龙泉市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙泉市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )
A .x ﹣2y+7=0
B .2x+y ﹣1=0
C .x ﹣2y ﹣5=0
D .2x+y ﹣5=0
2. 已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( )
A .
B .2
C .
D .
3. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,
设(0)a f =,b f =,2(log 8)c f =,则( )
A .a b c <<
B .a b c >>
C .c a b <<
D .a c b << 4. 曲线y=x 3﹣3x 2+1在点(1,﹣1)处的切线方程为( )
A .y=3x ﹣4
B .y=﹣3x+2
C .y=﹣4x+3
D .y=4x ﹣5
5. 设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
6. 已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)
7. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )
A .
B .
C .
D .
8. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()2121
0f x f x x x -<-,则
( )
A .()()()213f f f -<<
B .()()()123f f f <-<
C .()()()312f f f <<
D .()()()321f f f <-<
9. 在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线
EF 相交
的是( )
A .直线1AA
B .直线11A B C. 直线11A D D .直线11B
C 10.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;
③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )
A .1
B .2
C .3
D .4
11.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )
A .k >7
B .k >6
C .k >5
D .k >4
12.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )
A .9.6
B .7.68
C .6.144
D .4.9152
二、填空题
13.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都
在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .
14.在数列
中,则实数a= ,b= .
15.命题“(0,)2
x π
∀∈,sin 1x <”的否定是 ▲ .
16.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 17.下列说法中,正确的是 .(填序号)
①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;
②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称;
③y=(
)﹣x
是增函数;
④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0.
18.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .
三、解答题
19.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)
(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,
2⎛⎫
⎪⎝⎭
上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.
20.定义在R 上的增函数y=f (x )对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ),则 (1)求f (0); (2)证明:f (x )为奇函数;
(3)若f (k •3x )+f (3x ﹣9x
﹣2)<0对任意x ∈R 恒成立,求实数k 的取值范围.
21.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .
(1)求函数y=f (x )的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面
积.
22.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为
(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.
23.已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.
(I)求a、b的值;
(Ⅱ)当x>1时,不等式f(x)>恒成立,求实数k的取值范围.
24.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.
龙泉市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】A 【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0
∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7
∴x ﹣2y+7=0 故选A . 【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣
2y+c=0.
2. 【答案】D
【解析】解:设等比数列{a n }的公比为q ,则q >0,
∵a 4•a 8=2a 52,∴a 62=2a 52
, ∴q 2
=2,∴q=

∵a 2=1,∴a 1==

故选:D
3. 【答案】C 【解析】
考点:函数的对称性,导数与单调性.
【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不
可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:
()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,
则其图象关于点(,)m n 对称. 4. 【答案】B
【解析】解:∵点(1,﹣1)在曲线上,y ′=3x 2﹣6x ,
∴y ′|x=1=﹣3,即切线斜率为﹣3. ∴利用点斜式,切线方程为y+1=﹣3(x ﹣1),即y=﹣3x+2. 故选B .
【点评】考查导数的几何意义,该题比较容易.
5. 【答案】C
【解析】解:设a 、b 是两个非零向量,“(a+b )2=|a|2+|b|2”⇒(a+b )2=|a|2+|b|2+2ab=|a|2+|b|2
⇒a •b=0,即a ⊥b ;
a ⊥
b ⇒a •b=0即(a+b )2=|a|2+|b|2所以“(a+b )2=|a|2+|b|2”是“a ⊥b ”的充要条件. 故选C .
6. 【答案】C
【解析】解:∵f (x )=﹣log 2x ,
∴f (2)=2>0,f (4)=﹣<0, 满足f (2)f (4)<0,
∴f (x )在区间(2,4)内必有零点,
故选:C
7. 【答案】B
【解析】解:A 项定义域为[﹣2,0],D 项值域不是[0,2],C 项对任一x 都有两个y 与之对应,都不符.
故选B .
【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.
8. 【答案】D 9. 【答案】D 【解析】
试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线
EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断. 10.【答案】 B
【解析】解:∵①若m ∥l ,m ⊥α,
则由直线与平面垂直的判定定理,得l ⊥α,故①正确;
②若m∥l,m∥α,则l∥α或l⊂α,故②错误;
③如图,在正方体ABCD﹣A1B1C1D1中,
平面ABB1A1∩平面ABCD=AB,
平面ABB1A1∩平面BCC1B1=BB1,
平面ABCD∩平面BCC1B1=BC,
由AB、BC、BB1两两相交,得:
若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,
则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,
得n∥m,同理n∥l,故m∥l,故命题④正确.
故选:B.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
11.【答案】C
【解析】解:程序在运行过程中各变量值变化如下表:
K S 是否继续循环
循环前1 0
第一圈2 2 是
第二圈3 7 是
第三圈4 18 是
第四圈5 41 是
第五圈6 88 否
故退出循环的条件应为k>5?
故答案选C.
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
12.【答案】C
【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.
故选:C.
二、填空题
13.【答案】2.
【解析】解:如图所示,
连接A1C1,B1D1,相交于点O.
则点O为球心,OA=.
设正方体的边长为x,则A1O=x.
在Rt△OAA1中,由勾股定理可得:+x2=,
解得x=.
∴正方体ABCD﹣A
B1C1D1的体积V==2.
1
故答案为:2.
14.【答案】a=,b=.
【解析】解:由5,10,17,a﹣b,37知,
a﹣b=26,
由3,8,a+b,24,35知,
a+b=15,
解得,a=,b=;
故答案为:,.
【点评】本题考查了数列的性质的判断与归纳法的应用.
15.【答案】()
0,2x π
∃∈,sin 1≥
【解析】
试题分析:“(0,)2x π
∀∈,sin 1x <”的否定是()
0,2
x π
∃∈,sin 1≥ 考点:命题否定
【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题. 16.【答案】8
17.【答案】 ②④
【解析】解:①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1或k=0,故错误; ②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称,故正确; ③y=(
)﹣x
是减函数,故错误;
④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0,故正确. 故答案为:②④
【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.
18.【答案】 {x|﹣1<x <1} .
【解析】解:∵A={x|﹣1<x <3},B={x|x <1}, ∴A ∩B={x|﹣1<x <1}, 故答案为:{x|﹣1<x <1}
【点评】本题主要考查集合的基本运算,比较基础.
三、解答题
19.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛⎫ ⎪⎝⎭
上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-
⎥-⎝⎦
. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,
12)上无零点,只需要对x ∈(0,1
2
)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;
试题解析:
(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,
由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.
故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,
故要使函数
上无零点,
只要对任意的,f (x )>0恒成立,即对恒成立.
令,则

再令,

,故m (x )在
上为减函数,于是

从而,l (x )>0,于是l (x )在上为增函数,所以

故要使
恒成立,只要a ∈[2﹣4ln2,+∞),
综上,若函数f (x )在10,
2⎛

⎪⎝⎭
上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,
当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;
当a ≠2时,f ′(x )=,x ∈(0,e]
当x=
时,f ′(x )=0.
由题意得,f (x )在(0,e]上不单调,故,即

又因为,当x →0时,2﹣a >0,f (x )→+∞,

所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:

令h (a )=,
则h
,令h ′(a )=0,得a=0或a=2,
故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;

时,h ′(a )<0,函数h (a )单调递减.
所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:
.④
综合①④可知,当a 的范围是3,21e ⎛⎤
-∞-
⎥-⎝⎦
时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使f (x i )=g (x 0)成立.
20.【答案】
【解析】解:(1)在f (x+y )=f (x )+f (y )中, 令x=y=0可得,f (0)=f (0)+f (0), 则f (0)=0,
(2)令y=﹣x ,得f (x ﹣x )=f (x )+f (﹣x ), 又f (0)=0,则有0=f (x )+f (﹣x ), 即可证得f (x )为奇函数;
(3)因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数, f (k •3x )<﹣f (3x ﹣9x ﹣2)=f (﹣3x +9x +2),
即有k •3x <﹣3x +9x
+2,得

又有
,即
有最小值2﹣1,
所以要使f (k •3x
)+f (3x
﹣9x
﹣2)<0恒成立,只要使即可,
故k 的取值范围是(﹣∞,2﹣1).
21.【答案】
【解析】解:(1)f (x )=•=2cos 2
x+
sin2x=sin2x+cos2x+1=2sin (2x+)+1,
令﹣+2k π≤2x+≤+2k π,
解得﹣
+k π≤x ≤
+k π,
函数y=f (x )的单调递增区间是[﹣+k π,
+k π],
(Ⅱ)∵f (A )=2
∴2sin (2A+
)+1=2,即sin (2A+
)= ….
又∵0<A <π,∴A=.…
∵a=

由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2
﹣3bc=7 ①…
∵sinB=2sinC ∴b=2c ②…
由①②得c 2
=.…
∴S △ABC=.…
22.【答案】
【解析】解:(Ⅰ)根据直线l 的参数方程为(t 为参数),
消去参数,得
x+y ﹣
=0,
直线l 的直角坐标方程为x+y ﹣
=0,
∵圆C 的极坐标方程为p 2
+2psin (θ+
)+1=r 2
(r >0).
∴(x+
)2
+(y+)2=r 2
(r >0).
∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).
(Ⅱ)∵圆心C(﹣,﹣),半径为r,…(5分)
圆心C到直线x+y﹣=0的距离为d==2,
又∵圆C上的点到直线l的最大距离为3,即d+r=3,
∴r=3﹣2=1.
【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.23.【答案】
【解析】解:(I)∵函数f(x)=alnx+的导数为
f′(x)=﹣,且直线y=2的斜率为0,又过点(1,2),
∴f(1)=2b=2,f′(1)=a﹣b=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
解得a=b=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(II)当x>1时,不等式f(x)>,即为(x﹣1)lnx+>(x﹣k)lnx,
即(k﹣1)lnx+>0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
令g(x)=(k﹣1)lnx+,g′(x)=+1+=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
令m(x)=x2+(k﹣1)x+1,
①当≤1即k≥﹣1时,m(x)在(1,+∞)单调递增且m(1)≥0,
所以当x>1时,g′(x)>0,g(x)在(1,+∞)单调递增,
则g(x)>g(1)=0即f(x)>恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
②当>1即k<﹣1时,m(x)在上(1,)上单调递减,
且m(1)<0,故当x∈(1,)时,m(x)<0即g′(x)<0,
所以函数g(x)在(1,)单调递减,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
当x ∈(1,)时,g (x )<0与题设矛盾,
综上可得k 的取值范围为[﹣1,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
24.【答案】(1)320x y ++=;(2)()2
2
28x y -+=.
【解析】
试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得
矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.
(2)由360
320
x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,
因为矩形ABCD 两条对角线的交点为()2,0M ,
所以M 为距形ABCD 外接圆的圆心, 又AM =
=从而距形ABCD 外接圆的方程为()2
2
28x y -+=.1
考点:直线的点斜式方程;圆的方程的求解.
【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.。

相关文档
最新文档