应用时间序列分析(知识点总结)
统计学时间序列分析

统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。
通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。
统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。
一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。
在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。
时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。
2. 季节性:时间序列数据在一年内固定时间段内的重复模式。
3. 循环性:时间序列数据中存在的多重周期性波动。
4. 随机性:时间序列数据中的不规则、无法预测的波动。
二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。
2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。
3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。
4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。
5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。
它综合考虑了自回归、移动平均和差分的影响因素。
三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。
2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。
3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。
4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。
统计学原理 时间序列 知识点公式汇总

累计增长量=∑逐期增长量
年距增长量=报告期发展水平-上年同期发展水平
平均增长量
平均增长量=∑逐期增长量/逐期增长量个数
=累计增长量/(动态数列项数-1)
时间序列速度指标分析
发展速度
发展速度=报告期水平/基期水平
定基发展速度(总速度)=报告期水平/基期水平
定基增长速度=定基发展速度-1
=ห้องสมุดไป่ตู้计增长量/固定基期水平
环比增长速度=环比发展速度-1
=逐期增长量/前一期水平
同比增长速度=同比增长量/上年同期发展水平=同比发展速度-1
平均发展速度
几何平均法
方程法
平均增长速度
平均增长速度=平均发展速度-1
>1某种现象在一个较长的时期内逐期平均递增
平均递增速度平均递增率
<1某种现象在一个较长的时期内逐期平均递减
平均递减速度平均递减率
长期趋势分析
时距扩大法
同一数列前后时距长短应当一致,根据具体的性质和特点而定。但会使新序列的项数大大减少,丢失原时间序列所包含的大量信息,不利于进一步的深入分析。
移动平均法
修饰项数越多,趋势线越平滑;当移动平均的时期长度等于周期长度或其整倍数时,能把周期波动完全抹掉
项数值=原数列项数-移动平均项数+1
最小平方法
季节变动分析
折线图
散点图
3年↑资料
同期平均法
1、列表横:月/季,纵:年
2、∑各年同月/季及各年同月/季平均数
3、∑同年各月/季及同年各月/季平均数
4、求季节比率(季节指数)
S.I.=同月(季)平均数/全期各月平均数*100%
月资料,∑季节比例=1200%
第六章 时间序列分析

第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。
这种数据称为时间序列数据。
时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。
时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。
表现了现象在时间上的动态变化,故又称为动态数列。
一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。
同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。
研究时间数列的意义:了解与预测。
[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。
知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。
在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。
几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。
二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。
应用统计学时间数列分析

应用统计学时间数列分析时间数列分析是统计学中的一项重要内容,通过对时间序列数据进行分析,可以揭示数据之间的内在关联和规律。
本文将探讨时间数列分析在实际应用中的重要性和方法。
什么是时间数列分析时间数列(Time Series)指的是按时间顺序排列的一系列数据观测值。
时间数列分析是指根据时间数列数据进行的统计分析方法,旨在发现数据中存在的趋势、季节性、周期性等规律,以便进行预测和决策。
时间数列分析的重要性时间数列分析在许多领域都有广泛的应用,包括经济学、金融、医学、气象等。
通过时间数列分析,我们可以:•发现数据中的趋势和规律•预测未来数据走势•制定决策和策略•检验模型的有效性•揭示不同变量之间的关联时间数列分析方法1. 平稳性检验平稳性是时间数列分析的前提条件之一,可以通过单位根检验、ADF检验等方法来判断时间数列是否平稳。
如果时间数列不平稳,需要进行差分处理或其他转换方法使其平稳化。
2. 自相关性分析自相关性分析是检验数据是否存在自相关性(即相邻数据之间的相关性)的方法,可以通过自相关图和偏自相关图来判断数据中的自相关性程度。
3. 移动平均法移动平均法是一种基本的时间数列预测方法,通过计算一定窗口内的数据均值来平滑数据曲线,以便更好地观察数据走势和预测未来走向。
4. 季节性调整在时间数列分析中,常常需要对数据进行季节性调整,以消除季节性影响,使预测结果更为准确。
应用实例1. 股票价格预测时间数列分析在金融领域有着广泛的应用。
通过分析股票价格的时间数列数据,可以预测股价的未来走势,指导投资决策。
2. 气象预测气象数据也是时间数列数据的一种,通过对气象数据进行时间数列分析,可以预测未来的气候变化和天气情况,为灾害预警和农业生产提供依据。
3. 经济指标分析经济数据的时间数列分析可以揭示经济增长趋势、波动周期等信息,帮助政府和企业做出相应决策。
结语时间数列分析是统计学中一个重要的分析方法,通过对时间序列数据进行分析,可以揭示数据之间的规律、趋势和关联。
计量经济学中的时间序列分析

计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。
通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。
本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。
一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。
在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。
时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。
通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。
二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。
在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。
趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。
三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。
移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。
四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。
在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。
浅谈时间序列的预测(知识点总结)

浅谈时间序列的预测第一部份、时间序列及其分解时间序列是同一现象在不同时间上的相继观察值排列而成的序列。
它可以分平稳序列和非平稳序列两大类,平稳是基本上不存在趋势序列。
非平稳序列是包含趋势、季节性或周期性的序列,它可能只含有其中的一部份,也可能是几种成分的组合。
趋势是时间序列在长时期内呈现出来的某种持续上升或持续下降的变动,也称为长期趋势。
时间序列中的趋势可以是线性也可以非线性的。
季节性也称为季节变动,它是时间序列在一年内重复出现的周期性波动周期性也称循环波动,它是时间序列中呈现出 来的围绕长期趋势的一种波浪形或振荡式变动。
时间序列中除去趋势、周期性和季节性之后的偶然性变动,称为随机性,也称为不规则波动综合上述时间序列可分为;)()、季节性或季节变动趋势(S T )(I C 动)、随机性或不规则波周期性或循环波动(传统时间序列分析的一一项主要内容就是把这些成分从时间序列中分离出来,并将它们之间的关系用数学关系予以表达,而后分别进行分析。
按4种成分时间序列的影响方式不同,时间序列可分解为加法模型、乘法模型等。
其中较为常用的是乘法模型,其表现形式t t t t t I C S T Y ⨯⨯⨯= 第二部份、时间序列的描述分析1、图形描述作图可以为选择预测模型提供基本依据 2、增长率分析增长率是对现象在不同时间的变化状况所做的描述。
由于对比的基期不同,增长率有不同的计算方法。
增长率也称增长速度,它是时间序列中报告其观察值与基期观察值之比减1后的结果,用%表示。
由于对比基期不同,增长率可以分为环比增长率和定基增长率。
环比增长率是报告期观察值与前一时期观察值之比减1,说明现象逐期增长变化的程度;定基增长率是报告期观察值与某一固定时期观察值之比减1,说明现象在整个观察期内总的增长变化程度。
设增长率为G ,则环比增长率和定基增长率可表示为;期的观察值表示用于对比的固定基在上式中定基增长率;环比增长率;0000111Y ,,2,11,,2,11n i Y Y Y Y Y G n i Y Y Y Y Y G ii i i ii i i i =-=-==-=-=---平均增长率;也称平均增长速度,它是时间序列中逐期环比值的几何平均数减1后的结果,计算公式为;为环比值的个数表示平均增长率;式中,n G Y Y Y Y Y Y Y Y G n nn n n 11011201-=-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-关于增长率分析中应注意以下两个问题1、当时间序列中有观察值出现0或负数时,不宜计算增长率2、在有些情况下,不能单纯就增长率论增长率,要注意增长率与绝对水平的结合分析。
第六章时间序列分析

第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。
这种数据称为时间序列数据。
时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。
时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。
表现了现象在时间上的动态变化,故又称为动态数列。
一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。
同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。
研究时间数列的意义:了解与预测。
[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。
知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。
在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。
几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。
二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。
时间序列法统计知识点

时间序列法统计知识点时间序列法是一种基于时间的统计分析方法,广泛应用于各个行业,包括金融、经济、气象、销售等领域。
通过分析时间序列的特点和规律,可以预测未来的趋势和变动,为决策提供依据。
本文将从以下几个方面介绍时间序列法的基本原理和应用。
一、时间序列的概念和特点时间序列是按时间顺序排列的数据序列,每个时间点都对应一个数值。
时间序列的特点包括趋势、季节性和随机性。
趋势是指时间序列在长期内呈现出的总体变化方向,可以是上升、下降或平稳。
季节性是指时间序列在短期内呈现出的周期性变动,例如每年的销售量在圣诞节前后会有明显增加。
随机性是指时间序列的不规则波动,不受趋势和季节性的影响。
二、时间序列分析的方法时间序列分析主要包括平滑法、分解法和回归法等方法。
1.平滑法平滑法是一种通过计算时间序列的移动平均值或加权平均值来消除随机波动的方法。
常用的平滑法包括简单平滑法和指数平滑法。
简单平滑法是通过计算时间序列的移动平均值来获得趋势;指数平滑法是通过加权平均计算来消除随机波动,并预测未来趋势。
2.分解法分解法是将时间序列分解为趋势、季节性和随机性三个部分,然后对每个部分进行分析。
分解法常用的方法有X-11分析法和STL分解法。
3.回归法回归法是通过建立时间序列与其他变量之间的回归模型来预测未来趋势。
回归法常用的方法有简单线性回归和多元回归。
三、时间序列分析的应用时间序列分析在各个领域都有广泛的应用。
1.经济领域时间序列法可以用来预测经济指标的变化,例如GDP、通货膨胀率等。
通过对时间序列的分析,可以帮助政府和企业做出相应的决策,例如调整货币政策、制定生产计划等。
2.金融领域时间序列法在金融领域的应用非常广泛。
通过对股票价格、汇率、利率等时间序列的分析,可以预测市场的趋势和波动,帮助投资者做出正确的投资决策。
3.销售预测时间序列法可以用来预测产品的销售量,帮助企业做出合理的生产计划和库存管理。
通过对历史销售数据的分析,可以发现产品的季节性销售规律,并预测未来的销售趋势。
时间序列分析知识点总结(1)

一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
时间序列分析技巧例题和知识点总结

时间序列分析技巧例题和知识点总结时间序列分析是一种用于研究数据随时间变化规律的重要方法,在众多领域都有着广泛的应用,如经济学、金融学、气象学、工程学等。
通过对时间序列数据的分析,我们可以预测未来的趋势、发现周期性模式、识别异常值等。
接下来,让我们通过一些例题来深入理解时间序列分析的技巧,并对相关知识点进行总结。
一、时间序列的基本概念时间序列是按照时间顺序排列的一组数据点。
它可以是等间隔的,比如每小时、每天、每月的观测值,也可以是不等间隔的。
时间序列数据通常具有趋势性、季节性、周期性和随机性等特征。
二、常见的时间序列模型1、自回归模型(AR)自回归模型假设当前值与过去若干个值存在线性关系。
例如,一阶自回归模型 AR(1)可以表示为:$Y_t =\phi_1 Y_{t-1} +\epsilon_t$,其中$\phi_1$是自回归系数,$\epsilon_t$是随机误差项。
2、移动平均模型(MA)移动平均模型则认为当前值是由过去若干个随机误差项的线性组合构成。
一阶移动平均模型 MA(1)表示为:$Y_t =\epsilon_t +\theta_1 \epsilon_{t-1}$。
3、自回归移动平均模型(ARMA)ARMA 模型是 AR 模型和 MA 模型的组合,即同时考虑了序列的自相关性和随机性。
例如,ARMA(1,1)模型为:$Y_t =\phi_1 Y_{t-1} +\epsilon_t +\theta_1 \epsilon_{t-1}$。
4、自回归整合移动平均模型(ARIMA)对于非平稳的时间序列,需要先进行差分使其平稳,然后再应用ARMA 模型,这就是 ARIMA 模型。
三、时间序列分析的步骤1、数据可视化首先,绘制时间序列的折线图或柱状图,直观地观察数据的趋势、季节性和异常值。
2、平稳性检验平稳性是时间序列分析的重要前提。
常用的检验方法有单位根检验(如 ADF 检验),如果检验结果拒绝存在单位根,则序列是平稳的;否则,需要进行差分处理使其平稳。
金融时间序列知识点总结

金融时间序列知识点总结一、时间序列数据的描述统计时间序列数据的描述统计是对时间序列数据的基本特征进行描述和分析。
时间序列数据通常表现为趋势、季节性和随机性。
趋势是指时间序列数据随时间变化呈现出的总体上升或下降的趋势;季节性是指时间序列数据在一年内周期性的变动规律;随机性是指时间序列数据除了趋势和季节性之外的随机波动。
常用的描述统计方法包括数据的平均值、方差、标准差、最大值、最小值、分位数、偏度和峰度等指标。
这些指标可以帮助我们直观地了解时间序列数据的分布规律和基本特征。
二、时间序列的基本模型和预测方法时间序列的基本模型和预测方法包括了平稳时间序列模型、非平稳时间序列模型和预测方法。
平稳时间序列模型是指时间序列数据在时间平均和方差都保持恒定的模型,其中最为重要的是自回归移动平均模型(ARMA模型)和自回归积分移动平均模型(ARIMA模型),它们分别是对时间序列数据的自相关性和滞后效应的建模;非平稳时间序列模型是指时间序列数据在时间平均和方差存在趋势或季节性变化的模型,其中最为重要的是趋势模型、季节模型和趋势季节模型,它们是对时间序列数据在趋势和季节上的变化规律进行建模;时间序列的预测方法包括了朴素预测、移动平均法、指数平滑法、回归分析法、时间序列模型法、神经网络法、支持向量机法等。
这些方法可以帮助我们对时间序列数据的未来走势进行预测。
三、时间序列数据的平稳性检验和建模时间序列数据的平稳性是对时间序列数据的基本特征之一。
平稳时间序列的平均值和方差在时间上是保持恒定的,而非平稳时间序列的平均值和方差在时间上是存在趋势或季节性变化的。
平稳性检验主要包括了图示法、单位根检验、差分平稳性检验、协整性检验和平滑法。
平稳时间序列的建模方法包括了白噪声模型、自回归模型、移动平均模型、自回归移动平均模型、自回归积分移动平均模型、趋势模型、季节模型、趋势季节模型和混合模型。
这些方法可以帮助我们对时间序列数据的平稳性进行检验和建模四、时间序列数据的相关性和协整性分析时间序列数据的相关性是对时间序列数据之间的关联程度进行分析。
时间序列知识点总结

时间序列知识点总结时间序列的特征在进行时间序列分析之前,需要先了解时间序列数据的特征。
时间序列数据通常包括趋势、季节性、周期性和随机性等几个方面的特征。
趋势是时间序列数据长期变化的倾向,可以分为上升趋势、下降趋势和水平趋势。
趋势可以通过线性趋势、非线性趋势等形式进行建模。
季节性是时间序列数据在一年内重复出现的短期周期性变化。
例如,零售业的销售额在每年的圣诞节期间通常会有显著增长,这就是季节性的表现。
周期性是时间序列数据在非固定时间段内重复出现的周期性变化。
例如,房地产市场可能会出现10年一个周期的波动。
随机性是无法被趋势、季节性和周期性所解释的时间序列数据的波动。
随机性也被称为噪声,它可以通过模型的残差项来描述。
时间序列的模型时间序列分析的目标是从历史数据中找出模式,并据此预测未来的走势。
在时间序列分析中,最常用的模型有自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)和指数平滑模型等。
ARMA模型是一种描述时间序列数据的随机过程,它包括自回归和移动平均两种成分,可以用来描述时间序列数据的趋势和随机波动。
ARIMA模型是在ARMA模型的基础上引入差分运算,用来处理非平稳的时间序列数据。
ARIMA模型包括自回归阶数p、差分阶数d和移动平均阶数q三个参数,可以较为灵活地适应不同时间序列的特征。
指数平滑模型是一种通过加权移动平均的方式对时间序列数据进行平滑处理,并据此预测未来的走势。
指数平滑模型有简单指数平滑、双指数平滑和三指数平滑等不同形式。
时间序列的预测时间序列分析的一个重要应用就是预测未来的走势。
对于经济金融领域来说,预测未来的通货膨胀率、利率和股票价格等具有重要的实际意义。
时间序列预测的方法主要包括基于统计模型的方法和基于机器学习的方法。
基于统计模型的方法是通过建立ARMA模型、ARIMA模型或指数平滑模型等,然后根据模型对未来的走势进行估计。
这种方法的优点是模型比较简单,容易理解和解释。
时间序列分析重要知识点总结

n
xi
xi1
1269.357 14 58.6 8(9 亿 6)元
n
8
连续时点序列
将逐日调查记录的时点序列视为连续时点序列。
a.逐日调查,逐日登记:简单算术平均
x x1 x2 n
n
xn
xi
i1
n
【例2-1】已知某企业一个月内每天的出勤工人人数, 计算该月平均每天出勤工人人数。
【思路】:将该月每天的工人人数相加,除以该月的 日历天数即可。
表1:国内生产总值等现象的时间序列
年份
国内生产总 人均国内生产 年末总人 自然增长 人均消费 值(亿元) 总值(元) 口(万人) 率(‰) (元)
2000 2001 2002 2003 2004 2005 2006 2007
99214.6 109655.2 120332.7 135822.8 159878.3 183217.4 211923.5 249529.9
xa2 0 6 8 8 .4 6 1 0 0 % 3 1 .5 9 % b 6 5 4 8 9 .4 6
作业:某企业总产值和职工人数资料如下表,
试计算该企业第二季度平均每月全员劳动生
产率。月份
3
4
5
6
月总产值(万元)a 1150 1170 1200 1370
a 月 末i职 n1工ai人数11 (70 千 人1)20 b0 61 .3 5 70 61 .7246.6 67 ( .9 万 元 7) .1
逐 增期 长
— 15490.1 24055.5 23339.1 28706.1 37606.4
量
累 积
0(—) 15490.1 39545.6 62884.7 91590.8 129197.2
大数据分析中的时间序列分析技巧(七)

在当今信息爆炸的时代,大数据分析已经成为了企业决策和发展的重要工具。
而在大数据分析中,时间序列分析技巧是其中的重要一环。
时间序列分析是指按时间顺序排列而成的一组数据,其目的是为了揭示其内在的规律和趋势。
下面将从几个方面探讨大数据分析中的时间序列分析技巧。
首先,时间序列数据的特点需要被充分理解。
时间序列数据具有一定的规律性和周期性,同时还会受到各种外部因素的影响。
因此,对时间序列数据的分析需要考虑到这些特点。
在进行时间序列分析时,首先需要对数据进行平稳性检验,以确保数据的可靠性。
其次,需要对数据进行周期性分析,找出数据的周期规律,以便进行合理的预测和分析。
其次,时间序列数据的预测分析是时间序列分析的重要应用之一。
通过对历史数据的分析和建模,可以预测未来一段时间内的数据变化趋势。
在大数据分析中,时间序列数据的预测分析可以帮助企业更准确地制定业务发展计划和决策,降低风险,提高效率。
此外,时间序列数据的相关性分析也是时间序列分析的重要内容之一。
通过相关性分析,可以发现数据之间的内在关联和因果关系,帮助企业更好地理解数据变化的规律。
在大数据分析中,相关性分析可以帮助企业发现潜在的商机和风险,指导企业合理调整产品结构和市场策略。
此外,时间序列数据的异常检测也是时间序列分析的重要应用之一。
通过对时间序列数据的异常检测,可以及时发现数据中的异常波动和突发事件,帮助企业及时采取措施,降低损失。
在大数据分析中,异常检测可以帮助企业更好地应对市场波动和风险,保障企业的稳健发展。
最后,时间序列分析中的模型选择也是十分重要的。
在进行时间序列分析时,需要根据数据的特点选择合适的模型。
常见的时间序列分析模型包括ARIMA模型、ARCH/GARCH模型等。
在大数据分析中,选择合适的模型可以帮助企业更准确地进行数据分析和预测,提高决策的准确性和精度。
总而言之,时间序列分析技巧在大数据分析中具有重要的应用价值。
通过对时间序列数据的分析,可以帮助企业更好地理解数据的规律和趋势,指导企业更科学地制定业务发展计划和决策。
关于时间序列分析

关于时间序列分析时间序列分析是一种用于分析时间序列数据的统计方法。
时间序列数据是按照时间顺序排列的观测结果,可以是连续的或离散的。
时间序列分析是一种重要的技术,可以用于很多领域,例如经济学、金融学、气象学等。
它可以揭示时间序列数据的变化规律、趋势和季节性,为预测未来发展趋势提供依据。
时间序列分析的目标是研究时间序列数据的内在结构,以便进行预测和解释。
其核心是确定数据中的趋势、周期和随机成分。
趋势表示时间序列的长期变化趋势,周期表示时间序列的短期变化趋势,随机成分表示时间序列的无规律波动。
时间序列分析包括多种方法和技术,其中最常用的有平滑法和回归分析。
平滑法通过移动平均、指数平滑等方法消除数据中的波动,以便更好地观察趋势。
回归分析则通过建立数学模型,以自变量对因变量的影响程度来解释时间序列数据。
平滑法在时间序列分析中有多种实现方式。
移动平均是一种常见的平滑方法,它通过计算一定时间窗口内的平均值来平滑时间序列数据。
指数平滑是另一种常见的平滑方法,它给予近期数据更大的权重,以反映出时间序列的变化趋势。
回归分析是一种常用的时间序列分析方法。
它通过建立数学模型来描述自变量与因变量之间的关系,并用于预测未来值。
回归分析可以分为线性回归和非线性回归两种。
线性回归假设自变量和因变量之间存在线性关系,而非线性回归则放宽了这一假设。
时间序列分析还包括一些其他技术,例如自相关分析和谱分析。
自相关分析用于分析时间序列数据中的自相关性,即随着时间的推移,观测值之间的关联程度。
谱分析则用于分析时间序列数据中的周期性和频率特征。
时间序列分析在实际应用中具有广泛的价值。
在经济学领域,它可以用于预测股票价格、通货膨胀率等变量的未来走势。
在气象学领域,它可以用于预测气温、降雨量等变量的未来变化。
在金融学领域,它可以用于分析股票价格、汇率等金融指标的波动规律。
总之,时间序列分析是一种重要的统计方法,可以用于分析时间序列数据的变化规律和趋势。
大数据分析中的时间序列分析技巧(八)

大数据分析中的时间序列分析技巧在当今信息爆炸的时代,大数据已经成为企业和组织获取洞察和优化决策的重要工具。
在大数据分析中,时间序列分析技巧是至关重要的,它可以帮助人们理解和预测数据的趋势和模式。
本文将介绍一些在大数据分析中常用的时间序列分析技巧,包括趋势分析、季节性分析、周期性分析和异常检测等。
时间序列分析是一种统计方法,用于分析一系列按时间顺序排列的数据。
这些数据可能是股票价格、销售数据、气温等,时间序列分析可以帮助人们发现数据中的模式和规律。
在大数据分析中,时间序列分析可以帮助企业了解市场趋势、预测销售量、优化供应链等。
趋势分析是时间序列分析中的重要组成部分。
它可以帮助人们了解数据的整体变化趋势。
在大数据分析中,趋势分析可以帮助企业了解市场的发展方向,预测未来的发展趋势。
常用的趋势分析方法包括移动平均法、指数平滑法等。
移动平均法通过计算一定时间窗口内数据的平均值来平滑数据,消除短期波动,突出长期趋势。
指数平滑法则是用加权的方式,对历史数据进行平滑处理,更加突出近期数据的影响。
季节性分析是时间序列分析中另一个重要的方面。
季节性分析可以帮助人们了解数据在不同季节或周期内的重复规律。
在大数据分析中,季节性分析可以帮助企业了解销售数据在不同季节或周期内的变化规律,制定针对性的营销策略。
常用的季节性分析方法包括季节性指数法、季节性回归分析法等。
季节性指数法通过计算数据在不同季节的平均值,来衡量季节性变化的强度。
季节性回归分析法则是将季节性因素纳入回归模型中,通过回归分析来预测未来季节性变化。
周期性分析是时间序列分析中另一个重要的方面。
周期性分析可以帮助人们了解数据在不同周期内的重复规律。
在大数据分析中,周期性分析可以帮助企业了解市场的周期性波动,制定相应的策略。
常用的周期性分析方法包括傅里叶分析、周期性指数法等。
傅里叶分析是一种将数据分解成不同频率的周期波动的方法,可以帮助人们了解周期性波动的频率和振幅。
时间序列分析

时间序列分析时间序列分析是一种统计学方法,用于分析时间序列数据的模式、趋势和周期性。
它可以帮助我们了解随着时间推移,数据如何变化,并预测未来的发展趋势。
本文将介绍时间序列分析的基本概念、常用方法和实际应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据点。
它可以是连续的,例如每天的股票价格,也可以是离散的,例如每个月的销售量。
时间序列分析旨在通过观察数据中的模式和趋势,揭示数据背后的规律和关系。
二、时间序列分析的常用方法1. 描述统计法描述统计法用于计算数据的统计指标,如平均值、标准差和相关系数。
这些指标可以帮助我们了解数据的分布情况和相关性。
2. 组件分析法组件分析法将时间序列分解为趋势、季节和随机成分。
趋势表示长期的变化趋势,季节表示重复出现的周期性变化,随机成分表示无法通过趋势和季节解释的随机波动。
通过对组成部分的分析,可以更好地理解时间序列的内在规律。
3. 平稳性检验法平稳性是时间序列分析的基本假设之一。
平稳时间序列的统计特性不随时间变化而改变。
平稳性检验可以通过观察时间序列的趋势、自相关图和单位根检验等方法进行。
4. 预测方法时间序列分析的一个重要应用是预测未来的数值。
常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。
这些方法基于过去的数据,通过建立模型来预测未来的趋势和周期性。
三、时间序列分析的实际应用时间序列分析在各个领域都有广泛的应用。
在金融领域,它可以用于股票价格的预测和风险管理;在经济学领域,它可以用于 GDP 的预测和经济政策制定;在气象学领域,它可以用于天气预报和气候变化研究。
除了上述领域外,时间序列分析还用于交通流量预测、销售预测、生态学研究等。
通过对历史数据的分析,我们可以更好地理解和预测未来的发展趋势,为决策提供依据。
结论时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据中的模式和趋势。
通过对数据的描述统计、组件分析和预测,我们可以揭示数据背后的规律,并用于实际问题的解决。
第二十七章时间序列-第一节:时间序列及其分类与第二节:时间序列的水平分析

第27章时间序列【本章教材结构】【本章内容讲解】第一节、时间序列及其分类【本节考点】1、时间序列的含义及其构成要素2、时间序列的分类【本节内容】【知识点】时间序列的含义及构成要素统计对事物进行动态研究的基本方法是编制时间序列。
我国1991—1994年若干国民经济指标指标年份1991 1992 1993 1994国内生产总值21618 26638 34634 46759年底总人口数115823 117171 118517 119850人均国内生产总值1879 2287 2939 3923城镇人口比重26.37 27.63 28.14 28.621、时间序列含义:时间序列也称动态数列,是将某一统计指标在各个不同时间上的数值按时间先后顺序编制形成的序列。
2、时间序列的构成要素:(1)被研究现象所属时间:(2)反映该现象一定时间条件下数量特征的指标值。
同一时间序列中,各指标值的时间单位一般要求相等,可以是年、季、月、日。
3.时间序列的分类:时间序列按照其构成要素中统计指标值的表现形式,分为绝对数时间序列、相对数时间序列、平均数时间序列。
时间序列的类别表24-1【例题:2014年单选题】“国内生产总值”指标的时间序列属于()A.时点序列B.相对数时间序列C.平均数时间序列D.时期序列【答案】D【解析】通过本题掌握时间序列的分类【例题:2015年单选题】“年底总人口数”指标的时间序列属于()A.时点序列B.平均数时间序列C.相对数时间序列D.时期序列【答案】A【解析】本题可通过“年底”二字选择时点序列。
第二节、时间序列的水平分析【本节知识点】1、平均发展水平2、增长量(1)逐期增长量、累计增长量的含义、计算以及它们之间的关系(2)平均增长量的含义及计算【本节内容】【知识点】平均发展水平一.发展水平的有关概念1.发展水平:发展水平是时间序列中对应于具体时间的指标数值。
2.最初水平、最末水平、中间水平时间序列中第一项的指标值称为最初水平,最末项的指标值称为最末水平,处于二者之间的各期指标值则称为中间水平。
时间分析知识点总结

时间分析知识点总结一、时间序列的概念时间序列是指按照时间顺序排列的一组随机变量观测值,通常用来描述某一现象、变量或者经济指标在不同时间点上的取值。
时间序列数据通常具有以下特点:趋势性、季节性、周期性和随机性。
1. 趋势性:时间序列数据在长期内呈现出的总体变化方向,可以是增长趋势,也可以是下降趋势。
2. 季节性:时间序列数据在短期内呈现出的重复性变动模式,通常是由季节因素导致的,比如节假日、气候等因素。
3. 周期性:时间序列数据在中长期内呈现出的周期性波动,可以是周期性的震荡或者波动。
4. 随机性:时间序列数据中除了上述几种规律性变动之外的不规则波动。
时间序列数据是时间分析的研究对象,对其进行分析可以揭示其内在的规律和趋势,为决策和预测提供依据。
二、时间序列分析方法时间序列分析主要包括描述性分析、平稳性分析、自相关性分析和预测分析等方法。
1. 描述性分析描述性分析是对时间序列数据进行可视化分析,主要包括绘制时间序列图、直方图和散点图等,以便观察其随时间的变化规律和分布特征。
2. 平稳性分析平稳性是时间序列数据分析中非常重要的概念,指的是时间序列数据在不同时间点上的统计特性不发生显著的变化。
常用方法包括观察时间序列图来判断其平稳性,以及进行单位根检验等。
3. 自相关性分析自相关性是指时间序列数据中各个时刻的观测值之间的相关关系。
自相关性分析主要包括自相关图的绘制和计算自相关系数等方法,以判断时间序列数据中是否存在自相关性,以及自相关性的程度。
4. 预测分析预测分析是时间序列分析的核心内容,目的是根据过去的数据来预测未来的变动趋势。
常用的预测方法包括移动平均法、指数平滑法、自回归移动平均模型(ARMA)和季节性自回归整合移动平均模型(SARIMA)等。
三、趋势分析趋势分析是时间序列分析中的重要内容,用来研究时间序列数据中长期趋势的变化。
常用的趋势分析方法包括线性趋势分析、指数平滑法和多项式拟合法等。
1. 线性趋势分析线性趋势分析是通过拟合直线来描述时间序列数据的变化趋势,通常采用最小二乘法来估计趋势线的斜率和截距。
时间序列的知识点

时间序列是指一系列按照时间顺序排列的数据点,这些数据点可以是任何类型的变量,如温度、股票价格、销售量等。
时间序列分析是一种统计方法,用于揭示时间数据中的趋势、季节性和周期性等特征,以及预测未来的趋势和变化。
时间序列分析的步骤可以分为以下几个方面:1.数据收集:首先,需要收集时间序列数据,这些数据可以来自于各种渠道,如传感器、数据库、网站等。
确保数据的完整性和准确性非常重要。
2.数据清洗:在进行时间序列分析之前,需要对数据进行清洗和预处理。
这包括处理缺失值、异常值和噪声等。
同时,还可以进行平滑处理,如移动平均、指数平滑等。
3.数据可视化:通过绘制时间序列图,可以更直观地了解数据的趋势和季节性。
常用的可视化工具包括Matplotlib和Seaborn等。
通过观察图形,可以初步判断是否存在趋势、季节性和周期性等特征。
4.数据分解:时间序列数据通常包含趋势、季节性和随机性三个组成部分。
为了更好地分析这些组成部分,可以使用分解方法,如加法模型和乘法模型。
分解后,可以更准确地对各个部分进行分析和预测。
5.时间序列模型:选择合适的时间序列模型对数据进行建模和预测。
常用的时间序列模型包括ARIMA模型、指数平滑模型和季节性自回归移动平均模型等。
根据数据的特点,选择最适合的模型。
6.模型评估:使用一些评估指标,如均方根误差(RMSE)和平均绝对百分比误差(MAPE),对模型进行评估。
通过评估指标,可以判断模型的拟合程度和预测准确性。
7.模型预测:根据已建立的模型,可以对未来的时间序列数据进行预测。
预测结果可以用于制定决策和规划。
时间序列分析在各个领域都有广泛的应用,如经济学、金融学、气象学、运输规划等。
通过对时间序列数据的分析和预测,可以帮助人们更好地理解数据的变化规律,做出科学的决策。
总结起来,时间序列分析是一种揭示和预测时间数据特征的统计方法。
通过数据收集、清洗、可视化、分解、建模和预测等步骤,可以深入了解时间序列数据的趋势、季节性和周期性等特征,为决策和规划提供科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BXt = Xt−1 X t−d = Bd Xt , ∀d ≥ 1
14
后移算子的运算性质
(1) B0 = 1;
(2) B(CXt ) = CB( Xt ) = CXt−1 , C为任意常数; (3) B( X t ± Yt ) = X t−1 ± Yt −1;
(4) Bn X t = Xt−n;
25
下题中第一张为ACF图, 第二张为PACF图
1
0.5
0 12345678
-0.5
-1
1
0.5
0 12345678
-0.5
-1
该随机过程应建模为(指出滞后阶数) AR(1) 过程.
26
下题中第一张为ACF图, 第二张为PACF图
1
0.5
0 12345678
-0.5
-1
1
0.5
0 12345678
-0.5
11
一. 差 分
差分是通过逐项相减消除前后期数据相关性 的方法,可剔除序列中的趋势性,是非平稳 序列的均值平稳化的预处理.
v一阶差分(相距一期的两个序列值之间的减
法运算称为1 阶差分运算)
∇X t
=
X t
−
X t−1
其中 称为差分算子.
12
高阶差 分
对 1 阶差分后序列再进行一次 1 阶差分运算 称为 2 阶差分:
23
四.
ARM A模 型 的 特 性
一. 差分方程
二. 格林函数和平稳性 三. 逆函数和可逆性 四. 时间序列模型的统计特性
均值函数 方差函数 自协方差函数 自相关函数 偏自相关函数
低 阶 模 型
24
五.
平 三类平稳时间序列的自相关函数 (ACF)和 稳 偏自相关函数 (PACF) 的统计特性: 时 间 模 型 的 建 立
-1
该随机过程应建模为(指出滞后阶数) MA(1) 过程.
27
下题中第一张为ACF图, 第二张为PACF图
1
0.5
0 12345678
-0.5
-1
1
0.5
0 12345678
-0.5
-1
该随机过程应建模为(不需指出滞后阶数) ARMA 过程.
28
六.
平 稳 时 间 预 测
一. 条件期望预测 Xˆ t (l) = E( Xt+l | Xt , Xt−1 , Xt−2 ,L) 二. 条件期望的性质 三. 预测的三种形式
18
季节差 分
季节差分运算(S 为周期)
∇sXt = Xt − Xt−s.
三
. 一. AR(n)模型
平
二. MA(m)模型
稳
时
三. ARMA(n, m)模型
间
序
at : WN (0,σ 2 )
列
E(at ) =
0,
Var(at )
=
σ
2 a
,
E(atas ) =
0,
s
≠
t
模
型
20
一. AR(n)模型
• 对于蕴含着固定周期的序列进行步长为周期 长度的差分运算,通常可以较好地提取周期 信息.
17
四少都具有周期性.
设 Xt 为一含有周期为S 的周期性波动序列,则 Xt, Xt+s, Xt+2s, … 为各相应周期点的数值,它们 则表现出非常相近或呈现某一趋势的特征,如 果把每一观察值同下一周期相应时刻的观察值 相减,这就叫季节差分. 季节差分可以消除周期性的影响.
列
五. 随机游走(Random Walk)序列
简
介
3
一.时间序列的定义
1. 从统计的角度讲: 时间序列是某一个指标在不同 的时间上的不同数值按时间先后顺序排成的序列.
2. 从数学意义上讲: 时间序列是一组随机变量 X(t) (或一个随机过程) 在一系列时刻 t1, t2, t3, …, tN (t1 < t2 < …< tN) 的一 次样本实现. 3. 从系统意义上讲: 时间序列是某一系统在不同 时间(条件)下的响应.
时间序列分析 知识点总结
本课程主要内容
• 时间序列简介 • 时间序列的预处理 • 平稳时间序列模型 • ARMA模型的特性 • 平稳时间序列模型的建立 • 平稳时间序列预测
一
一. 时间序列的定义
. 二. 时间序列的主要分类
时
间
三.宽平稳(Weak Stationary)
序
四. 白噪声序列(White Noise)
∇2 Xt = ∇Xt − ∇Xt−1
依此类推,对 d 1 阶差分后序列再进行一 次1 阶差分运算称为 d 阶差分:
∇d X t = ∇d −1 X t − ∇ d −1 X t −1
13
二. 后移算子(Backshift Operator)
v后移算子类似于一个时间指针,当前序列值 乘以一个后移算子,就相当于把当前序列值 的时间向过去拨了一个时刻.
4
二. 时间序列的主要分类
按序列的统计特性分: 平稳序列, 非平稳序列.
u平稳序列:时间序列的统计特性不随时间 而变化。
u非平稳序列:时间序列的统计特性随时间
而变化。
平稳时间序列
严平稳序列 宽平稳序列
5
三.宽平稳(Weak Stationary)
• 满足如下条件的序列称为宽平稳序列
(1)
E
(
X
2 t
d
∑ = [1 +
(−1)
k
C
k d
B
k
]
X
t
k=1
其中
Cdk
=
d! k !(d −
. k)!
16
三. 差分方式的选择
• 序列蕴含着显著的线性趋势,一阶差分就可 以实现趋势平稳 ;
• 序列蕴含着曲线趋势,通常低阶(二阶或三 阶)差分就可以提取出曲线趋势的影响;
• 一般而言,若序列具有二次趋势,则两次差 分后可变换为平稳序列;
n
n
∑ ∑ (5) (1 − B)n =
(−1)i Cni Bi = 1 +
(
−1)i
C
i n
B
i
,
i=0
i =1
其中
C
i n
=
n! i !(n − i)! .
15
二者的关系
∇Xt = Xt − Xt−1 = X t − BX t = (1 − B) X t
⇒ ∇ =1− B
从而
∇d X t = (1 − B)d X t
用差分方程形式进行预测
作超前一步和两步预测 给出95%的置信区间
29
X at
t
=
ϕ 1
X
t
−1
+ϕ 2
:
WN
(0,σ
2 a
)
Xt−2
+L
+
ϕ n
X
t−n
+
at
E
(
X
sat
)
=
0,
∀s
<
t
AR 模型描述的是系统对过去自身 状态的记忆.
21
二. MA(m)模型
X a
t
t
= at − θ1at : WN (0,σ
−1
2)
a
−
θ
2at
−2
−L
− θmat −m
6
严平稳与宽平稳的关系
• 一般关系 – 严平稳条件比宽平稳条件苛刻,通常情况下, 严平稳(低阶矩存在)能推出宽平稳成立, 而宽平稳序列不能反推严平稳成立;
严平稳
低阶矩存在
宽平稳
7
四. 白噪声序列 (White Noise)
• 白噪声序列{at} 也称为纯随机序列, 它 满足如下两条性质 :
(1) Eat = 0 , ∀t ∈T
MA 模型描述的是系统对过去时刻进 入系统的噪声的记忆
22
三. ARMA(n, m)模型
Xt
=
ϕ 1
X
t
−1
+L + ϕn Xt−n
at
:
WN
(0,
σ
2 a
)
+
at
− θ1at−1
−L −θmat−m
E ( Xs ⋅ at ) =0, ∀s < t
ARMA 模型则是系统对过去自身状态以及各 时刻进入的噪声的记忆。
二. 后移算子
间
X t = X t −1 + at Var( X t ) = ∞
其中: at 为白噪声序列, 那么就称该模型为随机游 走模型, 这样的时间序列称随机游走过程.
序
三. 差分方式的选择
列
的
四. 季节差分
预
注意: 随机游走过程是非平稳时间序列.
处
理
9
10
时间序列的非平稳性及处理方法 1. 均值非平稳:差分 2. 方差和自协方差非平稳:Box-Cox变换
)
<
∞,
∀t
∈T.
方差有界
(2) E( Xt ) = µ , µ 为常数, ∀t ∈ T . 均值为常数
(3) γ (t, s) = γ (t + h, s + h) = γ (s − t, 0), ∀t, s, h 且 s − t ∈ T .
自协方差函数只依赖于时间的间隔 长度, 而与时间的起止点无关
(2)
γ
(t,
s)
=
σ 2 , 0,