福州市第二次质检数学文试题及答案(3月)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年福州市高中毕业班质量检测
文科数学能力测试
(完卷时间:120分钟;满分:150分)
注意事项:
1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;
2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.
参考公式:
1.样本数据12,,
,n x x x 的标准差
()()()22
2
121n s x x x x x x n ⎡⎤=
-+-++-⎣


其中x 为样本平均数;
2.柱体体积公式:V Sh =, 其中S 为底面面积,h 为高; 3.锥体体积公式:1
3
V Sh =
, 其中S 为底面面积,h 为高.
第Ⅰ卷 (选择题 共60分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中有且
只有一个选项是正确的.把正确选项涂在答题卡的相应位置上.) 1. 函数1y x =-的定义域为
A .{}1x x
B .{}1x x <
C .{}1x x
D .{}1x x >
2. 若复数z 满足()2i i z -⋅=(i 为虚数单位),则z 的虚部为
A .
25 B .25- C .15 D .15
- 3. 如图是某篮球联赛中,甲、乙两名运动员12个场次得分的茎叶图.设甲、乙两人得
分的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则 A .,x x m m <<甲乙甲乙 B .,x x m m <>甲乙甲乙 C .,x x m m >>甲乙甲乙 D .,x x m m ><甲乙甲乙
4. 已知直线2y x =为双曲线2
2
22:
1x y a b Γ-=(0,0a b >>)的一条渐近线,则双曲线Γ的离心率为 A .
3 B .5 C .2 D .5
第3题图
5. 执行如图所示的程序框图,输出的有序实数对为
A .()8,2
B .()8,3
C .()16,3
D .()16,4
6. 已知直线l 与平面α平行,则下列结论错误..
的是 A .直线l 与平面α没有公共点 B .存在经过直线l 的平面与平面α平行 C .直线l 与平面α内的任意一条直线平行 D .直线l 上所有的点到平面α的距离都相等
7. 已知偶函数()f x 满足:当()12,0,x x ∈+∞时,()()()12120x x f x f x ⎡⎤-->⎣⎦恒成立.设
(4)a f =-,(1)b f =,(3)c f =,则,,a b c 的大小关系为 A .a b c << B . b a c << C .b c a << D . c b a <<
8. 设变量,x y 满足约束条件,2,26,y x x y x y ⎧⎪
+⎨⎪+⎩
则32z x y =+的取值范围为
A .(],10-∞
B .[)8,+∞
C .[]5,10
D .[]8,10
9. 某四棱锥的三视图如图所示,该四棱锥的表面积为
A .17
B .22 C
.14+ D
.22+
10.函数22sin 10,()240
x x x f x x x x ⎧-+>⎪=⎨--⎪⎩,,的零点个数为 A .0 B .1 C .2 D .3 11.在ABC ∆中,点G 为ABC ∆的重心.
已知AB =,且向量GA 与GB 的夹角为120︒,
则CA CB ⋅的最小值是 A .3-
B .6
C .9
D .24
12.已知函数()sin f x x x =⋅,有下列三个结论:
①存在常数0T >,对任意的实数x ,恒有()()f x T f x +=成立; ②对任意给定的正数M ,都存在实数0x ,使得()
0f x M ;
③直线y x =与函数()f x 的图象相切,且切点有无数多个. 则所有正确结论的序号是 A .①
B .②
C .③
D .②③
第5题图
第10题图
俯视图
3?
y 否
第Ⅱ卷 (非选择题 共90分)
二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在答题卡的相应位置上.) 13.已知集合{}{}
21,0,1A B x x =-=∈=R ,则集合..A
B 等于 ★★★ .
14.已知函数()ln f x x =.若在区间()0,3e 上随机取一个数x ,则使得不等式()1f x 成立
的概率为 ★★★ .
15.ABC ∆的内角A B C ,,所对的边分别是a b c ,,.若105,15B C =︒=︒,则
2cos15cos105a
b c ︒+︒
的值为 ★★★ .
16.在各项均为正整数的单调递增数列{}n a 中,11a =,22a =,且
132112,k k k k a a a a +++⎛⎫⎛⎫
++= ⎪⎪⎝
⎭⎝⎭
*k ∈N ,则9a 的值为 ★★★ .
三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算过程.) 17.(本小题满分12分)
已知函数()cos (0)f x x x ωωω=->的图象与直线2y =的相邻两个交点之间的 距离为π.
(Ⅰ)求函数()f x 的单调递增区间;
(Ⅱ)若223f α⎛⎫= ⎪⎝⎭,求πcos 23α⎛
⎫- ⎪⎝
⎭的值.
18.(本小题满分12分)
调查表明,中年人的成就感与收入、学历、职业的满意度的指标有极强的相关性.现 将这三项的满意度指标分别记为,,x y z ,并对它们进行量化:0表示不满意,1表示基本满意,2表示满意,再用综合指标w x y z =++的值评定中年人的成就感等级:若4w ,则
成就感为一级;若23w ,则成就感为二级;若01w ,则成就感为三级.为了了解
目前某群体中年人的成就感情况,研究人员随机采访了该群体的10名中年人,得到如下
结果:
(Ⅱ)从成就感等级为一级的被采访者中随机抽取两人,这两人的综合指标w 均为4的概率是多少?
19.(本小题满分12分)
如图,在长方体1111ABCD A B C D -中,12,4AB BC AA ===,P 为 线段11B D 上一点.
(Ⅰ)求证:AC BP ⊥;
(Ⅱ)当P 为线段11B D 的中点时,求三棱锥A PBC -的高.
20.(本小题满分12分)
小辉是一位收藏爱好者,在第1年初购买了价值为20万元的收藏品M ,由于受到收 藏品市场行情的影响,第2年、第3年的每年初M 的价值为上年初的1
2
;从第4年开始,每年初M 的价值比上年初增加4万元.
(Ⅰ)求第几年初开始M 的价值超过原购买的价值;
(Ⅱ)记n T (*n ∈N )表示收藏品M 前n 年的价值的平均值,求n T 的最小值.
21.(本小题满分12分)
已知函数()e x
x
f x m
=
+,m ∈R ,e 2.71828=⋅⋅⋅为自然对数的底数. (Ⅰ)若1x =是()f x 的极值点,求m 的值; (Ⅱ)证明:当01a b <<<时,e e a b b a a b +<+.
22.(本小题满分14分)
如图,已知椭圆2222:1x y a b Γ+=(0a b >>)的离心率
e =左焦点和右顶点,且3AF =.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)过点F 作一条直线l 交椭圆Γ于,P Q 两点,点Q x 轴的对称点为Q '.若PF AQ '∥,求证:1
2
PF AQ '=

第19题图
1
A A
2015年福州市高中毕业班质量检测
文科数学能力测试参考答案及评分细则
一、选择题:本题共有12个小题,每小题5分,满分60分. 1.A 2.A 3.C 4.D 5.D 6.C 7.C 8.B 9.D 10.B 11.B 12.D 二、填空题:本大题共 4 小题,每小题 4 分,满分 16 分.
13.{}1- 14.1
3
15.2 16.55
三、解答题:本大题共6小题,共74分.
17. 本小题主要考查三角函数的图象与性质(对称性、周期性、单调性)、二倍角的余弦公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想.满分12分.
【解析】(Ⅰ)因为()cos (0,)f x x x x ωωω=->∈R ,
所以()2sin()6
f x x π
ω=-. ··········································································· 2分
所以max ()2f x =.
因为函数()f x 与直线2y =的相邻两个交点之间距离为π, 所以T π=, ····························································································· 3分
所以2ππω
=,解得2,ω=·
··········································································· 4分 所以()2sin(2)6f x x π
=-.
令222,2
6
2
k x k k π
π
π
ππ-
-+
∈Z , ·
··························································· 5分 解得,6
3
k x
k k π
π
ππ-
+
∈Z . ·
·································································· 6分 所以函数()f x 的单调递增区间是[,],63k k k ππ
ππ-
+∈Z . ·································· 7分 (Ⅱ)由(Ⅰ)知,2sin()26f απα⎛⎫=- ⎪⎝⎭,因为2
23
f α⎛⎫= ⎪⎝⎭,
所以1
sin()63πα-=. ·················································································· 8分
所以cos 2cos236ππαα⎛⎫⎛
⎫-=- ⎪ ⎪⎝⎭⎝
⎭ ································································· 10分
212sin 6πα⎛
⎫=-- ⎪⎝⎭
····························································· 11分
7
9
=. ············································································· 12分 18.本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想.满分12分. 【解析】(Ⅰ)计算10名被采访者的综合指标,可得下表:
由上表可知:成就感为三级(即01w )的只有9A 一位,其频率为1
10
. ··········· 3分
用样本的频率估计总体的频率,可估计该群体中成就感等级为三级的人数有1
2002010
⨯=.
·············································································································· 5分 (Ⅱ)设事件A 为 “从成就感等级是一级的被采访者中随机抽取两人,他们的综合指标w 均为4”.由(Ⅰ)可知成就感是一级的(4w )有:123568,,,,,A A A A A A ,共6位,从中随机抽取两人,所有可能的结果为:
{}{}{}{}{}{}{}{}{}{}{}1213151618232526283536,,,,,,,,,,,,,,,,,,,,,,
A A A A A A A A A A A A A A A A A A A A A A {}{}{}{}38565868,,,,,,,A A A A A A A A ,共15种. ·
·················································· 9分 其中综合指标4w =有:125,,A A A ,共3名,事件A 发生的所有可能结果为:
{}{}{}121525,,,,,A A A A A A ,共3种, ·
·························· 10分 所以3()15P A =
=1
5
.·
················································································ 12分 19.本小题主要考查直线与直线、直线与平面的位置关系,以及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.满分12分.
证明:(Ⅰ)连结BD .
因为1111ABCD A B C D -是长方体,且2AB BC ==, 所以四边形ABCD 是正方形, ······································································· 1分 所以AC BD ⊥. ························································································ 2分 因为在长方体1111ABCD A B C D -中,
1BB ⊥平面ABCD ,AC ⊂平面ABCD , 所以1AC BB ⊥. ··························································· 4分 因为BD ⊂平面11BB D D ,1BB ⊂平面11BB D D , 且1BD BB B =,
所以AC ⊥平面11BB D D . ················································ 5分 因为BP ⊂平面11BB D D , 所以AC BP ⊥ ······························································· 6分 (Ⅱ)点P 到平面ABC 的距离14AA =,
ABC ∆的面积1
22
ABC S AB BC ∆=⋅⋅=, ·
······················
·················
····················· 7分 所以1118
24=333
P ABC ABC V S AA -∆=⋅=⨯⨯. ····
·························
·····
······················· 8分
在Rt △1BB P 中,114,BB B P ==所以BP =, ·····················
····················· 9分
同理CP =又=2BC ,所以PBC ∆的面积1
22
PBC S ∆=⨯. ·
·· 10分 设三棱锥A PBC -的高为h ,则
1
A A
因为A PBC P ABC V V --=,所以18
33
PBC S h ⋅=, ····················································· 11分
83
=
,解得h =
即三棱锥A PBC -
·································································· 12分
20.本小题主要考查数列、等差数列、等比数列、不等式等基础知识,考查运算求解能力、抽象概括能力、应用意识,考查函数与方程思想、化归与转化思想、分类与整合思想.满分12分.
解:(Ⅰ)设第n 年初M 的价值为n a ,
依题意,当13n 时,数列{}n a 是首项为20,公比为1
2
的等比数列,
所以13120522n n n a --⎛⎫
=⨯=⨯ ⎪⎝⎭
.故210a =,35a =,所以321a a a <<.
·············································································································· 2分 当4n 时,数列{}n a 是以4a 为首项,公差为4的等差数列,又4349a a =+=,所以()94447n a n n =+-⨯=-. ········································································· 3分
令20n a >,得27
4
n >
,又因为*n ∈N ,所以7n . ·········································· 4分 因此,第7年初M 开始的价值n a 超过原购买的价值. ······································· 5分
(Ⅱ)设n S 表示前n 年初M 的价值的和,则n n S
T n
=
由(Ⅰ)知,当13n 时,3120124052112
n n
n S -⎛⎫⎛⎫⋅- ⎪
⎪ ⎪⎝⎭⎝⎭==-⨯-,34052n n T n --⨯=①; ·············································································································· 7分 当4n 时,由于335S =,故
()()()23453947 (3525322)
n n n n S S a a a n n -+-=++++=+
=-+,
2
253232
25n n n T n n n
-+==+-.② ·
······························································· 9分 当13n 时,由①得,120T =,215T =,335
3
T =,所以123T T T >> ················ 10分
当4n 时,由②知,32322522511n T n n n n =+-⋅=,当且仅当322n n
=,即4n =时等号成立.即()4min 11n T T ==. ··································································· 11分 由于34T T >,故在第4年初n T 的值最小,其最小值为11. ································ 12分 21.本小题主要考查函数、导数、不等式等基础知识,考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.满分12分.
解:(Ⅰ)因为()e x x
f x m
=+,所以22
e e e (1)()(e )(e )x x x x x m x x m
f x m m +-⋅-+'==++, ············· 1分 由1x =是()f x 的极值点,得2
(1)0(e )m
f m '==+, ·
············································ 2分 解得0m =, ····························································································· 3分
此时()e
x x
f x =,经检验,1x =是()f x 的极值点.
所以所求的实数m 的值为0. ······································································· 4分
(Ⅱ)证明:取1m =-时,()e 1
x x
f x =-,此时2e (1)1()(e 1)x x x f x --'=-. ···················· 6分
构造函数()e (1)1x h x x =--, ········································································ 7分 所以()e (1)e (1)e x x x h x x x '=-+-=-在(0,)+∞上恒负,
所以()h x 在(0,)+∞上单调递减, ··································································· 8分 所以()(0)0h x h <=, ···················································································· 9分
故()0f x '<在(0,)+∞恒成立,说明()e 1
x x
f x =-在(0,)+∞上单调递减. ··············· 10分
所以当01a b <<<时,e 1e 1
b a
b a
<--,又因为e e 1b a >>,所以e 10,e 10b a ->->, 所以(e 1)(e 1)a b
b a -<-, ··········································································· 11分 所以e e a b b a a b +<+成立. ········································································ 12分 22.本小题主要考查直线、椭圆等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.满分14分. 【解析】(Ⅰ)设椭圆Γ的半焦距为
c ,则
1,
23,c e a AF a c ⎧
==⎪⎨
⎪=+=⎩ ·································································· 2分 解得2,1a c ==, ······················································································· 3分 所以2223b a c =-=, ················································································· 4分
所以椭圆Γ的方程为22
1
x y +=. ·
································································ 5分
设l 方程为()1y k x =+(0k ≠),()()1122,,,P x y Q x y . 因为点Q 与点Q '关于x 轴对称,所以()22,Q x y '-.
又因为椭圆关于x 轴对称,所以点Q '也在椭圆Γ上. ········································ 6分 由()22
1,3412,
y k x x y ⎧=+⎨+=⎩消去y 得()
22223484120k x k x k +++-=. 所以22121222
8412
0,,3434k k x x x x k k
-∆>+=-⋅=++. ················································· 7分 因为PF AQ '∥,所以直线AQ '的方程为()2y k x =-.
由()22
2,3412,
y k x x y ⎧=-⎨+=⎩消去y 得()
2222341616120k x k x k +-+-=. 因为直线AQ '交椭圆于()()222,0,,A Q x y '-两点,
所以222
1612234k x k -⋅=+,故22286
34k x k -=+. ························································· 9分
所以22221211212222
86886412
0,,34343434k k k k x x x x x x k k k k
---∆>+=+=-⋅=⋅=++++, 解得2157
,44k x ==-.
所以222861
342
k x k -==+. ·
············································································· 11分 所以()()()()
()22222
22211111811111164PF x y x k x k x =++=+++=++=, ················ 12分
()()()()
()222222
2222222812221216
AQ x y x k x k x '=-+=-+-=+-=. ·················· 13分 所以1
2
PF AQ '=. ·················································································· 14分
方法三:依题意,得PQ 与坐标轴不垂直.
设l 方程为()1y k x =+(0k ≠),()()1122,,,P x y Q x y . 因为点Q 与点Q '关于x 轴对称,所以()22,Q x y '-.。

相关文档
最新文档