备战高考物理法拉第电磁感应定律-经典压轴题附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、法拉第电磁感应定律
1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.
(1)求磁感应强度B的大小;
(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;
(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.
【答案】(1)1 T (2)0.3 m(3)0.3n J
【解析】
【详解】
(1)当h=2L时,bc进入磁场时线框的速度
===
v gh gL
222m/s
此时金属框刚好做匀速运动,则有:
mg=BIL

E BLv
==
I
R R
联立解得
1mgR
=
B
L v
代入数据得:
1T
B=
(2)当h>2L时,bc边第一次进入磁场时金属线框的速度
022v gh gL =>
即有
0mg BI L <
又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有
'222v v gL =+
解得:
6m /s v '=
根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有
2v v gh '==
即有
0.3m h =
(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:
'2211
(2)22
mv mg L mv Q +=+ 代入解得:
00.3J Q =
则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。

2.两间距为L=1m 的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、 磁感应强度大小B=2T 的匀强磁场中.金属棒P 垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m 0未知),将重物由静止释放,经过一 段时间,将另一根完全相同的金属棒Q 垂直放在导轨上,重物立即向下做匀速直线运动,金 属棒Q 恰好处于静止状态.己知两金属棒的质量均为m=lkg 、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度g=l0m/s 2,sin 37°=0.6,cos37°=0.8.求:
(1)金属棒Q 放上后,金属棒户的速度v 的大小;
(2)金属棒Q 放上导轨之前,重物下降的加速度a 的大小(结果保留两位有效数字); (3)若平行直导轨足够长,金属棒Q 放上后,重物每下降h=lm 时,Q 棒产生的焦耳热.
【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】
【详解】
(1)金属棒Q 恰好处于静止时
sin mg BIL θ=
由电路分析可知E BLv = ,2E I R
= , 代入数据得,3m/s v =
(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得
00sin ()m g mg m m a θ-=+
代入数据得,22.7m/s a =
(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知 Q 棒产生的焦耳热为3J 2
Q Q =
=总
3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求
(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.
【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220
B l t m
【解析】 【分析】 【详解】
(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②
当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫
=-
⎪⎝⎭

(2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E R
⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦
联立④⑤⑥⑦式得: R =220
B l t m
4.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(32
22mgs mv Rt
-
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222
sin 18.75cos mgR v B L θ
θ
=
=; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,
cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv
I Rt
-=
5.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2mR gr
x =
,两棒速度稳定之后,再经过一段时
间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:
(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?
(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =2
rh
x ∆= (3) 12Q mgr =
【解析】 【分析】 【详解】
(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:
2
012
mgr mv =
解得a 棒沿圆弧轨道最低点M 时的速度02v gr 从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:
012mv mv =
解得两棒以相同的速度做匀速运动的速度0
122gr
v v =
= (2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:
2222A B L x
I ILBt BL Rit R
∆Φ===
由动量定理:
21A I mv mv --=
解得22gr
v =
由平抛运动规律得,两棒落到地面后的距离()
122h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳
热:220111
(2)22
Q mv m v =
- 解得:1
2
Q mgr =
6.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:
(1)磁感应强度B 的大小;
(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】
(1)导体棒在沿斜面方向的重力分力与安培力平衡:
得sin mg BIL θ=
导体棒切割磁感线产生的电动势为: E BLv =
由闭合电路欧姆定律知:
E
I R r
=
+ 3.66/0.6
x v m s t =
== 联立解得:0.4B T = (2)6()()()
E BsL
q It t t C R r t R r R r R r ∆Φ∆Φ==
====+∆+++ (3)由功能关系得:2
1sin 2
mgx mv Q θ=
+ 5.4R Q
Q R J R r
=
=+ 综上所述本题答案是:(1)0.4T (2)6C (3)5.4J
点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.
7.现代人喜欢到健身房骑车锻炼,某同学根据所学知识设计了一个发电测速装置,如图所示。

自行车后轮置于垂直车身平面向里的匀强磁场中,后轮圆形金属盘在磁场中转动时,可等效成一导体棒绕圆盘中心O 转动。

已知磁感应强度B=0.5T ,圆盘半径l=0.3m ,圆盘电阻不计。

导线通过电刷分别与后轮外边缘和圆心O 相连,导线两端a 、b 间接一阻值R=10Ω的小灯泡。

后轮匀速转动时,用电压表测得a 、b 间电压U=0.6V 。

(1)与a 连接的是电压表的正接线柱还是负接线柱? (2)圆盘匀速转动10分钟,则此过程中产生了多少电能? (3)自行车车轮边缘线速度是多少?
【答案】(1)a 点接电压表的负接线柱;(2)21.6Q J = (3)8/v m s = 【解析】
试题分析:(1)根据右手定则,轮子边缘点是等效电源的负极,则a 点接电压表的负接线柱;
(2)根据焦耳定律2
U Q t R
=
代入数据得Q=21.6J
(3)由212
U Bl ω=
得v=lω=8m/s
考点:右手定则;焦耳定律;法拉第电磁感应定律
【名师点睛】本题关键是明确电压的测量原理,然后结合法拉第电磁感应定律、线速度与角速度的关系、机械能的概念列式求解,不难。

8.如图所示,两根相距d=1m 的足够长的光滑平行金属导轨位于xoy 竖直面内,两金属导轨一端接有阻值为R=2Ω的电阻.在y >0的一侧存在垂直纸面的磁场,磁场大小沿x 轴均匀分布,沿y 轴大小按规律0.5B y =分布。

一质量为m=0.05kg 、阻值r=1Ω的金属直杆与金属导轨垂直,在导轨上滑动时接触良好,当t=0时位于y=0处,速度v 0=4m/s ,方向沿y 轴的正方向。

在运动过程中,有一大小可调节、方向为竖直向上的外力F 作用于金属杆以保持金属杆的加速度恒定,大小为a ,方向沿y 轴的负方向.设导轨电阻忽略不计,空气阻力不计,重力加速度为g 。

求:
(1)当金属直杆的速度大小v=2m/s 时金属直杆两端的电压; (2)当时间分别为t=3s 和t=5s 时外力F 的大小; (3)R 的最大电功率。

【答案】(1)233U V =
(2) 1 1.1N F = ; 20.6N F = (3) 8
9
m P W = 【解析】(1)当金属杆的速度大小为v =2m/s
此时的位移22
3m 2v v y a
-=
=- 此时的磁场0.53T B =
此时的感应电动势0.5312V=3V E Bdv ==⋅ 金属直杆两端的电压2
3V 3
R U E R r =
=+ (2)金属直杆在磁场中运动的时间满足0
24s v t a
<
⋅= 当t =3s 时,金属直杆向上运动,此时速度02m/s v v at =-=-
位移22
3m 2v v y a
-=
=-
所以0.53T B =
由牛顿第二定律得1
Bdv
F mg B d ma R r
--=+ 解得1 1.1N F =
当5s 4s t =>时,金属直杆已向上离开磁场区域 由2F mg ma -= 解得: 20.6N F =
(3)设金属直杆的速度为v 时,回路中的电流为I ,R 的电功率为P
Bdv I R r =+ , 2200.52v v B a -= , ()
()
2222222
1672v v B d v
P I R R R r -===+ 当28v =即22v =m/s 时P 最大
89
m P =
W 【点睛】本题是电磁感应与力学的综合题,解决本题的关键抓住金属杆做匀变速运动,运用运动学公式,结合切割产生的感应电动势公式、牛顿第二定律进行求解.
9.如图所示,光滑、足够长的平行金属导轨MN 、PQ 的间距为l ,所在平面与水平面成θ角,处于磁感应强度为B 、方向垂直于导轨平面向上的匀强磁场中.两导轨的一端接有阻值为R 的电阻.质量为m 、电阻为r 的金属棒ab 垂直放置于导轨上,且m 由一根轻绳通过一个定滑轮与质量为M 的静止物块相连,物块被释放后,拉动金属棒ab 加速运动H 距离后,金属棒以速度v 匀速运动.求:(导轨电阻不计)
(1)金属棒αb 以速度v 匀速运动时两端的电势差U ab ; (2)物块运动H 距离过程中电阻R 产生的焦耳热Q R . 【答案】1)ab BlvR U R r =+(2)()()21sin 2R Q M m gH M m v R r θ⎡⎤
=--+⎢⎥+⎣⎦
【解析】
(1)金属棒ab 以速度v 匀速运动时,产生的感应电动势大小为:E =Blv 由闭合电路欧姆定律得: E
I R r
=
+ 金属棒αb 两端的电压大小为:U =IR 解得: BlvR
U R r
=
+
由右手定则可得金属棒ab 中的电流方向由a 到b , 可知U ab 为负值,故: ab BlvR
U R r
=
+ (2)物块运动H 距离过程中,设整个回路产生的焦耳热为Q , 由能量守恒定律得:2211
sin 22
MgH mgH mv Mv Q θ=+++ 由焦耳定律得:2
()Q I R r t =+
2R Q I Rt =
解得:21[(sin )()]2R
Q M m gH M m v R r
θ=--
++ 【点睛】本题是一道电磁感应与电路、运动学相结合的综合题,分析清楚棒的运动过程、找出电流的房你想、应用能量守恒和功能关系等相关知识,是正确解题的关键.
10.如图所示,两根足够长的直金属MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.
(1)在加速下滑过程中,当ab 杆的速度大小为v 时,ab 杆中的电流及其加速度的大小; (2)求在下滑过程中ab 杆可达到的最大速度.
(3)从开始下滑到达到最大速度的过程中,棒沿导轨下滑了距离s ,求整个装置生热多少. 【答案】
(1)Blv I R =,22sin B l v
mg R a m
θ-
=(2)22sin m mgR v B l θ=(3)322244sin 2m g R Q mgh B l
θ=- 【解析】
(1)在加速下滑过程中,当 ab 杆的速度大小为 v 时,感应电动势E =BLv
此时 ab 杆中的电流Blv
I R
=
金属杆受到的安培力:22B L v
F BIL R
==
由牛顿第二定律得:
22
sin
B l v mg
R
a
m
θ-
=
(2)金属杆匀速下滑时速度达到最大,由平衡条件得:
22
sin m
B L v
mg
R
θ=
则速度的最大值
22
sin
m
mgR
v
B l
θ
=
(3)若达到最大速度时,导体棒下落高度为h,由能量守恒定律得:
2
1
sin
2m
mgs mv Q
θ
⋅=+
则焦耳热
3222
44
sin
2
m g R
Q mgh
B l
θ
=-
【点睛】当杆匀速运动时杆的速度最大,分析清楚杆的运动过程是解题的前提;分析清楚杆的运动过程后,应用E=BLv、欧姆定律、安培力公式、牛顿第二定律、平衡条件与能量守恒定律即可解题;求解热量时从能量角度分析可以简化解题过程.
11.如图所示,在水平面上固定一光滑金属导轨
HGDEF,EF∥GH,DE=EF=DG=GH=EG=L.一质量为m足够长导体棒AC垂直EF方向放置于在金属导轨上,导轨与导体棒单位长度的电阻均为r.整个装置处在方向竖直向下、磁感应强度为B的匀强磁场中.现对导体棒AC施加一水平向右的外力,使导体棒从D位置开始以速度v0沿EF方向做匀速直线运动,导体棒在滑动过程中始终保持与导轨良好接触.
(1)求导体棒运动到FH位置,即将离开导轨时,FH两端的电势差.
(2)关于导体棒运动过程中回路产生感应电流,小明和小华两位同学进行了讨论.小明认为导体棒在整个运动过程中是匀速的,所以回路中电流的值是恒定不变的;小华则认为前一过程导体棒有效切割长度在增大,所以电流是增大的,后一过程导体棒有效切割长度不变,电流才是恒定不变的.你认为这两位同学的观点正确吗?请通过推算证明你的观点.(3)求导体棒从D位置运动到EG位置的过程中,导体棒上产生的焦耳热.
【答案】(1)
4
5
FH
U BLv
= (2)两个同学的观点都不正确 (3)
22
3B L v
Q'=
【解析】
【分析】
【详解】
(1)导体棒运动到FH位置,即将离开导轨时,由于切割磁感线产生的电动势为E=BLv0在电路中切割磁感线的那部分导体相当于电源,则此时可将电路等效为:
可以将切割磁感线的FH 棒看成电动势为E ,内阻为r 的电源,
根据题意知,外电路电阻为R =4r ,
再根据闭合电路欧姆定律得FH 间的电势差:004445FH R r U E BLv BLv R r r r =
==++ (2)两个同学的观点都不正确
取AC 棒在D 到EG 运动过程中的某一位置,MN 间距离设为x ,
则由题意有:DM =NM =DN =x
则此时切割磁感线的有效长度为x ,则回路中产生的感应电动势E =Bxv 0
回路的总电阻为R =3rx
据欧姆定律知电路中电流为0033Bxv Bv E I R rx r
===,即此过程中电流是恒定的; 当导体棒由EG 棒至FH 的过程中,由于切割磁感线的导体长度一定,故产生的感应电动势恒定,但电路中电阻是随运动而增加的据欧姆定律可得,电路中的电流是减小的.
(3)设任意时刻沿运动方向的位移为s ,如图所示:
则3s x = 安培力与位移的关系为2200233A B v x B v s F BIx r ===
AC 棒在DEG 上滑动时产生的电热,数值上等于克服安培力做的功,
又因为A F s ∝,所以2203032212
A B L v F Q L +=⨯=
因为导体棒从D 至EG 过程中,导体棒的电阻始终是回路中电阻的13
, 所以导体棒中产生的焦耳热2203336
B L v Q Q '==
12.如图所示,在水平地面MN 上方空间存在一垂直纸面向里、磁感应强度B =1T 的有界匀强磁场区域,上边界EF 距离地面的高度为H .正方形金属线框abcd 的质量m =0.02kg 、边长L = 0.1m (L <H ),总电阻R = 0.2Ω,开始时线框在磁场上方,ab 边距离EF 高度为h ,然后由静止开始自由下落,abcd 始终在竖直平面内且ab 保持水平.求线框从开始运动到ab 边刚要落地的过程中(g 取10m/s 2)
(1)若线框从h =0.45m 处开始下落,求线框ab 边刚进入磁场时的加速度;
(2)若要使线框匀速进入磁场,求h 的大小;
(3)求在(2)的情况下,线框产生的焦耳热Q 和通过线框截面的电量q .
【答案】(1)22.5m/s a = (2)0.8m h = (3) 0.02J Q =,0.05C q =
【解析】
【分析】
【详解】
(1)当线圈ab 边进入磁场时,由自由落体规律:123m/s v gh ==
棒切割磁感线产生动生电动势:1E BLv =
通电导体棒受安培力0.15N BLE F BIL R
==
= 由牛顿第二定律:mg F ma -= 解得:22.5m/s a =
(2)匀速进磁场,由平衡知识:mg F = 由2v gh =和BLv I R
=,代入可解得:0.8m h = (3)线圈cd 边进入磁场前线圈做匀速运动,由能量守恒可知重力势能变成焦耳热 0.02J Q mgL ==
通过线框的电量2
0.05C BL q It R R
φ∆==== 【点睛】
当线框能匀速进入磁场,则安培力与重力相等;而当线框加速进入磁场时,速度在增加,安培力也在变大,导致加速度减小,可能进入磁场时已匀速,也有可能仍在加速,这是由进入磁场的距离决定的.
13.如图所示,一个单匝矩形线圈水平放在桌面上,在线圈中心上方有一竖直的条形磁体,此时线圈内的磁通量为0.05Wb.在0.5s 的时间内,将该条形磁体从图示位置竖放到线圈内的桌面上,此时线圈内的磁通量为0.10Wb ,试求此过程:
(1)线圈内磁通量的变化量;
(2)线圈中产生的感应电动势大小。

【答案】(1)0.05Wb (2)0.1V
【解析】
【详解】
(1)磁通量的变化为:
△Φ=Φ′-Φ=0.10-0.05=0.05Wb ;
(2)由法拉第电磁感应定律可得感应电动势为:
0.0510.1V 0.5
E n t ∆Φ==⨯=V
14.固定在匀强磁场中的正方形导线框abcd ,边长为l ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜线.磁场的磁感应强度为B ,方向垂直纸面向里.现有一段与ab 段的材料、粗细、长度均相同的电阻丝PQ 架在导线框上,如图所示.若PQ 以恒定的速度v 从ad 滑向bc ,当其滑过13
l 的距离时,通过aP 段电阻的电流是多大?方向如何?
【答案】
611Blv R
方向由P 到a 【解析】
【分析】 【详解】 PQ 右移切割磁感线,产生感应电动势,相当于电源,外电路由Pa 与Pb 并联而成,PQ 滑过3
l 时的等效电路如图所示,
PQ 切割磁感线产生的感应电动势大小为E=Blv ,方向由Q 指向P .
外电路总电阻为
12233129
33
R R R R R R ⋅==+外 电路总电流为:
92119
E Blv Blv I R R R R R =
==++外 aP 段电流大小为 26311ap Blv I I R =
=, 方向由P 到a .
答:通过aP 段电阻的电流是为611Blv R
方向由P 到a
15.如图所示,导线全部为裸导线,半径为r 的圆内有垂直于平面的匀强磁场,磁感应强
度为B ,一根长度大于2r 的导线MN 以速度v 在圆环上自左向右匀速滑动,电路的固定电阻为R ,其余电阻忽略不计.试求MN 从圆环的左端到右端的过程中电阻R 上的电流强度的平均值及通过的电荷量.
【答案】2Brv R π2
B r R
π 【解析】
试题分析:由于ΔΦ=B·ΔS =B·πr 2,完成这一变化所用的时间2t=
r v ∆ 故2
Brv E t π∆Φ==∆ 所以电阻R 上的电流强度平均值为2E Brv I R R
π== 通过R 的电荷量为2
·B r q I t R
π∆== 考点:法拉第电磁感应定律;电量。

相关文档
最新文档