y 轴的对称点为P′(点P′不在y轴上),连结PP′、P′A、P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D∶DC=1∶3时,求a的值;(3)是否同时存在a、b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a、b的值;若不存在,请说明理由.25.(2011·安徽)如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证h1=h3;(2)设正方形ABCD的面积为S,求证S=(h2+h3)2+h12;(3)若32h1+h2=1,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况.参考答案一、选择题(每小题3分,满分30分) 1.(2011·衡阳)函数y =x +3x -1中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且x ≠1 C .x ≠1 D .x ≠-3且x ≠1 答案 B解析 由x +3≥0且x -1≠0,得x ≥-3且x ≠1.2.(2011·芜湖)二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y =ax 与一次函数y=bx +c 在同一坐标系中的大致图象是( )A B C D答案 D解析 由抛物线的位置,得a <0,b <0,c =0,所以双曲线y =ax 分布在第二、四象限,直线y =bx +c 过原点,且经过第二、四象限.3.(2011·广州)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A .y =x 2B .y =x -1C .y =34xD .y =1x答案 D解析 y =1x分布第一、三象限,当x >0时,y 随x 的增大而减小.4.(2011·东营)如图,直线l 和双曲线y =kx (k >0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 面积是S 1、△BOD 面积是S 2、△POE 面积是S 3、则( ) A. S 1<S 2<S 3 B .S 1>S 2>S 3 C .S 1=S 2>S 3 D .S 1=S 2<S 3 答案 D解析 S 1=S △AOC =12k ,S 2=S △BOD =12k ,S 3=S △POE >12k .所以S 1=S 2<S 3.5.(2011·黄石)设一元二次方程(x -1)(x -2)=m (m >0)的两实根分别为α、β,则α、β满足( )A .1<α<β<2B .1<α<2 <βC .α<1<β<2D .α<1且β>2 答案 D解析 当y =(x -1)(x -2)时,抛物线与x 轴交点的横坐标为1,2,抛物线与直线y =m (m >0)交点的横坐标为α,β,可知α<1,β>2.6.(2011·桂林)在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( )A .y =-(x +1)2+2B .y =-(x -1)2+4C .y =-(x -1)2+2D .y =-(x +1)2+4 答案 B解析 抛物线y =x 2+2x +3的顶点为(-1,2),与y 轴交于点(0,3),开口向上;旋转后其顶点为(1,4),开口向下. 所以y =-(x -1)2+4.7.(2011·泰州)某公司计划新建一个容积V (m 3)一定的长方体污水处理池,池的底面积S (m 2)与其深度h (m)之间的函数关系式为S =Vh(h ≠0),这个函数的图象大致是( )答案 C解析 S =Vh(h ≠0),S 是h 的反比例函数,当h >0时,图象仅在第一象限.8.(2011·菏泽)如图为抛物线y =ax 2+bx +c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )A. a +b =-1 B .a -b =-1 C .b <2a D .ac <0 答案 B解析 由OA =OC =1,得A (-1,0),C (0,1),所以{ a -b +c =0, c =1,则a -b =-1.9.(2010·常州)如图,一次函数y =-12x +2的图象上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为a (0<a <4且a ≠2),过点A 、B 分别作x 的垂线,垂足为C 、D ,△AOC 、△BOD 的面积分别为S 1、S 2,则S 1、S 2的大小关系是( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .无法确定 答案 A解析 当x =2时,y =-12x +2=1,A (2,1),S 1=S △AOC =12×2×1=1;当x =a 时,y =-12x +2=-12a +2,B (a ,-12a +2),S 2=S △BOD =12×a ×⎝⎛⎭⎫-12a +2=-14a 2+a =-14(a -2)2+1,当a =2时,S 2有最大值1,当a ≠2时,S 2<1.所以S 1>S 2.10.(2011·宜宾)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A B C D答案 B解析 当点P 在AD 上时,S △APD =0;当点P 在DC 上时,S △APD =12×4×(x -4)=2x -8;当点P 在CB 上时,S △APD =12×4×4=8;当点P 在BA 上时,S △APD =12×4×(16-x )=-2x +32.故选B.二、填空题(每小题3分,满分30分)11.(2011·广州)已知反比例函数y =kx的图象经过(1,-2),则k =________.答案 -2解析 点(1,-2)在双曲线y =kx上,有k =1×(-2)=-2.12.(2011·上海)一次函数y =3x -2的函数值y 随自变量x 值的增大而________(填“增大”或“减小”). 答案 增大解析 一次出数y =3x -2,k =3>0,可知y 随x 的增大而增大.13.(2011·黄冈)如图,点A 在双曲线y =k x上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k =______.答案 -4解析 设A (x ,y ).S △AOB =12OA ·AB =12·|x |·|y |=12x ·(-y )=-12xy =2.所以xy =-4,即k =-4.14.(2011·黄冈)已知函数y ={ ()x -12-1()x ≤3, ()x -52-1()x >3,则使y =k 成立的x 值恰好有三个,则k 的值为________. 答案 3解析 如图,画函数图象.当y =3时,对应的x 值恰好有三个,∴k =3.15.(2011·黄石)若一次函数y =kx +1的图象与反比例函数y =1x 的图象没有公共点,则实数k 的取值范围是________. 答案 k <-14解析 直线y =kx +1与双曲线y =1x 没有公共点,则方程组⎩⎨⎧y =kx +1, y =1x 无实根,kx +1=1x ,kx 2+x -1=0,得{ k ≠0, 1+4k <0,解之,得⎩⎨⎧k ≠0, k <-14,所以k <-14. 16.(2011·潍坊)一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y随x 的增大而减小.这个函数解析式为____________________(写出一个即可). 答案 如:y =2x,y =-x +3,y =-x 2+5等,写出一个即可17.(2011·内江)在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y =kx +b 的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上.若点B 1的坐标为(1,1),点B 2的坐标为(3,2),则点A n 的坐标为____________.答案 (2n -1-1,2n -1)解析 可求得A 1(0,1),A 2(1,2),A 3(3,4),A 4(7,8),…,其横坐标0,1,3,7…的规律为2n-1-1,纵坐标1,2,4,8…的规律为2n -1,所以点A n 的坐标为(2n -1-1,2n -1).18.(2011·衢州)在直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,sin ∠AOB =35,反比例函数y =kx (k >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为_______________.答案 (8,32)解析 在Rt △AOB 中,AO =10.sin ∠AOB =AB AO =35,则AB =6,OB =8.又点C 是AC 中点,得C (4,3),k =4×3=12,y =12x .当x =8时,y =128=32.∴D 坐标为⎝⎛⎭⎫8,32. 19.(2011·广安)如图所示,直线OP 经过点P (4, 4 3),过x 轴上的点1、3、5、7、9、11……分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S 1、S 2、S 3……S n 则S n 关于n 的函数关系式是________.答案 (8n -4) 3解析 设直线OP 的解析式为y =kx ,由P (4,4 3),得4 3=4k ,k =3,∴y =3x .则S 1=12×(3-1)×(3+3 3)=4 3,S 2=12×(7-5)×(5 3+7 3)=12 3,S 3=12×(11-9)×(9 3+11 3)=20 3,……,所以S n =4(2n -1)3=(8n -4) 3.20.(2010·兰州)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为__________米. 答案 0.5解析 如下图,建立平面直角坐标系,可得抛物线y =ax 2+c 经过点(-0.5,1),(1,2.5),则⎩⎨⎧14a +c =1, a +c =2.5,解之,得{ a =2, c =0.5,∴y =2x 2+0.5,抛物线顶点坐标为(0,0.5),距地面的距离为0.5米.三、解答题(21~22题各6分,23题8分,24~25题各10分)21.(2011·菏泽)已知一次函数y =x +2与反比例函数y =kx ,其中一次函数y =x +2的图象经过点P (k,5).(1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标. 解 (1)因为直线y =x +2过点P (k,5), ∴5=k +2,k =3.∴反比例函数的表达式为y =3x.(2)解方程组⎩⎨⎧y =x +2, y =3x ,得{ x =1, y =3,或{ x =-3, y =-1.故第三象限的交点Q 的坐标为(-3,-1).22.(2011·日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机 电冰箱 甲连锁店 200 170 乙连锁店160150设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?解 (1)根据题意知,调配给甲连锁店电冰箱(70-x )台, 调配给乙连锁店空调机(40-x )台,电冰箱(x -10)台,则y =200x +170(70-x )+160(40-x )+150(x -10),即y =20x +16800.∵ ⎩⎪⎨⎪⎧x ≥0,70-x ≥0,40-x ≥0,x -10≥0,∴10≤x ≤40.∴y =20x +16800(10≤x ≤40).(2)按题意知:y =(200-a )x +170(70-x )+160(40-x )+150(x -10), 即y =(20-a )x +16800. ∵200-a >170,∴a <30.当0<a <20时,y 随x 增大而增大,则x =40时,利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a =20时,x 的取值在10≤x ≤40内的所有方案利润相同;当20<a <30时,y 随x 增大而减小,x =10时,利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.23.(2011·扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示______槽中的深度与注水时间之间的关系,线段DE 表示________槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B 的纵坐标表示的实际意义是______________________________________________________;(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).解 (1)乙,甲;乙槽内的圆柱形铁块的高度为14厘米.(2)设线段AB 的解析式为y 1=kx +b ,由过点(0,2)、(4,14),可求得解析式为y 1=3x +2; 设线段DE 的解析式为y 2=mx +n ,由过点(0,12)、(6,0),可求得解析式为y 2=-2x +12; 当y 1=y 2时,3x +2=-2x +12,∴x =2.∴注水2分钟时,甲、乙两水槽中水的深度相同.(3)∵水由甲槽匀速注入乙槽,∴乙槽前4分钟注入水的体积是后2分钟的2倍. 设乙槽底面积与铁块底面积之差为S ,则 (14-2)S =2×36×(19-14),解得S =30cm 2. ∴铁块底面积为36-30=6cm 2. ∴铁块的体积为6×14=84cm 3. (4)甲槽底面积为60cm 2.∵铁块的体积为112cm 2,∴铁块底面积为112÷14=8(cm 2). 设甲槽底面积为s (cm 2),则注水的速度为12s6=2s (cm 3/min).由题意得2s ×6-4 19-14-2s ×414-2=8,解得s =60.∴甲槽底面积为60cm 2.24.(2011·温州)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0). P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为C .记点P 关于y 轴的对称点为P ′(点P ′不在y 轴上),连结PP ′、P ′A 、P ′C .设点P 的横坐标为a . (1)当b =3时,①求直线AB 的解析式;②若点P ′的坐标是(-1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D ∶DC =1∶3时,求a 的值; (3)是否同时存在a 、b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a 、b 的值;若不存在,请说明理由.解 (1)①设直线AB 的解析式为y =kx +3, 把x =-4,y =0代入上式,得-4k +3=0, ∴k =34,∴y =34x +3.②由已知得,点P 的坐标是(1,m ), ∴m =34×1+3,∴m =334.(2)∵PP ′∥AC , ∴△PP ′D ∽△ACD , ∴P ′D DC =P ′P CA ,即2a a +4=13, ∴a =45.(3)以下分三种情况讨论. ①当点P 在第一象限时,i)若∠AP ′C =90°,P ′A =P ′C (如图1),过点P ′作P ′H ⊥x 轴于点H , ∴PP ′=CH =AH =P ′H =12AC ,∴2a =12(a +4),∴a =43.∵P ′H =PC =12AC ,△ACP ∽△AOB ,∴OB OA =PC AC =12,即b 4=12, ∴b =2.ii)若∠P ′AC =90°,P ′A =CA (如图2),则PP ′=AC ,∴2a =a +4,∴a =4.∵P ′A =PC =AC ,△ACP ∽△AOB , ∴OB OA =PC AC =1,即b4=1,∴b =4. iii)若∠P ′CA =90°,则点P ′、P 都在第一象限,这与前提条件矛盾, ∴△P ′CA 不可能是以C 为直角顶点的等腰直角三角形.②当点P 在第二象限时,∠P ′CA 为锐角(如图3),此时△P ′CA 不可能是等腰直角三角形.③当点P 在第三象限时,∠P ′AC 为钝角(如图4),此时△P ′CA 不可能是等腰直角三角形.∴所有满足条件的a 、b 的值为⎩⎪⎨⎪⎧a =43,b =2,或⎩⎪⎨⎪⎧a =4,b =4.25.(2011·安徽)如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3;(2)设正方形ABCD 的面积为S ,求证S =(h 2+h 3)2+h 12;(3)若32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况.解 (1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G ,利用两角一边对应相等,证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF ,且两直角边长分别为h 1、h 3+h 2,四边形EFGH 是边长为h 2的正方形,所以S =4×12h 1()h 3+h 2+h 22=2h 1h 3+2h 1h 2+h 22=2h 12+2h 1h 2+h 22=(h 1+h 2)2+h 12.(3)由题意,得h 2=1-32h 1,所以S =⎝⎛⎭⎫h 1+1-32h 12+h 12=54h 12-h 1+1=54⎝⎛⎭⎫h 1-252+45.又⎩⎪⎨⎪⎧h 1>0,1-32h 1>0, 解得0<h 1<23.∴当0<h 1<25时,S 随h 1的增大而减小;当h 1=25时,S 取得最小值45;当25<h 1<23时,S 随h 1的增大而增大.。

函数图像练习题及答案

函数图像练习题及答案

函数图像练习题及答案一、选择题1. 函数f(x)=2x^2-3x+1的图像是开口向上的抛物线,其顶点坐标为:A. (1,0)B. (-1,2)C. (3/4,-1/8)D. (0,1)2. 若函数f(x)=x^3-3x^2+2x+1的导数为f'(x)=3x^2-6x+2,求f'(1)的值:A. 2B. 3B. 4D. 53. 函数y=|x|的图像是:A. 一条直线B. V形曲线C. 一条抛物线D. 一条双曲线4. 若函数f(x)=x^2+2x+1的图像与x轴相交于点(-1,0),则该点也是:A. 极大值点B. 极小值点C. 拐点D. 无特殊点5. 函数y=sin(x)的图像是:A. 一条直线B. 一条周期曲线C. 一条抛物线D. 一条双曲线二、填空题1. 函数y=x^2的导数是________。

2. 函数y=cos(x)的周期是________。

3. 若函数f(x)=x^3-6x^2+11x-6的极小值点为x=2,则其极小值是________。

4. 函数y=1/x的图像在第一象限和第三象限是________。

5. 函数y=ln(x)的定义域是________。

三、解答题1. 已知函数f(x)=x^3-6x^2+11x-6,求其导数,并找出其极值点及对应的极值。

2. 函数y=x^2-4x+4的图像与y=0相交于哪两点?并说明这两点的性质。

3. 函数f(x)=x^2+4x+4的图像与直线y=k相交于两点,求k的取值范围。

4. 函数y=x^2-2x+1的图像关于直线x=1对称,求证。

5. 若函数f(x)=x^3-3x^2+4x-12的图像在点(2,-4)处的切线方程,求出该切线方程。

答案:一、选择题1. C2. A3. B4. A5. B二、填空题1. 2x2. 2π3. -34. 向下5. (0,+∞)三、解答题1. 导数f'(x)=3x^2-12x+11,令f'(x)=0得x=(12±√(144-132))/6=2或x=(12-√(144-132))/6,检验得x=2为极小值点,极小值为f(2)=-3。

第17章 函数及其图象【真题训练】(解析版)

第17章 函数及其图象【真题训练】(解析版)

第17章 函数及其图象[真题训练](解析版)一、选择题1.(2020湖北黄冈)在平面直角坐标系中,若点A(a,-b)在第三象限,则点B(-ab,b)所在的象限是( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A解:∵点(,)A a b -在第三象限,∴0a <,, ∴0b >,∴,∴点B 在第一象限, 故选:A .2.(2020四川遂宁)函数12-+=x x y 中,自变量x 的取值范围是( ) A .x >﹣2 B .x ≥﹣2C .x >﹣2且x ≠1D .x ≥﹣2且x ≠1【答案】D .【解答】解:根据题意得:{x +2≥0x −1≠0解得:x ≥﹣2且x ≠1. 故选:D .3.(2020湖北武汉)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A. 32 B. 34C. 36D. 38【答案】C.解:设每分钟的进水量为bL ,出水量为cL 由第一段函数图象可知,205()4b L == 由第二段函数图象可知, 即201251235c +⨯-= 解得15()4c L =则当24x =时, 因此,解得36(min)a = 故选:C .4.(2020·安徽)已知一次函数y =kx +3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .(-1,2) B .(1,-2)C .(2,3)D .(3,4)【答案】B解:由一次函数的解析式,得:k =3y x -≠0,则y ≠3.∵一次函数y 随x 的增大而减小,∴k <0,即3y x-<0,故x >0、y <3或x <0、y >3,故选B.5.(2020·乐山)直线y =kx +b 在平面直角坐标系中的位置如图所示,则不等式kx +b ≤2的解集是( )A .x ≤-2B .x ≤-4C .x ≥-2D .x ≥-4【答案】C解析:先根据图像用待定系数法求出直线的解析式,然后根据图像可得出解集.因为直线y =kx +b 经过(0,1),(2,0)两点,所以⎩⎨⎧b =1,2k +b =0,解得⎩⎪⎨⎪⎧k =-12,b =1,故直线的解析式为y =-12x +1;将y =2代入得2=-12x +1,解得x =-2,由图像得到不等式kx +b ≤2的解集是x ≥-2.6.(2020·济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P,根据图象可知,方程x+5=ax+b 的解是( )A. x=20B.x=5C.x= 25D.x=15 【答案】A解析:由函数图象知,当x=20时,y=x+5=25,y=ax+b=25,所以方程x+5=ax+b 的解是x=20.7.(2020·湖北荆州)在平面直角坐标系中,一次函数1y x 的图象是( )A. B. C. D. 【答案】C解析:此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键. 观察一次函数的解析式,确定出k 与b 的符号,利用一次函数图象及性质判断即可.一次函数1yx 中,其中k =1,b =1,其图象为,故选C.8.(2020·凉山州)若一次函数y =(2m +1)x +m -3的图象不经过第二象限,则m 的取值范围是( ) A .m >-12 B .m <3 C .-12<m <3 D .-12<m ≤3 【答案】D解析:由题意得,解得-12<m ≤3,故选D . 9.(2020河南)若点A(-1,1y ), B(2,2y ),C(3,3y )在反比例函数xy 6-=的图像上,则1y , 2y ,3y 的大小关系为( ) A. 123y y y >> B. 231y y y >>C. 132y y y >>D. 321y y y >>【答案】C【详解】解:∵点在反比例函数6y x=-的图象上,∴1661y =-=-,2632y =-=-,3623y =-=-, ∵326--<<, ∴132y y y >>, 故选:C .10. (2020内蒙古呼和浩特)在同一坐标系中,若正比例函数y =k 1x 与反比例函数y =的图象没有交点,则k 1与k 2的关系,下面四种表述①k 1+k 2≤0;②|k 1+k 2|<|k 1|或|k 1+k 2|<|k 2|;③|k 1+k 2|<|k 1﹣k 2|;④k 1k 2<0.正确的有( ) A .4个 B .3个 C .2个 D .1个【答案】B解:∵同一坐标系中,正比例函数y =k 1x 与反比例函数y =的图象没有交点,若k 1>0,则正比例函数经过一、三象限,从而反比例函数经过二、四象限, 则k 2<0,若k 1<0,则正比例函数经过二、四象限,从而反比例函数经过一、三象限, 则k 2>0,综上:k 1和k 2异号,①∵k 1和k 2的绝对值的大小未知,故k 1+k 2≤0不一定成立,故①错误; ②|k 1+k 2|=||k 1|﹣|k 2||<|k 1|或|k 1+k 2|=||k 1|﹣|k 2||<|k 2|,故②正确; ③|k 1+k 2|=||k 1|﹣|k 2||<||k 1|+|k 2||=|k 1﹣k 2|,故③正确; ④∵k 1和k 2异号,则k 1k 2<0,故④正确; 故正确的有3个, 故选:B . 二、填空题11.(2020齐齐哈尔)在函数23-+=x x y 中,自变量x 的取值范围是 . 【答案】x ≥﹣3且x ≠2. 解:由题可得,{x +3≥0x −2≠0,解得{x ≥−3x ≠2,∴自变量x 的取值范围是x ≥﹣3且x ≠2, 故答案为:x ≥﹣3且x ≠2.12.(2020重庆B 卷)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚__________分钟到达B 地.【答案】12.解析:由图及题意易乙的速度为300米/分,甲原速度为250米/分,当x=25后,甲提速为400米/分,当x=86时,甲到达B地,此时乙距B地为250(25-5)+400(86-25)-300×86=3600.13.(2020·黔西南州)如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是________.【答案】y=-2x解析:本题考查了一次函数的性质、正比例函数的性质、点的坐标意义.∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=-x+1上,∴2=-x+1,解得x=-1,∴点P的坐标为(-1,2).设正比例函数解析式为y=kx,把P(-1,2)代入得2=-k,解得k=-2,∴正比例函数的解析式为y=-2x,因此本题答案为y=-2x.14.(2020·黔东南州)把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为__________ .【答案】y=2x+3解析:利用一次函数图象的平移规律“左加右减,上加下减”来解.∴把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1;再向上平移2个单位长度,得到y=2(x+1)﹣1+2=2x+3.15.(2020·宿迁)已知一次函数y=2x-1的图像经过点A(x1,1),B(x2,3)两点,则x1_______x2(填“>”、“<”或“=”).【答案】<.解析:∵k=2>0,∴y随x的增大而增大.∵1<3,∴x1<x2.故答案为<.16.(2020·南京)将一次函数y=-2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是________.【答案】y=12x+2解析:直线y=-2x+4与x、y轴的交点分别为(2,0)、(0,4),该两点逆时针旋转90°后的对应点分别是(0,2)、(-4,0).设旋转后的直线解析式为y=k x+b,代入点(0,2)、(-4,0),得:,解得:故旋转后的直线解析式为y=12x+2.17.(2020·毕节)一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象的两个交点分别是A(-1,-4),B(2,m),则a+2b=_________.【答案】-2,解析:本题考查一次函数与反比例函数的交点.解:把A (-1,-4)代入y =k x ,得-4=1k-,∴k =4.∴反比例解析式为y =4x.把B (2,m )代入,得m =42,∴m =2,∴B (2,2).把A (-1,-4),B (2,2)代入y =ax +b , 得解得∴a +2b =2+2×(-2)=-2. 故答案为-2.18.(2020北京)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_________. 【答案】0【解析】由于正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴021=+y y19.(2020成都)在平面直角坐标系中,已知直线与双曲线交于,两点(点在第一象限),直线与双曲线交于,两点.当这两条直线互相垂直,且四边形的周长为时,点的坐标为 .【答案】或. 【解答】解:联立与并解得:,故点的坐标为,, 联立与同理可得:点,这两条直线互相垂直,则,故点,,则点,则,同理可得:, 则,解得:或, 故点的坐标为或, 故答案为:或.xOy 4y x=A C A 1y x=-B D ABCD A 4y x =A 1y x=-D 1mn =-D (B 2255AB m AD m=+=14AB =⨯225552AB m m==+2m =12A20.(2020河北)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个. 【答案】 (1)-16 (2)5 (3)7 【详解】解:(1)由图像可知T 1(-16,1) 又∵.函数ky x=(0x <)的图象经过T 1 ∴116k=-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8) ∵L 过点4T ∴k=-10×4=40观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16 ∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28 ∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值. 故答案为:(1)-16;(2)5;(3)7. 三、解答题21.(2020·宁波)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地,两辆货车离开各自出发....地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?分析:本题考查了一次函数的图象和性质及实际应用.(1)根据函数图象中两点的坐标由待定系数法求得函数表达式;(2)计算出货车乙与货车甲相遇时间,货车甲正常到达B 地的时间,货车乙按要求到达B 地时间,根据速度、路程、时间关系列不等式求得最低速度.【答案】解:(1)设函数表达式为y =kx +b(k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得,解得.∴y 关于x 的函数表达式为y =80x -128(1.6≤x≤3.1)(注:x 的取值范围对考生不作要求)(2)当y=200-80=120(千米)时,120=80x-128,解得x=3.1.因为货车甲的行驶速度为80÷1.6=50(千米/小时),所以货车甲正常到达B地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5-3.1-0.3=1.6(小时) .设货车乙返回B地的车速为v千米/小时,则1.6v≥120,解得v≥75.答:货车乙返回B地的车速至少为75千米小时.22.(2020·绵阳)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?分析:(1)根据甲书店按标价8折出售,利用标价总额乘以0.8即为应支付金额y;在乙书店购书,若x≤100,则标价总额即为应支付金额;若x>100,则应支付金额y为100+0.6(x-100).(2)求出甲、乙两个书店应付金额相同的标价总额,当购书金额小于这个值时,则去甲书店省钱,购书金额大于这个值时,则去乙书店省钱.解:(1)甲书店应支付金额为:y1=0.8x;乙书店:当x≤100时,y=x;当x>100时,y=100+0.6(x-100).∴乙书店应支付金额为:y2=(2)当x>100时,若y1=y2,则0.8x=40+0.6x,解得x=200.∴当x<200时,去甲书店省钱,x=200时,去甲乙两家书店购书应付金额相同金额,当x>200时,去乙书店省钱.23.(2020·北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)值大于一次函数y=kx+b的值,直接写出m的取值范围.分析:(1)根据一次函数y=kx+b(k≠0)由y=x平移得到可得出k值,然后将点(1,2)代入y=x+b可得b值即可求出解析式;(2)由题意可得临界值为当x=1时,两条直线都过点(1,2),即可得出当x>1,m>2时,y=mx(m≠0)都大于y=x+1,根据x>1,可得m可取值2,可得出m的取值范围.解:(1)∵一次函数y=kx+b(k≠0)由y=x平移得到,∴k=1,将点(1,2)代入y=x+b可得b=1,∴一次函数的解析式为y=x+1;(2)当x>1时,函数y=mx(m≠0)的函数值都大于y=x+1,即图象在y=x+1上方,由下图可知:临界值为当x =1时,两条直线都过点(1,2), ∴当x >1,m >2时,y =mx (m ≠0)都大于y =x +1, 又∵x >1,∴m 可取值2,即m =2, ∴m 的取值范围为m ≥2.24.(2020·南通)如图,直线l 1:y =x +3与过点A (3,0)的直线l 2交于点C (1,m )与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.分析:(1)由已知先求出C 点坐标,再用待定系数法求出直线解析式.(2)由MN ∥y 轴可得M 、N 两点的横坐标相等,再由6MN AB ==,求出a 的值即可求出M 点坐标. 解:在y =x +3中,令x =0,得y =-3;∴B (-3,0), 把x =1代入y =x +3,得y =4,∴C (1,4), 设直线l 2的解析式为y =kx +b , ,解得. ∴y =-2x +6. (2)AB =3-(-3)=6,设(,3)M a a +,由MN ∥y 轴,得N (a,-2a +6),3(26)6MN a a AB =+--+==,解得3a =或1a =-, ∴M (3,6)或M (-1,2).25.(2020·抚顺本溪辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶. (1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?分析:(1)将两组y 与x 的值代入解析式中,即可得解;(2)根据题意可以得到w 与x 之间的函数关系式,然后利用二次函数的性质,将其化成顶点式,然后在规定的取值范围内求出最大值.解:(1)设y 与x 之间的函数关系式为:y =kx +b (k≠0),根据题意,得 ,解得∴y 与x 之间的函数关系式为y =-5x +150. (2)根据题意,可得w =(x -10)(-5x +150) 整理得-5x2+200 x -1500=-5(x -20)2+500∵a=-5<0,开口向下,w 有最大值∴当x <20时,w 随x 的增大而增大,∵10≤x≤15,且x 为整数,∴当x =15时,w 有最大值,最大值=-5×(15-20)2+500=375 答:当每瓶洗手液的售价定为15元时利润最大,最大利润为375元. 26.(2020·滨州)如图,在平面直角坐标系中,直线112y x =--与直线22y x =-+相交于点P ,并分别与x 轴相交于点A 、B . (1)求交点P 的坐标; (2)求△PAB 的面积;(3)请把图象中直线22y x =-+在直线112y x =--上方的部分描黑加粗,并写出此时自变量x 的取值范围.分析:本题考查了两条直线相交及面积,(1)把解析式联立,解方程组求出交点P 的坐标;(2)先求出A 、B 的坐标,然后根据三角形面积公式来求;(3)根据图象即可得出x 的取值范围. 解:(1)由直线112y x =--与直线22y x =-+得x=2,y=-2,∴P(2,-2); (2)直线112y x =--与直线22y x =-+中,令y=0,则- 12x-1=0与-2x+2=0,解得x=-2与x=1, ∴A(-2,0),B (1,0),∴AB=3,∴S△PAB= 12AB•|yP|=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.27.(2020·吉林)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L .在整个过程中,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如图所示.(1)机器每分钟加油量为_____L ,机器工作的过程中每分钟耗油量为_____L . (2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围. (3)直接写出油箱中油量为油箱容积的一半时x 的值.分析:(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可. 【详解】(1)由函数图象得:机器每分钟加油量为 机器工作的过程中每分钟耗油量为3050.5()6010L -=-故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作 则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点 设机器工作时y 关于x 的函数解析式y kx b =+ 将点代入得: 解得则机器工作时y 关于x 的函数解析式1352y x =-+; (3)设机器加油过程中的y 关于x 的函数解析式y ax = 将点(10,30)代入得:1030a = 解得3a =则机器加油过程中的y 关于x 的函数解析式3y x = 油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中 当30152y ==时,315x =,解得5x = ②在机器工作过程中 当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40.28.(2020北京)在平面直角坐标系xOy 中,一次函数的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【解析】(1)∵一次函数由x y =平移得到,∴1=k将点(1,2)代入b x y +=可得1=b ,∴一次函数的解析式为1+=x y .(2)当1>x 时,函数的函数值都大于1+=x y ,即图象在1+=x y 上方,由下图可知:临界值为当1=x 时,两条直线都过点(1,2),∴当2,1>>m x 时.都大于1+=x y .又∵1>x ,∴m 可取值2,即2=m ,∴m 的取值范围为2≥m29.(2020成都)在平面直角坐标系中,反比例函数的图象经过点,过点的直线与轴、轴分别交于,两点.(1)求反比例函数的表达式; (2)若的面积为的面积的2倍,求此直线的函数表达式.【解答】解:(1)反比例函数的图象经过点, , 反比例函数的表达式为; (2)直线过点,,过点的直线与轴、轴分别交于,两点,,,, 的面积为的面积的2倍,,,当时,, 当时,,直线的函数表达式为:,. 30.(2020乐山)如图,已知点A (-2,-2)在双曲线xk y =上,过点A 的直线与双曲线的另一支交于点B(1,a). (1)求直线AB 的解析式; (2)过点B 作BC x ⊥轴于点C ,连结AC ,过点C 作CD AB ⊥于点D .求线段CD 的长.解:(1)将点()22A --,代入k y x =,得4k =,即4y x=, 将(1)B a ,代入4y x=,得4a =,即(14)B ,, 设直线AB 的解析式为y mx n =+,将()22A --,、(14)B ,代入y mx n =+,得 ,解得∴直线AB 的解析式为22y x =+.(2)∵()22A --,、(14)B ,, xOy (0)m y x x=>(3,4)A A y kx b =+x y B C AOB ∆BOC ∆(0)m y x x=>(3,4)A 3412k ∴=⨯=12y x=y kx b =+A 34k b ∴+=A y kx b =+x y B C (b B k∴-0)(0,)C b AOB ∆BOC ∆2b ∴=±2b =23k =2b =-2k =223y x =+22y x =-∵BC x ⊥轴, ∴BC=4,∵,∴3BC CD AB ⨯===.。

高中函数图像考试题及答案

高中函数图像考试题及答案

高中函数图像考试题及答案一、选择题1. 函数 \( f(x) = x^2 \) 的图像是一个:A. 直线B. 抛物线C. 双曲线D. 正弦曲线答案:B2. 函数 \( y = |x| \) 的图像在 \( x = 0 \) 处的切线斜率是:A. 0B. 1C. -1D. 不存在答案:A3. 函数 \( y = \sin(x) \) 的图像是:A. 线性的B. 周期性的C. 单调的D. 常数的答案:B二、填空题4. 如果函数 \( f(x) \) 在 \( x = a \) 处取得极值,那么\( f'(a) \) 等于 _______ 。

答案:05. 函数 \( y = x^3 \) 的图像是关于 \( x \) 轴的 _______ 对称。

答案:不三、简答题6. 解释函数 \( y = \ln(x) \) 的图像为什么在 \( x = 0 \) 处没有定义。

答案:函数 \( y = \ln(x) \) 是自然对数函数,其定义域为\( x > 0 \)。

当 \( x = 0 \) 时,没有实数可以作为对数的底数,因为对数函数的底数不能为1,也不能为负数或0。

因此,\( x = 0 \) 处没有定义。

7. 描述函数 \( y = 1/x \) 的图像在第一象限和第三象限的行为。

答案:函数 \( y = 1/x \) 的图像在第一象限和第三象限都是递减的。

当 \( x \) 增大时,\( y \) 减小;当 \( x \) 减小时,\( y \) 增大。

这是因为当 \( x \) 的值增加时,其倒数 \( 1/x \) 的值会减少,反之亦然。

四、计算题8. 给定函数 \( f(x) = 2x^2 + 3x - 5 \),求导数 \( f'(x) \) 并找到函数的极值点。

答案:导数 \( f'(x) = 4x + 3 \)。

令 \( f'(x) = 0 \) 解得\( x = -3/4 \)。

2022年华东师大版八年级数学下册第十七章函数及其图像综合测试练习题(精选含解析)

2022年华东师大版八年级数学下册第十七章函数及其图像综合测试练习题(精选含解析)

八年级数学下册第十七章函数及其图像综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两地相距s 千来,汽车从甲地匀速行驶到乙地,行驶的时间t (小时)关于行驶速度v (千米时)的函数图像是( )A .B .C .D .2、下列函数中,表示y 是x 的反比例函数的是( )A .y =B .a y x =C .21y x =D .13y x =3、把函数y =x 的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)4、火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④5、如图,点A 在双曲线k y x=上,AB x ⊥轴于B ,3AOB S =△,则k 的值为( )A .不能确定B .3C .18D .66、如图,Rt AOB Rt CDA ≌,且点A 、B 的坐标分别为(1,0),(0,2)B -,则OD 长是( )A .3-B .5C .4D .37、如图1,在Rt ABC 中,90C ∠=︒,点D 是BC 的中点,动点P 从点C 出发沿CA AB -运动到点B ,设点P 的运动路程为x ,PCD 的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ).A .10B .12C .D .8、下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x = D .5x y = 9、在平面直角坐标系中,点()8,15-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限10、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点M (a ﹣2,a +1)在第二象限,则a 的值为 _____.2、下列函数:①y kx =;②23y x =;③2(1)y x x x =--;④21y x =+;⑤22y x =-.其中一定是一次函数的有____________.(只是填写序号)3、观察图象可知:当k >0时,直线y =kx +b 从左向右______;当k<0时,直线y=kx+b从左向右______.由此可知,一次函数y=kx+b(k,b是常数,k≠0)具有如下性质:当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.4、函数y=-7x的图象在______象限内,从左向右______,y随x的增大而______.函数y=7x的图象在______象限内,从左向右______,y随x的增大而______.5、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△PnAn﹣1An都是等腰直角三角形,点P1、P2、P3…Pn都在函数y=4x(x>0)的图象上,斜边OA1、A1A2、A2A3…An﹣1An都在x轴上.则点A2021的坐标为____.6、在平面内画两条互相垂直、原点重合的数轴,组成_______.水平的数轴称为x轴或______,取向______方向为正方向;竖直的数轴称为y轴或______,取向______方向为正方向.两坐标轴的交点为平面直角坐标系的______,一般用______来表示.7、在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.解:设y =kx +b (k ≠0)由题意得:14.5=b ,16=3k +b ,解得:b =___,k =___.所以在弹性限度内,y =___,当x =4时,y =0.5×4+14.5=___(厘米).即物体的质量为4千克时,弹簧长度为16.5厘米.8、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.9、如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行.反比例函数y =k x (k ≠0)的图象,与大正方形的一边交于点A (32,4),且经过小正方形的顶点B .求图中阴影部分的面积为 _____.10、自行车运动员在长为10000 m 的路段上进行骑车训练,行驶全程所用时间为t s ,行驶的平均速度为v m/s ,则vt =______,用t 表示v 的函数表达式为_______;y 与x 的乘积为-2,用x 表示y 的函数表达式为______.以上两个函数表达式都具有________的形式,其中________是常数.具有________的形式.三、解答题(5小题,每小题6分,共计30分)1、请根据学习“一次函数”时积累的经验和方研究函数2y x =-+的图象和性质,并解决问题.(1)填空:①当x =0时,2y x =-+= ;②当x >0时,2y x =-+= ;③当x <0时,2y x =-+= ;(2)在平面直角坐标系中作出函数2y x =-+的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,方程20x -+=有 个解; ②方程22x -+=有 个解;③若关于x 的方程2x a -+=无解,则a 的取值范围是 .2、如图,在平面直角坐标系中,点B ,C ,D 的坐标分别是什么?3、如图分别是函数y=k1x,y=k2x,y=k3x,y=k4x的图象.(1)k1k2,k3k4(填“>”或“<”);(2)用不等号将k1,k2,k3,k4及0依次连接起来.4、如图1,一次函数y=43x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为_______,点B的坐标为______;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)②试求线段OQ长的最小值.5、某通讯公司推出①②两种收费方式供用户选择,其中一种有月租费,另一种没有月租费,且两种收费方式的通话时间x(分钟)与收费y(元)的关系如图所示:(1)分别求出①②两种方案的收费y(元)与通话时间x(分钟)之间的函数关系式.(2)当x值为多少时两种方案收费相等.(3)选择哪种收费方案更合算?-参考答案-一、单选题1、B【解析】【分析】直接根据题意得出函数关系式,进而得出函数图象.解:由题意可得:t=sv,是反比例函数,故只有选项B符合题意.故选:B.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.2、D【解析】略3、C【解析】【分析】由函数“上加下减”的原则解题.【详解】解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,当x=2时,y=2+2=4,所以在平移后的函数图象上的是(2,4),故选:C.【点睛】本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.4、D【分析】根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D .【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5、D【解析】【分析】根据反比例函数k 的几何意义直接求解即可【详解】解:∵3AOB S =△ ∴=32k 函数图象经过一、三象限0k ∴>6k ∴=故选D【点睛】 本题考查了反比例函数0k y k x=≠()中比例系数k 的几何意义:过反比例函数图象上任意一点分别作x 轴、y 轴的垂线,则垂线与坐标轴所围成的矩形的面积为k .6、D【解析】【分析】利用全等三角形的性质证明即可.【详解】解:∵A (-1,0),B (0,2),∴OA =1,OB =2,∵△AOB ≌△CDA ,∴OB =AD =2,∴OD =AD +AO =2+1=3,故选D .【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.7、D【解析】【分析】由图像可知, 当08x ≤≤时,y 与x 的函关系为:y =x ,当x =8时,y =8,即P 与A 重合时,PCD ∆的面积为8,据此求出CD ,BC ,再根据勾股定理求出AB 即可P .【详解】解:如图2,当08x ≤≤时,设y =kx ,将(3,3)代入得,k =1,()08y x x ∴=≤≤ ,当P 与A 重合时,即:PC =AC =8,由图像可知,把x =8代入y =x ,y =8,8PCD S ∆∴=,1882DC ∴⨯=, 2DC ∴=, D 是BC 的中点,24BC CD ==在Rt ABC ∆中,AB故选:D .【点睛】本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.8、D【分析】根据正比例函数的定义逐个判断即可.【详解】解:A .是二次函数,不是正比例函数,故本选项不符合题意;B .是一次函数,但不是正比例函数,故本选项不符合题意;C .是反比例函数,不是正比例函数,故本选项不符合题意;D .是正比例函数,故本选项符合题意;故选:D .【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y =kx +b (k 、b 为常数,k ≠0)的函数,叫一次函数,当b =0时,函数也叫正比例函数.9、D【解析】【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【详解】解:点()8,15-所在的象限是第四象限,故选:D .【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.10、C【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.二、填空题1、0或1##1或0【解析】【分析】根据点M 在第二象限,求出a 的取值范围,再由格点定义得到整数a 的值.【详解】解:∵点M (a ﹣2,a +1)在第二象限,∴a -2<0,a +1>0,∴-1<a <2,∵点M 为格点,∴a 为整数,即a 的值为0或1,故答案为:0或1.【点睛】此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.2、②③⑤【解析】【分析】根据一次函数的定义条件解答即可.【详解】解:①y =kx 当k =0时原式不是一次函数; ②23y x =是一次函数;③由于2(1)y x x x =--=x ,则2(1)y x x x =--是一次函数;④y =x 2+1自变量次数不为1,故不是一次函数;⑤y =22−x 是一次函数.故答案为:②③⑤.【点睛】本题主要考查了一次函数的定义,一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1.3、 上升 下降 增大 减小【解析】略4、第二、四象限下降减少第一、三象限上升增大【解析】略5、(0)【解析】【分析】首先根据等腰直角三角形的性质,知点P1的横、纵坐标相等,再结合双曲线的解析式得到点P1的坐标是(2,2),则根据等腰三角形的三线合一求得点A1的坐标;同样根据等腰直角三角形的性质、点A1的坐标和双曲线的解析式求得A2点的坐标;根据A1、A2点的坐标特征即可推而广之.【详解】解:可设点P1(x,y),根据等腰直角三角形的性质可得:x=y,又∵y=4x,则x2=4,∴x=±2(负值舍去),再根据等腰三角形的三线合一,得A1的坐标是(4,0),设点P2的坐标是(4+y,y),又∵y=4x,则y(4+y)=4,即y2+4y-4=0解得,y1y2∵y>0,∴y,再根据等腰三角形的三线合一,得A2的坐标是(0);An点的坐标是(0).可以再进一步求得点A故点A2021的坐标为(0).故答案是:(0).【点睛】本题考查了反比例函数的综合应用,解决此题的关键是要根据等腰直角三角形的性质以及反比例函数的解析式进行求解.6、平面直角坐标系横轴右纵轴上原点O【解析】略x+ 16.57、 14.5 0.5 0.514.5【解析】略8、自变量【解析】略9、40【解析】【分析】根据待定系数法求出k即可得到反比例函数的解析式;利用反比例函数系数k的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积=大正方形的面积-小正方形的面积即可求出结果.【详解】解:反比例函数k y x=的图象经过点3(,4)2A , 4623k ∴=⨯=, ∴反比例函数的解析式为6y x=; 小正方形的中心与平面直角坐标系的原点O 重合,边分别与坐标轴平行,∴设B 点的坐标为(,)m m , 反比例函数6y x =的图象经过B 点, 6m m ∴=, 26m ∴=,∴小正方形的面积为2424m =,大正方形的中心与平面直角坐标系的原点O 重合,边分别与坐标轴平行,且3(,4)2A ,∴大正方形在第一象限的顶点坐标为(4,4),∴大正方形的面积为24464⨯=,∴图中阴影部分的面积=大正方形的面积-小正方形的面积642440=-=. 【点睛】本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数k 的几何意义,正方形的性质,熟练掌握反比例函数系数k 的几何意义是解决问题的关键.10、 10000 10000v t = 2y x -= 分式 分子 (0)k y k x=≠ 【解析】略三、解答题1、(1)2;-x +2,x +2;(2)见解析;(3)函数图象关于y 轴对称;当x =0时,y 有最大值2;(4)①2 2;②1;③2a >.【解析】【分析】(1)利用绝对值的意义,分别代入计算,即可得到答案;(2)结合(1)的结论,画出分段函数的图像即可;(3)结合函数图像,归纳出函数的性质即可;(4)结合函数图像,分别进行计算,即可得到答案;【详解】解:(1)①当x =0时,22y x =-+=;②当x >0时,22y x x =-+=-+;③当x <0时,22y x x =-+=+;故答案为:2;-x +2;x +2;(2)函数y =-|x |+2的图象,如图所示:(3)函数图象关于y 轴对称;当x =0时,y 有最大值2.(答案不唯一)(4)①函数图象与x 轴有2个交点,方程20x -+=有2个解; ②方程22x -+=有1个解;③若关于x 的方程2x a -+=无解,则a 的取值范围是2a >.故答案为:2;2;1;2a >.【点睛】本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.2、B (-2,3),C (4,-3),D (-1,-4)【解析】略3、 (1)<,<(2)k 1<k 2<0<k 3<k 4【解析】略4、 (1)(-3,0);(0,4)(2)证明见解析(3)①∠QPO ,∠BAQ ;②线段OQ 长的最小值为125 【解析】【分析】(1)根据题意令x =0,y =0求一次函数与坐标轴的交点;(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:443y x=+,推出点Q在直线y=﹣43x+4上运动,再根据垂线段最短,即可解决问题.(1)解:在y=43x+4中,令y=0,得0=43x+4,解得x=﹣3,∴A(﹣3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(﹣3,0),(0,4).(2)证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,∵PB=PE,∴∠PBE=∠PEB=α,∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),∴∠BPE=2∠OAB.(3)解:①结论:∠QPO,∠BAQ理由:如图3中,∵∠APQ=∠BPE=2∠OAB,∵∠BPE=2∠OAB,∴∠APQ=∠BPE.∴∠APQ﹣∠APB=∠BPE﹣∠APB.∴∠QPO=∠EPA.又∵PE=PB,AP=PQ∴∠PEB=∠PBE=∠PAQ=∠AQP.∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.∴与∠EPA相等的角有∠QPO,∠BAQ.故答案为:∠QPO,∠BAQ.②如图3中,连接BQ交x轴于T.∵AP=PQ,PE=PB,∠APQ=∠BPE,∴∠APE=∠QPB,在△APE和△QPB中,PA PQAPE QPBPE PB=⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△QPB(SAS),∴∠AEP=∠QBP,∵∠AEP=∠EBP,∴∠ABO=∠QBP,∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,∴∠BAO=∠BTO,∴BA=BT,∵BO⊥AT,∴OA=OT,∴直线BT的解析式为为:443y x=+,∴点Q在直线y=﹣43x+4上运动,∵B(0,4),T(3,0).∴BT=5.当OQ⊥BT时,OQ最小.∵S△BOT=12×3×4=12×5×OQ.∴OQ=125.∴线段OQ长的最小值为125.【点睛】本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.5、(1)①:y=0.1x+30;②:y=0.2x(2)当x值为300时两种方案收费相等(3)当0<x<300时,选择②种方案;当x=300时,两种方案一样;当x>300时,选择①种方案.【解析】【分析】(1)根据函数图象中的数据,用待定系数法可以分别求得①②两种方案的收费y(元)与通话时间x(分钟)之间的函数关系式;(2)令(1)中的两个函数值相等,即可求出当x 值为多少时两种方案收费相等;(3)根据(2)中的结果和函数图象,可以写出当x 何值时,选择哪种收费方案更合算.(1)解:设①种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =kx +b ,∵点(0,30),(500,80)在此函数图象上,∴3050080b k b =⎧⎨+=⎩, 解得0.130k b =⎧⎨=⎩, 即①种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =0.1x +30;设②种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =ax ,∵点(500,100)在此函数图象上,∴100=500a ,得a =0.2,即②种方案的收费y (元)与通话时间x (分钟)之间的函数关系式是y =0.2x ;(2)解:令0.1x +30=0.2x ,解得x =300,答:当x 值为300时两种方案收费相等;(3)解:由(2)中的结果和图象可得,当0<x<300时,选择②种方案;当x=300时,两种方案一样;当x>300时,选择①种方案.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答.。

华师大版数学八年级下册 第17 章函数及其图象 单元测试卷(含答案)

华师大版数学八年级下册 第17 章函数及其图象 单元测试卷(含答案)

第17 章测试卷(时间:90分钟满分:120分)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,满分36分)1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A. Q和x是变量B. Q是自变量C.50和x是常量D. x是Q的函数中,自变量x的取值范围是( )2.函数y=√x2A. x>0B. x≥0C. x<0D. x≤03.下面说法错误的是( )A.点(0,-2)在 y轴的负半轴上B.点(3,2)与(3,-2)关于x轴对称C.点(-4,-3)关于原点的对称点是(4,3)D.点(−√2,−√3)在第二象限(其中k是不等于0的常数)在同一平面直角坐标系中的大致图4.如图,函数y=k(x-10)和函数y=kx象可能为( )A.①③B.①④C.②③D.②④5.下列图形中,阴影部分的面积相等的是( )A.①②B.②③C.③④D.①④6.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x-2与y =kx+k的交点为整点时,k的值可以取( )A.4个B.5个C.6个D.7个7.已知一次函数y=x+2与y=-2+x,下面说法正确的是( )A.两直线交于点(1,0)B.两直线之间的距离为4个单位C.两直线与x轴的夹角都是30°D.两条已知直线与直线y=x都平行的图象如图所示,当y₁<y₂时,x的8.一次函数y₁=ax+b与反比例函数y2=kx取值范围是( )A. x<2B. x>5C.2<x<5D.0<x<2或x>59.已知关于x、y的函数y=(m+3)x m2−10是反比例函数,则m的值为( )A.3B. -3C.±3D.010.已知A,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/时,若用x表示行走的时间(时),y表示余下的路程(千米),则y关于x的函数表达式是( )A. y=4x(x≥0)B.y=4x−3(x≥34)C. y=3-4x(x≥0)D.y=3−4x(0≤x≤34)11.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1 200 N和0.5m,则动力 F(单位:N)关于动力臂l(单位:m)的函数表达式正确的是( )A.F=1200l B.F=600lC.F=500lD.F=0.5l12.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别为.A(x+a,y+b),B(x,y),下列结论正确的是( )A. a>0B. a<0C. b=0D. ab<0二、填空题(本大题共6个小题,每小题3分,满分18分)13.在平面直角坐标系中,若点M(1,3)与点 N(x,3)的距离是8,则x的值是 .14.一次函数y=kx+1的图象经过点(1,2),反比例函数.y=kx 的图象经过点(m,12),则m= .15.如果函数y=kx的图象经过点(1,-1),则函数y=kx-2的图象不经过第象限.16.如图,A,C分别是正比例函数y=x的图象与反比例函数.y=4x的图象的交点,过点A 作AD⊥x 轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD 的面积为 .17.如图,过x轴正半轴上的任意一点P 作y轴的平行线交反比例函数y=2x 和y=−4x的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为 .18.如图,点A,C在反比例函数y=ax 的图象上,点B,D在反比例函数y=bx的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=34,CD=32,,AB 与CD 间的距离为6,则a-b的值是.三、解答题(本大题有6个小题,满分66分)19.(12分)已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B 的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.x−3.20.(10分)已知一次函数y=32(1)请在如图所示的平面直角坐标系中画出此函数的图象;(2)求出此函数的图象与坐标轴围成的三角形的面积.21.(12分)如图,已知A(n,-2),B(1,4)是一次函数.y=kx+b的图象和反比例函数y=m的图象的两个交点,直线AB 与y轴交于点C.x(1)求反比例函数和一次函数的表达式;(2)求△AOC的面积.22.(10分)如图,在平面直角坐标系xOy中,一次函数.y=−ax+b的图象与反比例的图象相交于点A(-4,-2),B(m,4),与y轴相交于点C.函数y=kx(1)求反比例函数和一次函数的表达式;(2)求点 C的坐标及△AOB的面积.23.(10分)某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.6 元计费.(1)求出租车收费y(元)与行驶路程x(千米)之间的函数关系式;(2)若某人一次乘出租车时,付出了车费14.4元,求他这次乘坐了多少千米的路程.24.(12 分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35 千瓦时时汽车已行驶的路程;当(0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.第17 章测试卷1. A2. B3. D4. C5. C6. A7. D8. D9. A10. D 11. B 12. B 13.9或一7 14.2 15.一 16.8 17.3 18.319.解(1)当x=0时,y=4;当y=0时,x=-2.图象如图所示.(2)由(1)知,A(-2,0)、B(0,4).(3)S AOB=12×2×4=4.(4)当y<0时,x的取值范围为x<-2.20.解(1)函数图象如图所示:(2)函数的图象与坐标轴围成的三角形的面积为12×2×3=3.21.解(1)将B(1,4)的坐标代入y=mx 中,得m=4,所以y=4x.将A(n,-2)的坐标代入y=4x中,得n=-2.将A(-2,-2),B(1,4)的坐标分别代入y=kx+b中,得{−2k+b=−2,k+b=4,解得{k=2,b=2.所以y=2x+2.(2)对于y=2x+2,令x=0,则y=2,所以OC=2,所以S AOC=12×2×2=2.22.解(1)∵点A(-4,-2)在反比例函数y=kx的图象上,∴k=-4×(-2)=8,∴反比例函数的表达式为y=8x.∵点B(m,4)在反比例函数y=8x的图象上,∴4m=8,解得m=2,∴点B(2,4).将A(-4,-2),B(2,4)代入y=-ax+b,得{−2=4a+b,4=−2a+b,解得{a=−1,b=2.∴一次函数的表达式为y=x+2.(2)令x=0,则y=x+2=2,∴点C的坐标为(0,2),∴S XOB=12OC⋅(x B−x A)=12×2×[2−(−4)]=6.23.解(1)∵当0<x≤3时,y=8,又∵当x>3时,行驶路程超过3千米的部分是((x−3)千米,∴y=8+1.6(x−3),综上:出租车收费y(元)与行驶路程x(千米)的函数关系式是y={8(0<x≤3),1.6x+3.2(x⟩3).(2)∵14.4元>8元,∴乘车路程超过3千米,由(1)得:1.6x+3.2=14.4,解得x=7.答:当付车费14.4元时,乘车路程为7千米.24.解(1)由图象可知,蓄电池剩余电量为 35 千瓦时时汽车已行驶了 150千米.1千瓦时的电量汽车能行驶的路程为15060−35=6(千米).(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得{150k+b=35,200k+b=10,cot2+cot=−0.5,b=110,∴y=−0.5x+110.当x=180时,y=−0.5×180+110=20.答:当150≤x≤200时,y关于x 的函数表达式为.y=−0.5x+110,当汽车已行驶180 千米时,蓄电池的剩余电量为20千瓦时.。

2022年华东师大版八年级数学下册第十七章函数及其图像达标测试试卷(含答案详解)

2022年华东师大版八年级数学下册第十七章函数及其图像达标测试试卷(含答案详解)

八年级数学下册第十七章函数及其图像达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n )(n >0).若△ABC 是等腰直角三角形,且AB =BC ,当0<a <1时,点C 的横坐标m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >32、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( )A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米3、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2--4、甲、乙两人沿同一条路从A 地出发,去往100千米外的B 地,甲、乙两人离A 地的距离(千米)与时间t (小时)之间的关系如图所示,以下说法正确的是( )A .甲的速度是60km/hB .乙的速度是30km/hC .甲乙同时到达B 地D .甲出发两小时后两人第一次相遇5、如果点P (﹣5,b )在第二象限,那么b 的取值范围是( )A .b ≥0B .b ≤0C .b <0D .b >06、已知()231m y m x -=-+是一次函数,则m 的值是( )A .-3B .3C .±3D .±27、下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x = D .5xy =8、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是()A .x ≥2B .x ≤2C .x ≥3D .x ≤39、在下列图象中,y 是x 的函数的是( )A .B .C .D .10、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A 处匀速跑往B 处,乙同学从B 处匀速跑往A 处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x (秒),甲、乙两人之间的距离为y (米),y 与x 之间的函数关系如图所示,则图中t 的值是( )A .503B .18C .553D .20第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、点P (5,﹣4)到x 轴的距离是___.2、函数y x π=,当x >0时,图象在第____象限,y 随x 的增大而_________.3、一次函y =kx +b (k ≠0)的图象可以由直线y =kx 平移______个单位长度得到(当b >0时,向______平移;当b <0时,向______平移).4、在平面直角坐标系中,一次函数y kx =和y x b =-+的图象如图所示,则不等式kx x b >-+的解集为______5、反比例函数k y x=的图像是由两支_______组成的. (1)当k >0时,两支曲线分别位于第_______象限内,在每一象限内,y 的值随x 值的增大而_______;(2)当k <0时,两支曲线分别位于第_______象限内,在每一象限内,y 的值随x 值的增大而_______.6、将一次函数22y x =-的图像向上平移5个单位后,所得图像的函数表达式为______.7、建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为______,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点______任何象限.如图中,点A 是第______象限内的点,点B 是第______象限内的点,点D 是______上的点.8、如图,直线l 1:y =kx +b 与直线l 2:y =﹣x +4相交于点P ,若点P (1,n ),则方程组4y kx b y x =+⎧⎨=-+⎩的解是_____.9、若点(),2P m m +在x 轴上,则m 的值为______.10、像y =x +1,s =-3t +1这些函数解析式都是常数k 与自变量的______与常数b 的______的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做______函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.三、解答题(5小题,每小题6分,共计30分)1、如图,一次函数y =-x +5的图象与反比例函数k y x= (k ≠0)在第一象限的图象交于A (1,n )和B 两点.(1)求反比例函数的表达式与点B 的坐标;(2)在第一象限内,当一次函数y =-x +5的值小于反比例函数k y x =(k ≠0)的值时,直接写出自变量x 的取值范围 .2、在平面直角坐标系xOy 中,已知点A 的坐标为(4,1),点B 的坐标为(1,﹣2),BC ⊥x 轴于点C .(1)在平面直角坐标系xOy中描出点A,B,C,并写出点C的坐标;(2)若线段CD是由线段AB平移得到的,点A的对应点是C,则点B的对应点D的坐标为;(3)求出以A,B,O为顶点的三角形的面积;(4)若点E在过点B且平行于x轴的直线上,且△BCE的面积等于△ABO的面积,请直接写出点E的坐标.3、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.(1)求k的值;(2)求四边形OCNB的面积;(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.4、如图,直线l :22y x =-与y 轴交于点G ,直线l 上有一动点P ,过点P 作y 轴的平行线PE ,过点G 作x 轴的平行线GE ,它们相交于点E .将△PGE 沿直线l 翻折得到△PGE′,点E 的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E 的对应点E′;(2)如图2,当点E 的对应点E′落在x 轴上时,求点P 的坐标;(3)如图3,直线l 上有A ,B 两点,坐标分别为(-2,-6),(4,6),当点P 从点A 运动到点B 的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.5、直线()10l y kx b k =+≠:,与直线2:l y ax =相交于点(1,2)B .(1)求直线2l 的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线1l 与直线2l 和x 轴围成的区域内(不含边界)为W .k=-时,直接写出区域W内的整点个数;①当1②若区域W内的整点恰好为2个,结合函数图象,求k的取值范围.-参考答案-一、单选题1、B【解析】【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB 和△BDC 中,AOB BDC BAO CBD AB BC ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB +BD =2+a =m ,∴2a m =-∴2<m <3,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.2、D【解析】【分析】两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A ;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m =15,由此即可计算出n 的值和爸爸返回的速度,即可判断B 、C ;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.【详解】解:∵3600÷20=180米/分,∴两人同行过程中的速度为180米/分,故A 选项不符合题意;∵东东在爸爸返回5分钟后返回即第20分钟返回∴m=20-5=15,∴n=180×15=2700,故B选项不符合题意;∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,∴运动18分钟时两人相距3240-2430=810米;∵返程过程中东东45-20=25分钟走了3600米,∴东东返程速度=3600÷25=144米/分,∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,∴运动31分钟两人相距756米,故D选项符合题意;故选D.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.3、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,,A BOD=∠=︒∠+∠=︒∠+∠=︒909090≌,OA OB AOB A AOC AOC BOD∠=∠,故有AOC OBD ,,进而可得B点坐标.21====OD AC BD OC【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,∴A BOD ∠=∠在AOC △和OBD 中90A BOD ACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOC OBD AAS ≌∴21OD AC BD OC ====,∴B 点坐标为(1,2)--故选D .【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.4、A【解析】【分析】根据函数图象中的数据,可以计算出各个选项中的说法是否正确,然后即可判断哪个选项中的说法是否正确.【详解】解:由图象可得,甲的速度是(10040)(32)60(/)km h -÷-=,故选项A 符合题意;乙的速度为:60320(/)km h ÷=,故选项B 不符合题意;甲先到达B 地,故选项C 不符合题意; 甲出发240603÷=小时后两人第一次相遇,故选项D 不符合题意; 故选:A .【点睛】本题考查一次函数的应用,解题的关键是利用数形结合的思想解答.5、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b 的取值范围.【详解】解:∵点P (﹣5,b )在第二象限,∴b >0,故选D .【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.6、A【解析】略7、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A.是二次函数,不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.是反比例函数,不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.8、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.9、D【解析】【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【详解】解:A、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项A不符合题意;B、对于x的每一个确定的值,y可能会有多个值与其对应,不符合函数的定义,故选项B不符合题意;C、对于x的每一个确定的值,y可能会有两个值与其对应,不符合函数的定义,故选项C不符合题意;D、对于x的每一个确定的值,y有唯一的值与之对应,符合函数的定义,故选项D符合题意.故选:D.【点睛】本题主要考查了函数的定义.解题的关键是掌握函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.10、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=10050,63故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.二、填空题1、4【解析】【分析】根据点的纵坐标的绝对值就是点到x轴的距离即可求解【详解】点P(5,﹣4)到x轴的距离是4故答案为:4【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.2、一减少【解析】略3、 b 上 下【解析】略4、1x >【解析】【分析】根据函数图象写出一次函数y kx =在y x b =-+上方部分的x 的取值范围即可.【详解】解:一次函数y kx =和y x b =-+的图象交于点()1,2所以,不等式kx x b >-+的解集为1x >.故答案为:1x >【点睛】本题考查了一次函数的交点问题及不等式,数形结合是解决此题的关键.5、 双曲线 一、三 减小 二、四 增大【解析】略6、23y x =+【解析】【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【详解】解:∵一次函数22y x =-的图像向上平移5个单位,∴所得图像的函数表达式为:22523y x x =-+=+故答案为:23y x =+【点睛】本题考查了一次函数平移,掌握平移规律是解题的关键.7、 象限 不属于 一 三 y 轴【解析】略8、13x y =⎧⎨=⎩【解析】【分析】由两条直线的交点坐标P (1,n ),先求出n ,再求出方程组的解即可.【详解】解:∵y =﹣x +4经过P (1,n ),∴n =-1+4=3,∴n =3,∴直线l 1:y =kx +b 与直线l 2:y =﹣x +4相交于点P (1,3),∴13x y =⎧⎨=⎩, 故答案为13x y =⎧⎨=⎩. 【点睛】本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.9、2-【解析】【分析】根据x 轴上点的纵坐标为0,即可求解.【详解】∵点(),2P m m +在x 轴上,∴20m += ,解得:2m =- .故答案为:2-【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是熟练掌握坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.10、 积 和 一次【解析】略三、解答题1、 (1)反比例函数的表达式为4y x=,B 的坐标为(4,1); (2)4x >或01x <<【解析】【分析】(1)将点A 的横坐标代入直线的解析式求出点A 的坐标,然后将的A 的坐标代入反比例函数的解析式即可;(2)一次函数y =−x +5的值大于反比例函数k y x=(k≠0)的值时,双曲线便在直线的下方,所以求出直线与双曲线及x 轴的交点后可由图象直接写出其对应的x 取值范围.(1)解:∵一次函数y =-x +5的图象过点A (1,n ),∴n =-1+5=4∴点A 坐标为(1,4), ∵反比例函数k y x =(k ≠0)过点A (1,4), ∴k =4, ∴反比例函数的表达式为4y x= 联立54y x y x =-+⎧⎪⎨=⎪⎩,解得1114x y =⎧⎨=⎩,2241x y ,即点B 的坐标为(4,1)(2)解:如图:由图象可知:当4x >或01x <<时一次函数y =−x +5的值小于反比例函数4y x=的值.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是掌握反比例函数与一次函数的交点与它们的解析式的关系.2、 (1)作图见解析,C 点坐标为()1,0(2)()23--,(3)4.5(4)E 点坐标为()5.52-,或()3.52--, 【解析】【分析】(1)在平面直角坐标系中表示出A ,B ,C 即可.(2)由题意知,AB CD ,将点C 向下移动3格,向左移动3格到点D ,得出坐标.(3)利用分割法求面积,ABC 的面积等于矩形减去3个小三角形的面积,计算求值即可.(4)设E 点坐标为()2m ,-,由题意列方程求解即可.(1)解:如图,点A ,B ,C 即为所求,C 点坐标为(1,0)故答案为:(1,0).(2)解:∵点A 向下移动3格,向左移动3格到点B ,AB CD∴点C 向下移动3格,向左移动3格到点D∴D 点坐标为()23--,故答案为:()23--,. (3) 解:∵11134141233 4.5222AOB S ⨯-⨯⨯-⨯⨯-⨯⨯== ∴以A ,B ,O 为顶点的三角形的面积为4.5.(4)解:设E 点坐标为()2m ,-由题意可得112 4.52m ⨯⨯﹣= 解得: 5.5m =或 3.5m =∴E 点坐标为()5.52-,或()3.52--,. 【点睛】本题考查了直角坐标系中的点坐标,平行的性质,分割法求面积,解一元一次方程等知识.解题的关键在于灵活运用知识求解.3、 (1)k =2;(2)7; (3)32≤m ≤3【解析】【分析】(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;(2)先求得直线l 2的解析式,分别求得D 、C 、N 的坐标,再利用四边形OCNB 的面积=S △ODC - S △NBD 求解即可;(3)先求得点P 的纵坐标,根据题意列不等式组求解即可.(1)解:令x =0,则y =2;∴B (0,2),∴OB =2,∵AB∴OA 1,∴A (-1,0),把B (-1,0)代入y =kx +2得:0=-k +2,∴k =2;(2)解:∵直线l 2平行于直线y =−2x .∴设直线l 2的解析式为y =−2x +b .把(2,2)代入得2=−2⨯2+b ,解得:b =6,∴直线l 2的解析式为26y x =-+.令x =0,则y =6,则D (0,6);令y =0,则x =3,则C (3,0),由(1)得直线l 1的解析式为22y x =+.解方程组2226y x y x =+⎧⎨=-+⎩得:14x y =⎧⎨=⎩, ∴N (1,4),四边形OCNB 的面积=S △ODC - S △NBD =()113662122⨯⨯-⨯-⨯=7;(3)解:∵点P 的横坐标为m ,∴点P 的纵坐标为26m -+,∴PM =26m -+,∵PM ≤3,且点P 在线段CD 上,∴26m -+≤3,且m ≤3. 解得:32≤m ≤3.【点睛】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.4、 (1)见解析 (2)5,32⎛⎫ ⎪⎝⎭ (3)6【解析】【分析】(1)作出过点E 的l 的垂线即可解决;(2)设直线l 交x 轴于点D ,则由直线解析式可求得点D 、点G 的坐标,从而可得OD 的长.由对称性及平行可得E D E G ''=,设点P 的坐标为(a ,2a -2),则可得点E 的坐标,由E G EG '=及勾股定理可求得点E '的坐标;(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长,故只要求得CM 的长即可,由A 、B 两点的坐标即可求得CM 的长.(1)所作出点E 的对应点E′如下图所示:(2)设直线l 交x 轴于点D在y =2x -2中,令y =0,得x =1;令x =0,得y =-2则点D 、点G 的坐标分别为(1,0)、(0,-2)∴OD =1,OG =2由对称性的性质得:E G EG '=,EGD E GD '∠=∠∵GE ∥x 轴∴EGD E DG '∠=∠∴E GD E DG ''∠=∠∴E D E G ''=∴E D EG '=设点P 的坐标为(a ,2a -2),其中a >0,则可得点E 的坐标为(a ,-2)∴EG =a∴E D a '=∴1OE E D OD a ''=-=-在Rt △OGE '中,由勾股定理得:2222(1)a a +-=解得:52 a=当52a=时,5232232a-=⨯-=所以点P的坐标为5,3 2⎛⎫ ⎪⎝⎭(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM 上运动,根据对称性知,点E'运动路径的长度等于CM的长∵A,B两点的坐标分别为(-2,-6),(4,6)∴CM=4-(-2)=6则点E'运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.5、 (1)直线2l 为2y x =;(2)①当1k =-时,整点个数为1个,为(1,1);②k 的取值范围为112k -<-或1132k < 【解析】【分析】(1)根据待定系数法求得即可;(2)①当k =1时代入点A 坐标即可求出直线解析式,进而分析出整点个数;②当k <0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k 的值;当k >0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k 的值,根据图形即可求得k 的取值范围.(1)解:直线2:l y ax =过点(1,2)B .2a ∴=,∴直线2l 为2y x =.(2)解:①当1k =-时,y x b =-+,把(1,2)B 代入得21b =-+,解得:3b =,3y x ∴=-+,如图1,区域W 内的整点个数为1个,为(1,1).②如图2,若0k <,当直线过(1,2),(2,1)时,1k =-.当直线过(1,2),(3,1)时,12k =-. 112k ∴-<-, 如图3,若0k >,当直线过(1,2),(1,1)-时,12k =. 当直线过(1,2),(2,1)-时,13k =. ∴1132k <. 综上,若区域W 内的整点恰好为2个,k 的取值范围为112k -<-或1132k <. 【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.。

2020年华师大新版数学下册八年级《第17章 函数及其图象》单元综合评价试卷含解析

2020年华师大新版数学下册八年级《第17章 函数及其图象》单元综合评价试卷含解析

2020年华师大新版数学下册八年级《第17章函数及其图象》单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题)1.已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0)B.(0,5)或(0,﹣5)C.(0,5)D.(5,0)或(﹣5,0)2.已知点P(m,1)在第二象限,则点Q(﹣m,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,若象棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),那么“炮”位于点()A.(1,﹣1)B.(﹣1,1)C.(﹣1,2)D.(1,﹣2)4.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s5.下列各图中反映了变量y是x的函数是()A.B.C.D.6.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+1+n C.y=2n+n D.y=2n+n+1 7.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 8.下列函数中,y是x的正比例函数的是()A.y=2x﹣1B.y=C.y=2x2D.y=﹣2x+1 9.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.10.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1D.2y=x11.若反比例函数的图象经过点A(,﹣2),则一次函数y=﹣kx+k与在同一坐标系中的大致图象是()A.B.C.D.12.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)二.填空题(共8小题)13.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为.14.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于.15.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.16.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.17.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=.18.若函数y=(k﹣1)x|k|是正比例函数,则k=.19.将x=代入反比例函数y=﹣中,所得的函数值记为y1,又将x=y1+1代入反比例函数y=﹣中,所得的函数值记为y2,又将x=y2+1代入反比例函数y=﹣中,所得的函数值记为y3,…如此继续下去,则y2008=.20.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为.三.解答题(共8小题)21.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)22.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).请根据图中所给信息解决下列问题:(1)A→C(,);B→C(,);C→(﹣3,﹣4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点.23.希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.24.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.25.已知函数y=(m+1)x2﹣|m|+n+4.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?26.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求出△AOB的面积.(5)y的值随x值的增大怎样变化?27.有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值.x﹣2﹣﹣1﹣1234…y0﹣﹣1﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.28.已知反比例函数y=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.2020年华师大新版数学下册八年级《第17章函数及其图象》单元测试卷参考答案与试题解析一.选择题(共12小题)1.已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0)B.(0,5)或(0,﹣5)C.(0,5)D.(5,0)或(﹣5,0)【分析】首先根据点在y轴上,确定点P的横坐标为0,再根据P到原点的距离为5,确定P点的纵坐标,要注意分两情况考虑才不漏解,P可能在原点上方,也可能在原点下方.【解答】解:由题中y轴上的点P得知:P点的横坐标为0;∵点P到原点的距离为5,∴点P的纵坐标为±5,所以点P的坐标为(0,5)或(0,﹣5).故选:B.【点评】此题主要考查了由点到原点的距离确定点的坐标,要注意点在坐标轴上时,点到原点的距离要分两种情况考虑.2.已知点P(m,1)在第二象限,则点Q(﹣m,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标是负数判断出m<0,再根据各象限内点的坐标特征解答.【解答】解:∵点P(m,1)在第二象限,∴m<0,∴﹣m>0,∴点Q(﹣m,3)在第一象限.故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.如图,若象棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),那么“炮”位于点()A.(1,﹣1)B.(﹣1,1)C.(﹣1,2)D.(1,﹣2)【分析】先利用“象”所在点的坐标画出直角坐标系,然后写出“炮”所在点的坐标即可.【解答】解:如图,“炮”位于点(﹣1,1).故选:B.【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.4.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.【点评】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.5.下列各图中反映了变量y是x的函数是()A.B.C.D.【分析】函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,只有D正确.故选:D.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+1+n C.y=2n+n D.y=2n+n+1【分析】根据题意得:第1个图:y=1+2,第2个图:y=2+4=2+22,第3个图:y=3+8=3+23,…以此类推第n个图:y=n+2n,即可得到答案.【解答】解:根据题意得:第1个图:y=1+2,第2个图:y=2+4=2+22,第3个图:y=3+8=3+23,…以此类推第n个图:y=n+2n,故选:C.【点评】本题考查了函数关系式和规律型:图形的变化类,正确找出规律,进行猜想归纳即可.7.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m﹣2≠0,n﹣1=1,可得答案.【解答】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选:C.【点评】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.8.下列函数中,y是x的正比例函数的是()A.y=2x﹣1B.y=C.y=2x2D.y=﹣2x+1【分析】根据正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.【解答】解:根据正比例函数的定义可知选B.故选:B.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.9.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.【分析】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.10.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1D.2y=x【分析】根据反比例函数的定义回答即可.【解答】解:A、是反比例函数,故A符合题意;B、不是反比例函数,故B不符合题意;C、是一次函数,故C不符合题意;D、是正比例函数,故D不符合题意.故选:A.【点评】本题主要考查的是反比例函数的定义,掌握反比例函数的定义是解题的关键.11.若反比例函数的图象经过点A(,﹣2),则一次函数y=﹣kx+k与在同一坐标系中的大致图象是()A.B.C.D.【分析】首先利用待定系数法算出反比例函数k的值,再根据k的值确定反比例函数所在象限,根据k的值确定一次函数解析式,根据一次函数解析式确定一次函数图象所在象限,即可选出答案.【解答】解:∵反比例函数的图象经过点A(,﹣2),∴k=×(﹣2)=﹣1,∴反比例函数解析式为:y=﹣,∴图象过第二、四象限,∵k=﹣1,∴一次函数y=x﹣1,∴图象经过第一、三、四象限,联立两函数解析式可得:﹣=x﹣1,则x2﹣x+1=0,∵△=1﹣4<0,∴两函数图象无交点,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,以及一次函数与反比例函数图象的性质,关键是根据k的值正确确定函数图象所在象限.12.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)【分析】根据反比例函数的关于原点对称的性质知,正比例函数y=2x和反比例函数的另一个交点与点(1,2)关于原点对称.【解答】解:∵正比例函数y=2x和反比例函数的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(﹣1,﹣2).故选:A.【点评】本题考查了反比例函数图象的对称性.关于原点对称的两点的横纵坐标互为相反数.二.填空题(共8小题)13.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为(﹣4,3).【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P在第二象限,且到x轴的距离为3,到y轴的距离为4,∴点P的横坐标为﹣4,纵坐标为3,∴点P的坐标为(﹣4,3).故答案为:(﹣4,3).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.14.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于(3,3).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:结合图形以“将”(0,0)作为基准点,则“马”位于(0+3,0+3),即(3,3).故答案为:(3,3).【点评】此题主要考查了点的坐标确定位置,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.15.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.【分析】根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.【解答】解:“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是:时间,因变量是:温度.故答案是:温度、时间、时间、温度.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.16.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.17.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=﹣3.【分析】根据一次函数的定义得到a=±3,且a≠3即可得到答案.【解答】解:∵函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.【点评】本题考查了一次函数的定义:对于y=kx+b(k、b为常数,k≠0),y称为x的一次函数.18.若函数y=(k﹣1)x|k|是正比例函数,则k=﹣1.【分析】根据正比例函数的定义,可得k﹣1≠0,|k|=1,从而求出k值.【解答】解:∵根据正比例函数的定义,可得:k﹣1≠0,|k|=1,∴k=﹣1.故答案为:﹣1.【点评】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件,正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.19.将x=代入反比例函数y=﹣中,所得的函数值记为y1,又将x=y1+1代入反比例函数y=﹣中,所得的函数值记为y2,又将x=y2+1代入反比例函数y=﹣中,所得的函数值记为y3,…如此继续下去,则y2008=﹣.【分析】分别计算出y1,y2,y3,y4,可得到每三个一循环,而2008=669×3…1,即可得到y2008=y1,继而得出答案.【解答】解:当x=时,y1=﹣;当x=﹣+1=﹣时,y2=2,当x=2+1=3时,y3=﹣,当x=﹣+1=时,y4=﹣;按照规律,y5=2,…,我们发现,y的值三个一循环20,8÷3=669…1,∴y2008=y1=﹣.故答案为:﹣.【点评】本题考查了反比例函数的定义,按照题目的叙述计算一下y的值,从中观察得到规律,是解决本题的关键.20.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为k1<k2<k3.【分析】本题考查反比例函数与的图象特点.【解答】解:读图可知:三个反比例函数y=的图象在第二象限;故k1<0;y=,y=在第一象限;且y=的图象距原点较远,故有:k1<k2<k3;综合可得:k1<k2<k3.故填k1<k2<k3.【点评】反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.且图象距原点越远,k的绝对值越大.三.解答题(共8小题)21.如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)【分析】(1)根据各点所在的象限,对应的横坐标、纵坐标,分别写出点的坐标;(2)首先把四边形ABCD分割成规则图形,再求其面积和即可.【解答】解:(1)A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);=3×3+2××1×3+×2×4=16.(2)S四边形ABCD【点评】此题主要考查了点的坐标,以及求不规则图形的面积,关键是把不规则的图形正确的分割成规则图形.22.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→A(﹣3,﹣4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点.【分析】(1)根据标记的第一个数字表示左、右方向,第二个数字表示上、下方向依次写出即可;(2)根据运动路线列式计算即可得解;(3)在图中依次表示出各位置,然后确定出点E的位置即可.【解答】解:(1)A→C(+3,+4);B→C(+2,0);C→A(﹣3,﹣4);故答案为:+3,+4;+2,0;A;(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;根据题意得:|+1|+|+4|+|+2|+|0|+|+1|+|﹣2|=10m.(3)妮妮的位置E点如图所示.【点评】本题考查了坐标确定位置,读懂题目信息,理解标记的两个数的实际意义是解题的关键.23.希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.【分析】根据总价=单价×数量,可得函数关系式.【解答】解:由题意得:y=2x,常量是2,变量是x、y,x是自变量,y是x的函数.【点评】主要考查了常量与变量.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.24.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为2;②该函数的一条性质:该函数有最大值.【分析】(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.【解答】解:(1)如图,(2)①x=4对应的函数值y约为2.0;②该函数有最大值.故答案为2,该函数有最大值.【点评】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.25.已知函数y=(m+1)x2﹣|m|+n+4.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?【分析】(1)直接利用一次函数的定义分析得出答案;(2)直接利用正比例函数的定义分析得出答案【解答】解:(1)根据一次函数的定义,得:2﹣|m|=1,解得:m=±1.又∵m+1≠0即m≠﹣1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2﹣|m|=1,n+4=0,解得:m=±1,n=﹣4,又∵m+1≠0即m≠﹣1,∴当m=1,n=﹣4时,这个函数是正比例函数.【点评】此题主要考查了一次函数以及正比例函数的定义,正确把握次数与系数的关系是解题关键.26.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求出△AOB的面积.(5)y的值随x值的增大怎样变化?【分析】(1)根据描点法,可得函数图象;(2)根据自变量与函数值的对应关系,可得答案;(3)根据勾股定理,可得答案;(4)根据三角形的面积公式,可得答案;(5)根据一次还是的性质即可求得.【解答】解:(1)如图:;(2)当y=0时,﹣2x﹣2=0,解得x=﹣1,即A(﹣1,0);当x=0时,y=﹣2,即B(0,﹣2);(3)由勾股定理得AB==;=×1×2=1;(4)S△AOB(5)由一次函数y=﹣2x﹣2的系数k=﹣2<0可知:y随着x的增大而减小.【点评】本题考查了一次函数图象和一次还是的性质,利用描点法画函数图象,利用自变量与函数值的对应关系求出相应的交点坐标.27.有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是x≥﹣2且x≠0;(2)下表是y与x的几组对应值.x﹣2﹣﹣1﹣1234…y0﹣﹣1﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:当﹣2≤x<0或x>0时,y随x增大而减小.【分析】(1)根据被开方数非负以及分母不为0即可得出关于x的一元一次不等式组,解之即可得出结论;(2)将x=2代入函数解析式中求出m值即可;(3)连点成线即可画出函数图象;(4)观察函数图象,根据函数图象可寻找到函数具有单调性.【解答】解:(1)由题意得:,解得:x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.(2)当x=2时,m==1.(3)图象如图所示.(4)观察函数图象发现:当﹣2≤x<0或x>0时,y随x增大而减小.故答案为:当﹣2≤x<0或x>0时,y随x增大而减小.【点评】本题考查了函数自变量的取值范围以及函数图象,连点成曲线画出函数图象是解题的关键.28.已知反比例函数y=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.【分析】(1)把点A的坐标代入函数解析式,利用待定系数法求解即可;(2)根据反比例函数图象的性质得到:k﹣1<0,由此求得k的取值范围;(3)把点B、C的坐标代入函数解析式进行一一验证.【解答】解:(1)∵点A(1,2)在这个函数的图象上,∴k﹣1=1×2,解得k=3;(2)∵在函数y=图象的每一支上,y随x的增大而增大,∴k﹣1<0,解得k<1;(3)∵k=13,有k﹣1=12,∴反比例函数的解析式为y=.将点B的坐标代入y=,可知点B的坐标满足函数关系式,∴点B在函数y=的图象上,将点C的坐标代入y=,由5≠,可知点C的坐标不满足函数关系式,∴点C不在函数y=的图象上.【点评】本题考查了反比例函数的性质,待定系数法求反比例函数解析式.注意:反比例函数的增减性只指在同一象限内.。

(完整版)反比例函数及其图象练习题及答案[1]

(完整版)反比例函数及其图象练习题及答案[1]

反比例函数及其图象双基训练*1.如果反比例函数y=kx的图象经过点P (—2,3),那么k 的值是 。

(2003年北京市中考试题)【1】 *2。

已知y 与x 成反比例,当y=-1时,x=4,那么x=2时,y= 。

【2】*3.反比例函数y=3x-的图象经过点P(α,3),那么α= .【1】 *4。

如果函数图象上任意一点的横坐标与纵坐标的积等于6,那么这个函数的解析式是 .【1】*5。

若y 与z 成正比例,z 与x 成正比例,则y 与x 成 ;若y 与z 成反比例,z 与x 成正比例,则y 与x 成 ;若y 与z 成反比例,z 与x 也成反比例,则y 与x 成 。

【2】*6.已知2xy—6=0,则y 是x 的( )。

【2】(Α)正比例函数 (B )反比例函数 (C )一次函数 (D )不成函数关系 *7。

在下列各式中,不是反比例函数关系的是( )。

【2】 (Α)4xy=1 (B)x y =2 (C )y=mx -1(m ≠0) (D )y=4x x*8.若点Α(x 1,y 1)、B (x 2,y 2)在函数y=—1x的图象上,且点Α在第四象限,点B 在 (Α)x 1<x 2,y 1〈y 2 (B )x 1〈x 2,y 1>y 2 (C)x 1〉x 2,y 1<y 2 (D )x 1〉x 2,y 1〉y 2 *9.如图8-41,点P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y轴的距离为2,则反比例函数的解析式为( )。

(1999年黑龙江省中考试题)【3】(Α)6y x = (B)6y x =-(C )32y x = (D)32y x=-*10。

已知函数1ky x=与y=k2x 图象的交点是(-2,5),则它们的另一个交点是( )。

(1998年安徽省中考试题)【1】 (Α)(2,-5) (B )(5,—2) (C )(—2,-5) (D )(2,5) *11.已知y 是x 的函数,y 与x-1成正比例,如果这个函数的图象经过点(α,α)(α≠0),则它的图象大致是图8-42中的( )。

高中数学必修1《函数》单元测试题(含解析)

高中数学必修1《函数》单元测试题(含解析)

高中数学必修1《函数》单元测试题(含解析)数学考试姓名:__________ 班级:__________考号:__________一、单选题(共11题;共22分)1.函数的图象必经过点()A. (0,1)B. (1,1)C. (2,1)D. (2,2)2.函数的图像经过定点()A. (3, 1)B. (2, 0)C. (2, 2)D. (3, 0)3.(2018•卷Ⅲ)设,,则()A. B. C. D.4.一种产品的成品是a元,今后m年后,计划使成本平均每年比上一年降低p%,成本y是经过年数x的函数(0<x<m),其关系式是()A. y=a(1+p%)x(0<x<m)B. y=a(1﹣p%)x(0<x<m)C. a(p%)x(0<x<m)D. a﹣(p%)x(0<x<m)5.已知函数在上是增函数,,若,则x的取值范围是( )A. (0,10)B.C.D.6.设a=(),b=(),c=(),则()A. a<b<cB. c<a<bC. b<c<aD. b<a<c7.下列幂函数中过点的偶函数是( )A. B. C. D.8.对数式log(t-3)(7-t)有意义,则实数t的取值范围是( )A. (3,4)∪(4,7)B. (3,7)C. (-∞,7)D. (3,+∞)9.设,定义域为R的函数y=xα是奇函数,则α的值为()A. -1B. 3C. ﹣1,3D. 以上都不对10.设,,则()A. B. C. D.11.若点在函数的图象上,则函数的值域为()A. B. C. D.二、填空题(共4题;共4分)12.函数f(x)=log3(x2﹣2x+10)的值域为________13.已知f(x)=x+1og2则f(1)+f(2)+f(3)+…+f(8)的值为________14.函数f(x)=()的单调递增区间是________.15.是不超过的最大整数,则方程满足的所有实数解是________.三、解答题(共5题;共40分)16.(1)若6x=24y=12,求的值;(2)解方程:1og2(2x+8)=x+1.17.设函数f(x)=log2(4x)•log2(2x),,(1)若t=log2x,求t取值范围;(2)求f(x)的最值,并给出最值时对应的x的值.18.若函数f(x)的图象与函数的图象关于直线y=x对称,求f(2x﹣x2)的单调递减区间.19.已知函数.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性.20.已知函数(a、b是常数且a>0,a≠1)在区间[﹣,0]上有y max=3,y min= ;(1)试求a和b的值.(2)又已知函数f(x)=lg(ax2+2x+1)①若f(x)的定义域是R,求实数a的取值范围及f(x)的值域;②若f(x)的值域是R,求实数a的取值范围及f(x)的定义域.答案解析部分一、单选题1.【答案】D2.【答案】A3.【答案】B4.【答案】B5.【答案】C6.【答案】D7.【答案】B8.【答案】A9.【答案】B10.【答案】A11.【答案】D二、填空题12.【答案】[2,+∞)13.【答案】3614.【答案】(﹣∞,1)15.【答案】或三、解答题16.【答案】解:(1)6x=24y=12,∴x=log612,y=log2412,∴""=log126+log1224=log12(6×24)=log12122=2,(2)1og2(2x+8)=x+1.∴2x+8=2x+1=2×2x,∴2x=8=23,∴x=3.17.【答案】(1)解:∵∴即﹣2≤t≤2(2)解:f(x)=(log2x)2+3log2x+2∴令t=log2x,则, d∴时,当t=2即x=4时,f(x)max=1218.【答案】解:∵函数f(x)的图象与函数的图象关于直线y=x对称,∴∴①∵①的定义域为(0,2)令t=2x﹣x2,则t=2x﹣x2在0(0,1]单调递增,在[[1,2)单调递减而函数在(0,+∞)单调递减由符合函数的单调性可知函数的单调减区间是:(0,1]19.【答案】(1)解:由>0可解得﹣1<x<1,∴函数f(x)的定义域为(﹣1,1)(2)解:当x∈(﹣1,1)时,f(﹣x)=log3=log3=﹣log3=﹣f(x),函数f(x)是奇函数20.【答案】(1)解:y′=(2x+2);∴①若a>1,x∈时,y′<0,x∈(﹣1,0)时,y′>0;∴x=﹣1时,函数y取得极小值,即最小值b+ = ①;y=b+ =b+ ;显然,,又a>1;∴x=0时,函数y取得极大值,即最大值b+1=3,b=2,带入①即可求出a=2,符合a>1;②由①得:x=﹣1时,函数y取得最大值b+ =3 ①;x=0时,函数y取得最小值b+1= ,b= ,带入①得a= ,符合0<a<1;所以a=2,b=2,或a= ,b=(2)解:①因为f(x)的定义域为R,所以ax2+2x+1>0对一切x∈R成立;由此得解得a>1.又因为;∴f(x)=lg(ax2+2x+1)≥lg(1﹣);∴实数a的取值范围是(1,+∞),f(x)的值域是;②因为f(x)的值域是R,所以u=ax2+2x+1的值域包含(0,+∞);当a=0时,u=2x+1的值域为R⊇(0,+∞);当a≠0时,u=ax2+2x+1的值域包含(0,+∞),则;解之得0<a≤1;∴a的取值范围是[0,1];要使函数f(x)有意义,则:ax2+2x+1>0 ①;由上面知方程ax2+2x+1=0有两个实根:;所以不等式①的解是(﹣∞,x1)∪(x2,+∞),即函数f(x)的定义域为(﹣∞,x1)∪(x2,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数及其图象》达标测试1
班次 姓名
一、选择题(每题3分,共30分) 1.下列函数中自变量取值范围选取错误..的是( ) A.2y x x =中取全体实数; B .1y=中x ≠0x-1
C .1y=
中x ≠-1x+1
D .1y x =≥
2.已知反比例函数y =
k
x 的图象经过点(3,-2),则k 的值是 ( ) A. -6 B. 23 C. -2
3
D. 6
3.若函数
的图象在每个象限内
的值随值的增大而增大,则
的取值范
围是( )
A 、
B 、
C 、
D 、 4.将直线y =2x 向上平移两个单位,所得的直线是
A .y =2x +2
B .y =2x -2
C .y =2(x -2)
D .y =2(x +2) 5.无论m 取何值,y =x +2m 与y = -x +4的交点不可能在 ( )
A .第一象限
B .第二象限
C .第四象限
D .第三象限 6.反比例函数x
y 1
-
=与正比例函数x y 2=在同一坐标系内的大致图像为( ).
7.点11(,)x y 、22(,)x y 在直线y x b =-+上,若12x x <,则1y 与2y 大小关系是( ) A 、12y y <
B 、12y y =
C 、12y y >
D 、无法确定
8.对于反比例函数2
y x
=
,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上
B .它的图象在第一、三象限
C .当0x >时,y 随x 的增大而增大
D .当0x <时,y 随x 的增大而减小 9.如图,正方形ABOC 的边长为2,反比例函数k
y x
=
的图象过点A ,则k 的值是( ) x
m y 2
+=
y x m 2->2<m
2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( ) A .1 B .3 C .3(m -1) D .
2
3
(m -2)
(第9题) (第10题) (第16题)
二、填空题(5分×6=30分)
11.已知y +2和x 成正比例,当x =2时,y =4,则y 与x 的函数关系式是_________________. 12.已知函数1)1(2
-+-=m x m y 是正比例函数,则m =_____________.
13.已知反比例函数的图像经过点(m ,3)和(-3,2),则m 的值为 . 14.衡阳与郴州之间的距离是140千米,若汽车以平均每小时80千米的速度从衡阳市
开往郴州市,则汽车距郴州市的路程(千米)与行驶时间(小时)之间的函数关系式为_ __。

15.如果一次函数y =(2-m )x +m -3的图象经过第二、三、四象限,那么m 的取值
范围是_________ 16.如图,点A 在双曲线()2y=
x 0x >上,点B 在双曲线()4
y=x 0x
>上,且AB //y 轴,点P 是轴上的任意一点,则△PAB 的面积为 .
三、解答题(10分×6=60分)
17.正比例函数 y =kx 和一次函数 y =ax +b 的图象都经过点 A (1, 2),且一次函数的
图象交 x 轴于点 B (4, 0).求正比例函数和一次函数的表达式.
18.已知函数y =(2m +1)x +m -3
(1)若函数图象经过原点,求m 的值;
(2)若函数的图象平行直线y =3x -3,求m 的值;
(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围. x
y
19.如图,一次函数y =kx +b 的图象与反比例函数y =
x
m
的图象交于A (-2,1)B (1,n )两点.
(1)试确定上述反比例函数和一次函数的表达式; (2)求△ABO 的面积;
(3)根据图像直接写出当一次函数的值大于反比例函数的值时x 的取值范围。

20.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段OA 和双曲线在A 点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的函数关系式及自变量的取值范围;
(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?
21.为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5月1日通车,下表是宁波到上海两条线路的有关数据:
(1)若小车的平均速度为80公里/小时,则小车走直路比走弯路节省多少时间?
(2)若小车每公里的油耗为升,汽油价格为5.00元/升,问为何值时,走哪条线路的总费用较少(总费用=过路费+油耗费);
22.如图,等腰梯形ABCD 放置在平面直角坐标系中,已知A (﹣2,0)、B (6,0)、D (0,3),反比例函数的图象经过点C .
(1)求点C 的坐标和反比例函数的解析式;
(2)将等腰梯形ABCD 向上平移2个单位后,问点B 是否落在双曲线上?
x
参考答案
一、选择题
1.B 2.A 3.B 4.A 5.D 6.C 7.C 8.C 9.B 10.B 二、填空题 11.y =3x -2
12.m =-1 13.2- 14.y =160﹣80x (0≤x ≤2) 15.2<m <3 16.1。

三、解答题
17.y =2x y =-3\2x+8\3
18.(1)3;(2)1;(3)2
1-
<m 19.(1)y =﹣x ﹣1 (2)1.5 (3)x <-2或.0<x <1 20. (1)设反比例函数解析式为k
y=
x
,将(25,6)代入解析式得,k =25×6=150, ∴函数解析式为150
y=
x
(x >15)。

将y =10代入解析式得,150
y=10
,解得x =15。

∴A (15,10)。

设正比例函数解析式为y =nx , 将A (15,10)代入上式,得102n==153。

∴正比例函数解析式为y =
2
3
x (0≤x ≤15)。

综上所述,从药物释放开始,y 与x 之间的函数关系式为()()2
x 0x 153
y=150x 15x
>⎧≤≤⎪⎪⎨⎪⎪⎩。

(2)由150
2=x
解得x =75(分钟),
答:从消毒开始,至少在75分钟内,师生不能进入教室。

21.(1)
316196
1.5()8080-=小时 ; (2)1
15x >时 走近路费用少,115x =时费用相同, 1
15
x <时 走远路费用少。

【解析】(1)看懂频数分布直方图;(2)本题考查函数和不等式的解法等 (1)求出走直路比走弯路少走的路程,速度已知,便可求出节省的时间; (2)可以先分别求出走直路和走弯路总费用的表达式,然后再分情况讨论; (1)
(2)(316x ·5+140)- (196x ·5+180) =600x -40 …………………3分 当600x -40>0 即
时 走近路费用少;
当600x-40=0 即时费用相同;
当600x-40<0 即时走远路费用少;
22.(1)过点C作CE⊥AB于点E,
∵四边形ABCD是等腰梯形,
∴AD=BC,DO=CE,
∴△AOD≌△BEC,∴AO=BE=2,
∵BO=6,∴DC=OE=4,
∴C(4,3);
设反比例函数的解析式y=(k≠0),
根据题意得:3=,
解得k=12;
∴反比例函数的解析式y=;
(2)将等腰梯形ABCD向上平移2个单位后得到梯形A′B′C′D′得点B′(6,2),故当x=6时,y==2,即点B′恰好落在双曲线上.。

相关文档
最新文档