巧家县三中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧家县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )
A .
B .
C .
D .
2. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )
A .2︰3
B .4︰3
C .3︰1
D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.
3. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8 C .6 D .4
4. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( ) A .(﹣7,﹣4)
B .(7,4)
C .(﹣1,4)
D .(1,4)
5. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则
实数a 的取值范围是( )
A .
B .
C .
D .
6. 如果执行右面的框图,输入N=5,则输出的数等于( )
A .
B .
C .
D .
7. 已知F 1、F 2分别是双曲线

=1(a >0,b >0)的左、右焦点,过点F 2与双曲线的一条渐近线平行
的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆外,则双曲线离心率的取值范围是( )
A .(1,

B .(
,+∞) C .(
,2)
D .(2,+∞)
8. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( )
A .﹣12
B .﹣10
C .﹣8
D .﹣6
9. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .
14 B .1
2
C .
D . 10.与圆C 1:x 2
+y 2
﹣6x+4y+12=0,C 2:x 2
+y 2
﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条 11.下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
12.已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2-
二、填空题
13.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m .
14.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,
则S 的最小值是 .
15.抛物线y=x 2的焦点坐标为( )
A .(0,)
B .(
,0)
C .(0,4)
D .(0,2)
16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=
,则= .
17.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.
18.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .
三、解答题
19.(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立
平面直角坐标系,直线的参数方程是243x t
y t =-+⎧⎨=⎩
(为参数).
(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.
20.(本小题满分12分)求下列函数的定义域: (1)(
)f x =; (2)(
)f x =.
21.已知函数f (x )=ax 2+bx+c ,满足f (1)=﹣,且3a >2c >2b . (1)求证:a >0时,的取值范围;
(2)证明函数f (x )在区间(0,2)内至少有一个零点; (3)设x 1,x 2是函数f (x )的两个零点,求|x 1﹣x 2|的取值范围.
22.(本小题满分13分)
设1()1f x x
=+,数列{}n a 满足:112a =,1(),n n a f a n N *
+=∈.
(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫
-⎨⎬-⎩⎭
为等比数列;
(Ⅱ)证明:存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.

23.已知函数f(x)=lnx﹣a(1﹣),a∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的最小值为0.
(i)求实数a的值;
(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.
24.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.
(1)求f(x)的解析式;
(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;
(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.
巧家县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】A
【解析】解:0<a <1,实数x ,y 满足,即y=
,故函数y 为偶函数,它的图象关于y 轴对称, 在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A .
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
2. 【答案】C
【解析】由已知等式,得3cos 3cos c b C c B =+,由正弦定理,得sin 3(sin cos sin cos )C B C C B =+,则
sin 3sin()3sin C B C A =+=,所以sin :sin 3:1C A =,故选C .
3. 【答案】B
【解析】解:展开式通项公式为T r+1=
•(﹣1)r •x 3n ﹣4r ,
则∵二项式(x 3
﹣)n
(n ∈N *
)的展开式中,常数项为28,
∴,
∴n=8,r=6. 故选:B .
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
4. 【答案】A
【解析】解:由已知点A (0,1),B (3,2),得到=(3,1),向量
=(﹣4,﹣3),
则向量
=
=(﹣7,﹣4);
故答案为:A .
【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.
5. 【答案】 A
【解析】解:取a=﹣时,f(x)=﹣x|x|+x,
∵f(x+a)<f(x),
∴(x﹣)|x﹣|+1>x|x|,
(1)x<0时,解得﹣<x<0;
(2)0≤x≤时,解得0;
(3)x>时,解得,
综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;
取a=1时,f(x)=x|x|+x,
∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,
(1)x<﹣1时,解得x>0,矛盾;
(2)﹣1≤x≤0,解得x<0,矛盾;
(3)x>0时,解得x<﹣1,矛盾;
综上,a=1,A=∅,不合题意,排除C,
故选A.
【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.
6.【答案】D
【解析】解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是累加并输出S=的值.
∵S==1﹣=
故选D.
7.【答案】D
【解析】解:双曲线﹣=1的渐近线方程为y=±x,
不妨设过点F2与双曲线的一条渐过线平行的直线方程为y=(x﹣c),
与y=﹣x 联立,可得交点M (,﹣),
∵点M 在以线段F 1F 2为直径的圆外,
∴|OM|>|OF 2|,即有
>c 2

∴b 2>3a 2,
∴c 2﹣a 2>3a 2
,即c >2a .
则e=>2.
∴双曲线离心率的取值范围是(2,+∞). 故选:D .
【点评】本题考查的知识点是双曲线的简单性质,熟练掌握双曲线的渐近线、离心率的计算公式、点与圆的位置关系是解题的关键.
8. 【答案】C
【解析】解:由已知得f ′(x )=4x 3cosx ﹣x 4
sinx+2mx+1, 令g (x )=4x 3cosx ﹣x 4
sinx+2mx 是奇函数,
由f ′(x )的最大值为10知:g (x )的最大值为9,最小值为﹣9, 从而f ′(x )的最小值为﹣9+1=﹣8. 故选C .
【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.
9. 【答案】A 【解析】
试题分析:由题意知函数定义域为),0(+∞,2'
222()x x a f x x
++=,因为函数2
()2ln 2f x a x x x
=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒
成立,1
0,4
a ∴∆≤∴≥,故选A. 1
考点:导数与函数的单调性. 10.【答案】C
【解析】
【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.
【解答】解:∵圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2
﹣14x ﹣2y+14=0的方程可化为,
;; ∴圆C 1,C 2的圆心分别为(3,﹣2),(7,1);半径为r 1=1,r 2=6.
∴两圆的圆心距
=r 2﹣r 1;
∴两个圆外切,
∴它们只有1条内公切线,2条外公切线. 故选C . 11.【答案】B 【解析】

点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 12.【答案】D 【解析】
试题分析:由{}
{}1,2,025
,0522--=⎭
⎬⎫⎩⎨⎧∈<<-
=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算.
二、填空题
13.【答案】1 【解析】 试题分析:()()()()22131112
22=-+--+-=
m AB ,解得:1=m ,故填:1.
考点:空间向量的坐标运算
14.【答案】 .
【解析】解:设剪成的小正三角形的边长为x ,则:S==
,(0<x <1)
令3﹣x=t ,t ∈(2,3),
∴S===,当且仅当t=即t=2时等号成
立;
故答案为:.
15.【答案】D
【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,
∴焦点坐标为(0,2).
故选:D.
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.
16.【答案】=.
【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,
∵已知sinAsinB+sinBsinC+cos2B=1,
∴sinAsinB+sinBsinC=2sin2B.
再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.
C=,由a,b,c成等差数列可得c=2b﹣a,
由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.
化简可得5ab=3b2,∴=.
故答案为:.
【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.
17.【答案】75
【解析】计数原理的应用.
【专题】应用题;排列组合.
【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.
【解答】解:由题意知本题需要分类来解,
第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,
第二类,若从其他六门中选4门有C 64
=15,
∴根据分类计数加法得到共有60+15=75种不同的方法.
故答案为:75.
【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.
18.【答案】1-1,3] 【解析】
试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]
考点:集合运算 【方法点睛】
1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.
2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.
3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.
三、解答题
19.【答案】(1)参数方程为1cos sin x y θθ
=+⎧⎨=⎩,3460x y -+=;(2)14
5.
【解析】
试题分析:(1)先将曲线C 的极坐标方程转化为直角坐标系下的方程,可得22(1)1x y -+=,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线C 上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值. 试题解析:
(1)曲线C 的普通方程为2
2cos ρρθ=,∴2
2
20x y x +-=,
∴2
2
(1)1x y -+=,所以参数方程为1cos sin x y θ
θ=+⎧⎨=⎩

直线的普通方程为3460x y -+=.
(2)曲线C 上任意一点(1cos ,sin )θθ+到直线的距离为
33cos 4sin 65sin()914555
d θθθϕ+-+++==≤,所以曲线C 上任意一点到直线的距离的最大值为145.
考点:1.极坐标方程;2.参数方程. 20.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.
【解析】
考点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环.
21.【答案】
【解析】解:(1)∵f(1)=a+b+c=﹣,
∴3a+2b+2c=0.
又3a>2c>2b,
故3a>0,2b<0,
从而a>0,b<0,
又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b
∵a>0,∴3>﹣3﹣>2,
即﹣3<<﹣.
(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.
下面对c的正负情况进行讨论:
①当c>0时,∵a>0,
∴f(0)=c>0,f(1)=﹣<0
所以函数f(x)在区间(0,1)内至少有一个零点;
②当c≤0时,∵a>0,
∴f(1)=﹣<0,f(2)=a﹣c>0
所以函数f(x)在区间(1,2)内至少有一个零点;
综合①②得函数f (x )在区间(0,2)内至少有一个零点; (3).∵x 1,x 2是函数f (x )的两个零点 ∴x 1,x 2是方程ax 2+bx+c=0的两根. 故x 1+x 2=﹣,x 1x 2===
从而|x 1﹣x 2|==
=

∵﹣3<<﹣, ∴
|x 1﹣x 2|

【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x 轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.
22.【答案】
【解析】解:证明:2
()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴211
2
22
11λλλλ⎧-=⎪⎨-=⎪⎩. ∵1
21111111
1212
222222
21
11111n n n n n n n n n n
a a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)
11120a a λλ-≠-,12

λ≠,
∴数列12n n a a λλ⎧⎫
-⎨
⎬-⎩⎭
为等比数列. (4分)
(Ⅱ)证明:设51
m -=
()f m m =. 由112a =及111n n
a a +=+得223a =,335a =,∴130a a m <<<.
∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *
∈时,2121222n n n n a a m a a -++<<<<.
①当1n =时,命题成立. (9分)
②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>>
∴2222321k k k k a a m a a +++>>>>
由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)
由①②知,对一切n N *
∈命题成立,即存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
23.【答案】
【解析】解:(Ⅰ)函数f (x )的定义域为(0,+∞),且f ′(x )=﹣=

当a ≤0时,f ′(x )>0,所以f (x )在区间(0,+∞)内单调递增; 当a >0时,由f ′(x )>0,解得x >a ;由f ′(x )<0,解得0<x <a . 所以f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ). 综上述:a ≤0时,f (x )的单调递增区间是(0,+∞);
a >0时,f (x )的单调递减区间是(0,a ),单调递增区间是(a ,+∞). (Ⅱ)(ⅰ)由(Ⅰ)知,当a ≤0时,f (x )无最小值,不合题意; 当a >0时,[f (x )]min =f (a )=1﹣a+lna=0,
令g (x )=1﹣x+lnx (x >0),则g ′(x )=﹣1+=

由g ′(x )>0,解得0<x <1;由g ′(x )<0,解得x >1.
所以g (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). 故[g (x )]max =g (1)=0,即当且仅当x=1时,g (x )=0. 因此,a=1.
(ⅱ)因为f (x )=lnx ﹣1+,所以a n+1=f (a n )+2=1+
+lna n .
由a 1=1得a 2=2于是a 3=+ln2.因为<ln2<1,所以2<a 3<.
猜想当n ≥3,n ∈N 时,2<a n <. 下面用数学归纳法进行证明.
①当n=3时,a 3=+ln2,故2<a 3<.成立.
②假设当n=k (k ≥3,k ∈N )时,不等式2<a k <成立. 则当n=k+1时,a k+1=1+
+lna k ,
由(Ⅰ)知函数h (x )=f (x )+2=1++lnx 在区间(2,)单调递增,
所以h (2)<h (a k )<h (),又因为h (2)=1++ln2>2,
h()=1++ln<1++1<.
故2<a k+1<成立,即当n=k+1时,不等式成立.
根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.
综上可得,n>1时[a n]=2.
【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.
24.【答案】
【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x)
则对称轴x=,
f(x)存在最小值,
则二次项系数a>0
设f(x)=a(x﹣)2+.
将点(0,4)代入得:
f(0)=,
解得:a=1
∴f(x)=(x﹣)2+=x2﹣3x+4.
(2)h(x)=f(x)﹣(2t﹣3)x
=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].
当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;
当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;
当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:
当t≤0时,最小值4;
当0<t<1时,最小值4﹣t2;
当t≥1时,最小值﹣2t+5.
∴.
(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,
∴m<x2﹣5x+4对x∈[﹣1,3]恒成立,
∵g(x)=x2﹣5x+4在x∈[﹣1,3]上的最小值为,
∴m<.。

相关文档
最新文档