岚县第一高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岚县第一高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于()
A. B. C.24 D.48
x-=表示的曲线是()
2.方程1
A.一个圆B.两个半圆C.两个圆D.半圆3.随机变量x1~N(2,1),x2~N(4,1),若P(x1<3)=P(x2≥a),则a=()
A.1 B.2 C.3 D.4
4.()0﹣(1﹣0.5﹣2)÷的值为()
A.﹣B.C.D.
5.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()
A.(,+∞)B.(1,)C.(2.+∞)D.(1,2)
6.已知α∈(0,π),且sinα+cosα=,则tanα=()
A.B.C. D.
7.如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB的张角θ最大时采集效果最好,则采集效果最好时位置C到AB的距离是()
A.2m B.2m C.4 m D.6 m
8.如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为()
A.B.C.D.
9.函数f(x)=x3﹣3x2+5的单调减区间是()
A.(0,2)B.(0,3)C.(0,1) D.(0,5)
10.给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②线性回归直线一定经过样本中心点,;
③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=;
④对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小.
其中正确的说法的个数是()
A.1 B.2 C.3 D.4
11.不等式x(x﹣1)<2的解集是()
A.{x|﹣2<x<1} B.{x|﹣1<x<2} C.{x|x>1或x<﹣2} D.{x|x>2或x<﹣1}
12.若偶函数f(x)在(﹣∞,0)内单调递减,则不等式f(﹣1)<f(lg x)的解集是()
A.(0,10)B.(,10)C.(,+∞)D.(0,)∪(10,+∞)
二、填空题
13.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:
①在区间(﹣2,1)内f(x)是增函数;
②在区间(1,3)内f(x)是减函数;
③在x=2时,f(x)取得极大值;
④在x=3时,f(x)取得极小值.
其中正确的是.
14.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为.
x-=垂直的直线的倾斜角为___________.
15.(文科)与直线10
16.设x,y满足约束条件,则目标函数z=2x﹣3y的最小值是.
17.观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
照此规律,第n个等式为.
18.当a>0,a≠1时,函数f(x)=log a(x﹣1)+1的图象恒过定点A,若点A在直线mx﹣y+n=0上,则4m+2n 的最小值是.
三、解答题
19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.
(1)求∠BDA的大小
(2)求BC的长.
20.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*
(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;
(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)
21.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;
(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
22.(本小题满分12分)已知函数1
()ln (42)()f x m x m x m x
=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.
【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.
23.(本小题满分12分)
已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;
(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足20152
2>++n
n T n 的
最小正整数n .
【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.
24.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图
1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ;111] (2)求该几何体的表面积S .
岚县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,
∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,
由双曲线的性质知,解得x=6.
∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°,
∴△PF 1F 2的面积=.
故选C .
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
2. 【答案】A 【解析】
试题分析:由方程1x -=2
2
1x -=,即22
(1)(1)1x y -++=,所
以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 3. 【答案】C
【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称, 因为P (x 1<3)=P (x 2≥a ), 所以3﹣2=4﹣a , 所以a=3, 故选:C .
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
4. 【答案】D
【解析】解:原式=1﹣(1﹣)÷
=1﹣(1﹣
)÷
=1﹣(1﹣4)×
=1﹣(﹣3)×
=1+
=.
故选:D.
【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.
5.【答案】C
【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交
∴圆心到渐近线的距离小于半径,即<1
∴3a2<b2,
∴c2=a2+b2>4a2,
∴e=>2
故选:C.
【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.
6.【答案】D
【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,
∵0<α<π,∴<α<π,
∴sinα﹣cosα>0,
∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,
联立①②解得:sinα=,cosα=﹣,
则tanα=﹣.
故选:D.
7.【答案】A
【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),
将点(4,﹣4)代入,可得p=2,
所以抛物线方程为x2=﹣4y,
设C(x,y)(y>﹣6),则
由A(﹣4,﹣6),B(4,﹣6),可得k CA=,k CB=,
∴tan∠BCA===,
令t=y+6(t>0),则tan∠BCA==≥
∴t=2时,位置C对隧道底AB的张角最大,
故选:A.
【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan∠BCA,正确运用基本不等式是关键.
8.【答案】D
【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,
则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,
如图当E与C重合时,AK==,
取O为AD′的中点,得到△OAK是正三角形.
故∠K0A=,∴∠K0D'=,
其所对的弧长为=,
故选:D.
9.【答案】A
【解析】解:∵f(x)=x3﹣3x2+5,
∴f′(x)=3x2﹣6x,
令f′(x)<0,解得:0<x<2,
故选:A.
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
10.【答案】B
【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;
②线性回归直线一定经过样本中心点(,),故②正确;
③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;
④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.
故选:B.
【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.
11.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
12.【答案】D
【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),
因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,
由f (﹣1)<f (lg x ),得|lg x|>1,即lg x >1或lg x <﹣1,解得x >10或0<x <.
故选:D . 【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础
题.
二、填空题
13.【答案】 ③ .
【解析】解:由 y=f'(x )的图象可知, x ∈(﹣3,﹣),f'(x )<0,函数为减函数;
所以,①在区间(﹣2,1)内f (x )是增函数;不正确; ②在区间(1,3)内f (x )是减函数;不正确; x=2时,y=f'(x )=0,且在x=2的两侧导数值先正后负, ③在x=2时,f (x )取得极大值; 而,x=3附近,导函数值为正,
所以,④在x=3时,f (x )取得极小值.不正确. 故答案为③.
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
14.【答案】12π 【解析】
考
点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键. 15.【答案】3
π 【解析】
3
π.
考点:直线方程与倾斜角.
16.【答案】﹣6.
【解析】解:由约束条件,得可行域如图,
使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),
∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.
故答案为:﹣6.
17.【答案】n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2.
【解析】解:观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
等号右边是12,32,52,72…第n个应该是(2n﹣1)2
左边的式子的项数与右边的底数一致,
每一行都是从这一个行数的数字开始相加的,
照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2,
故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2
【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.
18.【答案】2.
【解析】解:整理函数解析式得f(x)﹣1=log a(x﹣1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=1.
∴4m
+2n≥2=2=2.
当且仅当4m=2n,即2m=n,
即n=,m=时取等号.
∴4m
+2n的最小值为2.
故答案为:2
三、解答题
19.【答案】
【解析】(本题满分为12分)
解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…
=…
∴∠BDA=60°…
(2)∵AD⊥CD,
∴∠BDC=30°…
在△ABC中,由正弦定理得,…
∴.…
20.【答案】
【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,
,
令f′(x)=0,解得.
x f′x f x
所以函数f(x)在区间上为单调递增,区间上为单调递减.
所以函数f(x)在区间(0,+∞)上的最大值为f()==.
g′(x)=,令g′(x)=0,解得x=n.
(Ⅱ)由(Ⅰ)知g(x)的最小值为g(n)=,
∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,
∴≥,
即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,
当n=1时,成立,
当n≥2时,≥lnn,即≥0,
设h(n)=,n≥2,
则h(n)是减函数,∴继续验证,
当n=2时,3﹣ln2>0,
当n=3时,2﹣ln3>0,
当n=4时,,
当n=5时,﹣ln5<﹣1.6<0,
则n的最大值是4.
【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.
21.【答案】
【解析】解:(Ⅰ)由频率分布直方图,得: 10×(0.005+0.01+0.025+a+0.01)=1, 解得a=0.03.
(Ⅱ)由频率分布直方图得到平均分:
=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).
(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A ,B , 数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C ,D ,E ,F , 若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生, 则所有的基本事件有:
(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ), (B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15个, 如果这两名学生的数学成绩都在[40,50)或都在[90,100)内, 则这两名学生的数学成绩之差的绝对值不大于10,
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,
则事件M 包含的基本事件有:(A ,B ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共7个,
所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.
【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方
图和列举法的合理运用.
22.【答案】
【解析】(1)函数定义域为(0,)+∞
令()0f x '=,得112x =
2分 当4m =时,()0f x '≤单调递减; …………3分
当24m <<时,由()0f x '>,得
所以函数()f x 当4m >时,由()0f x '>,得
5分 ()f x 的单调递增区间为
;当4m >时,函数()f x 2m -2
请
考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 23.【答案】
【解析】(1)当111,12n a a =+=时,解得11a =. (1分)
当2n ≥时,2n n S n a +=,
① 11(1)2n n S n a --+-=,
②
①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.
即12n n a +=故21n n a =-(*
n N ∈).
(5分)
24.【答案】(12)6+. 【解析】
(2)由三视图可知,
该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD
C 均为矩形,
2(11112)6S =⨯++⨯=+ 1
考点:几何体的三视图;几何体的表面积与体积.
【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键.。