毕业设计基于Multisim11的模拟乘法器应用设计与仿真设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
Multisim是美国国家仪器(NI)推出的以Windows为基础的仿真工具,适用于初级的模拟/数字电路板的设计工作,包含电路原理图图形与电路硬件描述语言的输入方式,具有丰富的仿真分析能力。
模拟乘法器是一种完成两个模拟信号(电压或电流)相乘作用的电子器件。
它具有两个输入端对和一个输出端对,是三端对有源器件。
主要容为基于Multisim的模拟乘法器应用设计与仿真。
阐述了双边带调幅与普通调幅、同步检波、混频、乘积型鉴相电路的原理,并在电路设计与仿真平台Multisim11仿真环境中创建集成模拟乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合LabVIEW虚拟仪器实现对语音信号的普通调幅与解调。
关键词:Multisim;模拟乘法器;MC1496
Abstract
Multisim introducedby UnitedStatesNationalInstruments(NI)Limited company is a Windows-based simulation tool, suitable for design elementary analog / digital circuit, containsa circuit theory of diagram and the circuit hardware description language input methods, with extensive simulation analysis.
Analog multiplier is a complete two analog signals (voltage or current) multiplied by the role of electronic devices. It has two inputs and one output on the right, yes three-terminal on the active device.
The main content is that analog multiplier multisim-based application design and simulation. Describe some circuit’s theory, such as Double Side Band amplitude modulationand common amplitude modulation、synchronous detection、mixing、product type phase. Create the integrated circuit analog multiplier MC1496 module in simulation platform Multisim11 simulation environment, make use of the analog multiplier MC1496 module complete circuit design and simulation, combined with labVIEWfictitious instrument to complete the speech signal amplitude modulation and demodulation.
Keywords: Multisim;Analog Multiplier;MC1496
目录
第1章概述1
1.1 Multisim简介1
1.2 Multisim发展1
第2章总体设计思想3
2.1 模拟乘法器MC1496的工作原理3
2.2 幅度调制6
2.3 同步检波8
2.4 混频9
2.5 乘积型鉴相11
2.6 语音信号调制解调12
2.7本章小结13
第3章电路调试与仿真13
3.1 模拟乘法器MC1496的创建13
3.2 调幅设计17
3.3 同步检波设计19
3.4 混频设计22
3.5 乘积型鉴相设计24
3.6 语音信号调制27
3.7本章小结29
结论30
参考文献31致33
第1章概述
1.1 Multisim简介
Multisim是加拿大图像交互技术公司(Interactive Image Technoligics简称IIT公司)推出的以Windows为基础的仿真工具,适用于初级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力[1]。
工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。
Multisim提炼了SPICE仿真的复杂容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。
通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程[2]。
NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim,可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。
借助专业的高级SPICE分析和虚拟仪器,能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。
与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量[3]。
1.2 Multisim发展
Multisim2001是一个用于电路设计和仿真的EDA工具软件,由于其强大的功能,形象生动的仿真效果,友好的界面,丰富的元件库和仪表库,在我国各级各类学校得到广泛的推广应用,尤其是电类专业可以将其作为电子电路的教学示教、仿真实验、电子电路的设计等[4]。
Multisim7是2003年推出的新版本。
它将以前推出的EWB5.0和Multisim2001版本功能大大提高,比如EWB5.0版本,在做电路仿真实验调用虚拟仪器时,一个品种每次只能调用一台,这是一个很大的缺陷。
又如Multisim2001版本,它的与实际元件相对应的现实性仿真元件模型只有6种,而Multisim7版本增加到10种;Multisim2001版本的虚拟仪器只有11种,而Multisim7版本增加到17种;特别像示波器这种最常用的电子仪器,Multisim2001版本只能提供双踪示波器,而Multisim7版本却能提供4踪示波器,这给诸如试做数字电路仿真实验等需要同时观察多路波形提供了极大的方便。
又比如Multisim2001版本只能提供“亮”与“灭”两种状态黑白指示灯,而Multisim7版本却能提供蓝、绿、红、黄、白5种颜色的指示灯,使用起来更加方便和直观。
总之,Multisim7版本电子仿真软件是比较先进、功能最强大的仿真软件,是仿真软件的佼佼者。
Multisim8在保留了EWB以往版本形象直观等诸多优点的基础之上,大大增强了软件的仿真测试和分析功能,同时还大大扩充了元件库中仿真元件的数量,特别是增加了若干个与实际元件相对应的建模精确的真实仿真元件模型,使得仿真设计的结果更精确、更可靠。
Multisim9提供了全面集成化的设计环境,完成从原理图设计输入、电路仿真分析到电路功能测试等工作。
当改变电路连接或改变元件参数,对电路进行仿真时,可以清楚地观察到各种变化对电路性能的影响[5]。
Multisim10是一个优秀的电子技术训练工具,是能够替代电子实验室中的多种传统仪器的虚拟电子实验室,具有灵活、成本低、高效率等特点[6]。
2010年1月,NI推出分别针对动手学习以与专业电路设计的教育版和专业版电路仿真软件Multisim11。
这一简单易用的Multisim软件以图形化的方式消除了传统电路仿真的复杂性,帮助教育工作者、学生和工程师使用先进电路分析技术。
Multisim11教育版专注于教学,有电路教程和课件。
这一系统帮助教育工作者吸引学生,用互动、动手操作的方式研究电路行为,深化电路理论。
由于Multisim 的交互式组件、模拟驱动仪器、实际的模拟和数字测量的整合,使Multisim在学术界、专科技术院校和大学获得了广泛应用。
Multisim11专业版帮助工程师优化电路设计,减少错误和原型重复。
Multisim可以与新的NI Ultiboard11软件结合,为工程师提供高性价比、端对端原型平台。
Multisim也可以与NI LabVIEW测量软件结合,帮助工程师明确自定义分析,改进设计验证。
第2章总体设计思想
2.1 模拟乘法器MC1496的工作原理
模拟乘法器是对两个模拟信号(电压或电流)实现相乘功能的有源非线性器件,主要功能是实现两个互不相关信号的相乘,即输出信号与两输入信号相乘积成正比。
它有两个输入端口,即X 和Y 输入端口。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器
实现上述功能比采用分离器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无级通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等[7]。
根据双差分对模拟相乘器基本原理制成的单片集成模拟相乘器MC1496是四象限的乘法器[8]。
其部电路如图2-1所示,其中7V 、1R 、8V 、2R 、9V 、3R 和5R 等组成多路电流源电路,7V 、5R 、1R 为电流源的基准电路,8V 、9V 分别供给5V 、6V 管恒值电流2/0I ,5R 为外接电阻,可用以调节2/0I 的大小。
由5V 、6V 两管的发射极引出接线端2和3,外接电阻Y R ,利用Y R 的负反馈作用,以扩大输入电压2U 的动态围。
C R 为外接负载电阻。
根据差分电路的基本工作原理,可以得到
T
c c c U u th i i i 21521=- (2-1) T c c c U u th
i i i 21634=- (2-2) T
c c U u th I i i 22065=- (2-3) 式中1c i 、2c i 、3c i 、4c i 、5c i 、6c i 分别是三极管1V 、2V 、3V 、4V 、5V 、6V 的集电集电流。
T E 为温度的电压当量,在常温T=300K 时,26mV U T ≈。
由图2-1可知,相乘器的输出差值电流
)()()()(432142312413c c c c c c c c i i i i i i i i i i i ---=--+=-= (2-4)
将(2-1)、(2-2)、(2-3)代入(2-4),可得
T
c T T c c U u th i U u th I U u th i i i 222)(2610165=-= (2-5) 由于5V 、6V 两管发射极之间跨接负反馈电阻Y R ,当Y R 远大于5V 、6V 管的发
射结电阻时
Y
E E c c R u i i i i 265652=
-≈- (2-6) 将式(2-6)代入(2-5)可得 T
Y U u th R u i 2212= (2-7) 可见,输出电流中包含两个输入信号的乘积。
MC1496的管脚排列如图2-2所示,其符号如图2-3所示。
5R Y
图2-1 MC1496的部结构
18
9
10111213147
65432
图2-2 MC1496的管脚排列
图2-3 MC1496符号
2.2 幅度调制
集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
目前无线通信、广播电视等方面应用较多[9]。
在幅度调制过程中,根据所取出已调信号的频谱分量不同,分为普通调幅(AM )、抑制载波的双边带调幅(DSB )等。
它们的主要区别如表2-1所示。
表2-1 普通调幅与双边带调幅的区别
普通调幅 抑制载波双边带调幅 电压表达式 00(1cos )cos a V m t t ω+Ω 00cos cos a m V t t ωΩ
波形图
信号带宽 2()2πΩ 2()2πΩ
如果把已调调幅波加到负载电阻R 上,则载波和边频都将给电阻传送功率,它们的功率分别表示为:
载波功率:
R
V P T 20021=(2-8) 每个边频功率(上边频或下边频):
T a a SB SB P m R V m P P 022021214
1)(21===(2-9) 上、下边频总功率:
T a SSB DSB P m P P 022
12==(2-10) a m 称为调幅指数即调幅度,是调幅波的主要参数之一,它表示载波电压振幅受调制信号控制后改变的程度,一般10≤<a m 。
普通调幅电路的原理框图如图2-4(a )所示,双边带调幅电路的原理框图如图2-4(b )所示
带
通
v v )(t v AM 0
ω
图2-4(a )普通调幅波实现框图
图2-4(b )双边带调幅波实现框图
2.3 同步检波
振幅调制信号的解调过程称为检波。
常用方法有包络检波和同步检波两种。
而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,所以无法用包络检波进行解调,必须采用同步检波方法[10]。
同步检波又分为叠加型同步检波和乘积型同步检波。
利用模拟乘法器的相乘原理,实现同步检波是很方便的,其系统框图如下: 乘法器
低通滤波器)(t u o )
(t u c )
(t u s 输出
图2-5同步检波系统框图
其工作原理如下:在乘法器的一个输入端输入振幅调制信号如抑制波的双边带信号t u t u c sm s Ω=cos cos )(ω,另一输入端输入同步信号(即载波信号)t u t u c cm c ωcos )(=,经乘法器相乘,由此可得输出信号)(t u o 为
t u u K t u K t u u K t u t u K t u c cm sm E c sm E cm sm E c s E o )2(41)2cos(2
1cos 21)()()(Ω--Ω++Ω==ωω (2-11)
上式中,第一项是所需要的低频调制信号分量,后两项为高频分量,可用低通滤波器滤掉,从而实现双边带信号的解调。
若输入信号)(t u s 为单边带振幅调制信号,即t u t u c sm s )cos(21)(Ω+=
ω,则乘法器的输出)(t u o 为
t u u K u K t t u u K t u c cm sm E sm E c c cm sm E o )2(4
1cos 41cos )cos(21)(Ω++Ω=Ω+=ωωω (2-12) 上式中,第一项是所需要的低频调制信号分量,第二项为高频分量,也可以被低通滤波器滤掉。
如果输入信号)(t u s 为有载波振幅调制信号,同步信号为载波信号)(t u c ,利用乘法器的相乘原理,同样也能实现解调。
设)(cos )cos 1()(t t m U t u c sm s ωΩ+= ,t U t u c cm c ωcos )(=,则输出电压)(t u o 为
t u u K t u u K t u K t u u K u u K t u t u K t u c cm sm E c cm sm E c sm E cm sm E cm sm E c s E o )2(4
1)2(412cos 2
1cos 2121)()()(Ω-+Ω+++Ω+==ωωω(2-13)
上式中,第一项为直流分量,第二项是所需要的低频调制信号分量,后面三项为高频分量,利用隔直电容与低通滤波器可滤掉直流分量与高频分量,从而实现了有载波振幅调制信号的解调。
2.4 混频
混频电路的作用是在本地振荡电压t V v L Lm L ωcos =, L L f πω2=作用下将载频为c f (高频)的已调信号s V 不失真地变换为载频为f (中频)的己调信号0V ,频
率关系为: L S I f f f +=
(2-14)
或 L S I f f f -=)(L S f f > (2-15) S L I f f f -=)(S L f f > (2-16) 其中,L S I f f f +=为上混频,L S I f f f -= 或S L I f f f -=为下混频。
(调幅广播接收机一般采用下混频,KHz f I 465=)。
由于乘法器可以产生只包含两个输入信号之和频与差频分量的输出信号,所以用模拟乘法器和带通滤波器可以方便地实现混频功能。
其原理如图2-6所示:
带通滤波器
'
0V V 0
V 图2-6 混频器的原理框图
由图2-6可知:
若 t V v s sm s ωcos = (2-17)
t V v L Lm L ωcos = (2-18)
t V KV t
V KV t V t KV V KV v s L Lm sm s L Lm sm L Lm s sm L s o )(5.0)(5.0cos cos ωωωωωω-⋅++⋅=⋅=⋅='(2-19)
当乘法器为非理想线性相乘状态时(即'o v 中含有s f 、f 分量与其它非线性杂
散分量。
)'o v 需经带通滤波器以获得所需混频信号。
若采用下边频,则带通滤波器
的中心频率为S L f f -。
混频器存在着它特有的(非线性)干扰现象——组合频率干扰。
它是由实现混频所用各种器件特性的非线性所引起的。
组合频率干扰之一是当本振信号v 与信号电压s v 作用于混频器,如果满足条件:F f qf pf I S L ±=±±时将会产生哨声,这种干扰称为干扰哨声。
式中:I f ——中频频率
F ——音频频率
p 、q ——任意正整数
另一种干扰是假如混频器输入端作用着一种干扰信号,它的频率是M f ,当满足条件I M L f qf pf =±±时,混频器对于扰信号M f 将直通,通常称这种干扰为寄生通道干扰。
2.5 乘积型鉴相
调相信号的解调叫做相位检波,简称鉴相。
它是将调相信号的相位
)]([t f m t p c +ω与载波的相位t c ω相减,取出它们的相位差)(t f m p ,从而实现相位检波,即完成相位——电压的变换作用[11]。
乘积型鉴相器原理图如图2-7所示
低通滤波器
0u 'i u u
图2-7 乘积型鉴相器
输入调相信号)cos(Ω+=u k t U u p c im i ω;另一路信号为i u 的同频正交载波
t U u c im i ωcos '='。
则鉴相器的输出为
)]2
2cos()2[cos(2)2cos()cos(2πωππωω+++-'=++'='ΩΩΩu k t u k U U K t u k t U U K u Ku p c p im im c p c im im i i (2-20)
式中K 为乘法器的成绩因子。
该信号经过低通滤波器后滤除高频信号,则输出电压为
)sin(2
)2cos()2cos(20ΩΩ'=++-'=u k U U K t u k U U K u p im im c p im im πωπ (2-21) 由此可见,乘积型鉴相器具有正弦形鉴相特性。
当满足6)sin(π<
Ωu k p 时,上式可近似为
ΩΩΩ='≈'=ku u k U U K u k U U K u p im im p im im 2
)sin(20 (2-22) 由此可见,鉴相器输出信号与输入信号的相位偏移成正比,可实现线性鉴相
2.6 语音信号调制解调
由于电路简单,性能好,所以二极管峰值包络检波获得广泛应用。
由于输入信号的)(on V V D sm >>,使二极管工作在近似理想的开关状态。
一开始电容C 两端电压为零,当0>sm v 时,D 导通,对电容C 充电,由于二极管正向导通电阻D R 小,(可以很快地被充到接近输入信号峰值。
电容上电压建立起来以后,通过信号源作用于D 两端,形成反向电压。
这时电容上电压(即输出平均电压)全部反作用于二极管上的效应称为平均电压负反馈效应。
这是二极管峰值检波的重要特点,至于二极管导通与否,由二极管两端瞬时电压D v 大小决定,即输入信号电压s v 与电容两端电压c v 共同决定的,c s D v v v -=。
若D v >0,D 导通,向C 充电,充电时间常数为C R D ;若0<D v ,充电停止,这时c v 通过负载L R 放电,放电时间为C R L 。
因为D L R R >>。
则充电速度比放电速度快,即D 导通时,向C 充上电荷总是比D 截止时由C 放掉的电荷多,说明每放电一次(一周期),那么电容上就
存贮部分电荷,通过若干周期后,C 两端存贮电荷逐渐积累,到某一时刻后,使充电的电荷等于放电的电荷时,充放电达到了动态平衡,这使输出电压0v 在平均值AV V 上下按角频率此作锯齿的等幅波动。
AV V 就是检波器所需输出的检波电压,而AV V 上下锯齿状波动则是因低通滤波器滤波特性非理想而导致。
在其上产生残余的高频电压,输出平均电压AV V 重现了输入已调波包络的形状,所以称为包络检波。
适当选择C R L 时间常数,使)2(c
C C L T T C R ωπ=>>和
D L R R >>条件,可提高输出音频分量,抑制高频分量,即衰弱了残余的高频电压。
2.7 本章小结
本章介绍了调幅、同步检波、混频、乘积型鉴相、包络检波电路的设计思想,为各电路的设计打下了充分的理论基础,对可能出现的失真情况进行了理论上的预测,在设计中可以防患于未然。
第3章 电路调试与仿真
3.1 模拟乘法器MC1496的创建
启动multisim11程序,Ctrl+N 新建电路图文件,按照MC1496部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。
被选择的电路部分由周围的方框标示,表示完成子电路的选择。
为了能对子电路进行外部连接,需要对子电路添加输入/输出。
单击Place / HB/SBConnecter 命令或使用Ctrl+I 快捷操作,屏幕上出现输入/输出符号,将其与子电路的输入/输出信号
端进行连接。
带有输入/输出符号的子电路才能与外电路连接。
单击Place/Replace by Subcircuit命令,屏幕上出现Subcircuit Name对话框,在对话框中输入MC1496,单击OK,完成子电路的创建选择电路复制到用户器件库,同时给出子电路图标。
双击子电路模块,在出现的对话框中单击Edit Subcircuit 命令,屏幕显示子电路的电路图,可直接修改该电路图。
MC1496部结构multisim电路图如图3-1所示。
电路模块如图3-2所示。
图3-1 MC1496电路图
图3-2 MC1496子电路替代模块
MC1496可以采用单电源供电,也可以采用双电源供电。
器件的静态工作点由外接元件确定。
静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集电极与基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。
根据MC1496的特性参数,应用时,静态偏置电压(输入电压为0时)应满足下列关系。
即
108u u =, 41u u =, 126u u = (3-1)
⎪⎭
⎪⎬⎫≥-≥≥-≥≥-≥V u u u V V u u u u V V u u u u V 7.2),(157.2),(),(152),(),(1554141108108126 (3-2)
一般情况下,晶体管的基极电流很小,三对差分放大器的基极电流8I 、10I 、1I 和4I 可以忽略不记,因此器件的静态偏置电流主要由恒流源0I 的值确定。
当器件为单电源工作时,引脚14接地,5脚通过一电阻5R 接正电源(cc U +的典型值为+12V ),由于0I 是5I 的镜像电流,所以改变电阻5R 可以调节0I 的大小,即
Ω
+-=≈5007.0550R V u I I cc (3-3) 当器件为双电源工作时,引脚14接负电源EE U -(一般接-8V ),5脚通过电阻5R 接地,因此,改变5R 也可以调节0I 的大小,即
Ω+--=≈5007.0550R V
u I I EE (3-4)
根据MC1496的性能参数,器件的静态电流小于4mA ,一般取mA I I 150==左右。
器件的总耗散功率可由下式估算
)()(214551465u u I u u I P D -+-= (3-5)
D P 应小于器件的最大允许耗散功率(33mW )。
设输入信号t U U x xm x ωcos =, t U U y ym y ωcos =,则MC1496乘法器的输出0U 与反馈电阻L R 与输入信号x U 、y U 的幅值有关。
3.1.1 不接负反馈电阻(脚2和3短接)
当x U 和y U 皆为小信号(<26mV )时,由于三对差分放大器(1V 、2V 、3V 、4V 与5V 、6V )均工作在线性放大状态,则输出电压0U 可近似表示为 ])cos()[cos(2
1200200t w w t w w U U K U U K U U U R I U y x y x ym xm y x y x T L -++==≈ (3-6) 输出信号0U 中只包含两个输入信号的和频与差额分量。
当y U 为小信号,x U 为大信号(>100mV )时,由于双差分放大器(1V 、2V 和3V 、4V )处于开关工作状态,其电流波形将是对称的方波,乘法器的输出电压0U 可近似表示为
∑∞
=-++=≈1000])cos()[cos(n y x y x n gm y x t w nw t w nw A U K U U K U (n 为奇数)
(3-7) 输出信号0U 中。
包含,5,3,y x y x y x w w w w w w ±±±······,y x w w n ±-)12(等频率分量。
3.1.2 接入负反馈电阻
由于L R 的接入,扩展了y U 的线性动态围,所以器件的工作状态主要由x U 决定,分析表明:
当x U 为小信号(<26mV )时,输出电压0U 可表示为
])cos()[cos(2
10t W W t W W U U K U U U R R U y x y x ym xm E y x T E L -++== (3-8) 式中:T
E L E U R R K = 式(3-8)表明,接入负反馈电阻L R 后,x U 为小信号时,MC1496近似为一理想的乘法器,输出信号0U 中只包含两输入信号的和频与差频。
当x U 为大信号(>100mv )时,输出电压0U 可近似表示为
Y E
L
U R R U 20
(3-9) 上式表明,x U 为大信号时,输出电压0U 与输入信号x U 无关。
3.2 调幅设计
3.2.1 乘法器调幅AM
启动multisim11程序,Ctrl+N 新建电路图文件,Ctrl+B 调用MC1496电路模块,将元器件放到电子工作平台的电路窗口上,搭建调幅电路,在元器件栏中单击要选择的元器件库图标,打开该元器件库。
在屏幕出现的元器件库对话框中选择所需的元器件,本实验常用元器件库有2个:信号源库、基本元件库。
鼠标点击元器件,可选中该元器件。
单击鼠标右键,可进行旋转,调整元器件位置,双击该元器件,在弹出的元器件特性对话框中,可以设置或编辑元器件的各种特性参数。
在界面右侧选择双踪示波器,用鼠标连线将所有器件连接,保存,点击界面上方正中绿色三角按钮,双击示波器可观察波形。
其multisim 电路图如图3-3所示。
图3-3 MC1496普通调幅电路
观察示波器,适当调节12R ,当12R 为100%时,使示波器出现AM 波。
图3-4 MC1496普通调幅波
3.2.2 乘法器调幅DSB
启动multisim11程序,Ctrl+N 新建电路图文件,Ctrl+B 调用MC1496电路模块,将元器件放到电子工作平台的电路窗口上,搭建调幅电路,在元器件栏中单击要选择的元器件库图标,打开该元器件库。
在屏幕出现的元器件库对话框中选择所需的元器件,本实验常用元器件库有2个:信号源库、基本元件库。
鼠标点击元器件,可选中该元器件。
单击鼠标右键,可进行旋转,调整元器件位置,双击该元器件,在弹出的元器件特性对话框中,可以设置或编辑元器件的各种特性参数。
在界面右侧选择双踪示波器,用鼠标连线将所有器件连接,保存,点击界面上方正中绿色三角按钮,双击示波器可观察波形。
其Multisim 电路图如图3-5所示。
R71kΩ
V112 V SC2
MC1496
IO1IO1IO2IO2IO3IO3IO4IO4IO5
IO5IO6IO6IO8
IO8IO10IO10IO12IO12IO14
IO14
R11kΩR21kΩR351Ω
R451Ω
R5
51Ω
R6
1kΩ
R81kΩR923kΩ
R103.9kΩ
R113.9Ω
R12
50kΩ
Key=A 50%C5
0.1µF
C20.1µF
C3
0.1µF
Vc
200mVrms
20kHz 0Deg
V3
100mVrms 1MHz 0Deg
V28 V
XSC1
A
B
Ext Trig
+
+_
_
+
_
C110µF
图3-5 MC1496双边带调幅电路
观察示波器,适当调节12R ,当12R 为50%时,使示波器出现如图3-6所示的波形,即产生DSB 波。
图3-6 MC1496双边带调幅波
3.3 同步检波设计
启动Multisim11程序,Ctrl+N 新建电路图文件,Ctrl+B 调用MC1496电路模
块,将元器件放到电子工作平台的电路窗口上,搭建同步检波电路,在元器件栏中单击要选择的元器件库图标,打开该元器件库。
在屏幕出现的元器件库对话框中选择所需的元器件,本实验常用元器件库有2个:信号源库、基本元件库。
鼠标点击元器件,可选中该元器件。
单击鼠标右键,可进行旋转,调整元器件位置,双击该元器件,在弹出的元器件特性对话框中,可以设置或编辑元器件的各种特性参数。
在界面右侧选择双踪示波器,用鼠标连线将所有器件连接,保存,点击界面上方正中绿色三角按钮,双击示波器可观察波形。
其Multisim 电路图如图3-7所示。
图3-7 MC1496同步检波电路图
图中t U u c cm c ωcos =同步信号,加到相乘器的8、10脚,其值一般比较大,使相乘器工作在双向开关状态。
s u 为高频调幅信号,即单边带或双边带信号,加到相乘器的1、4脚,其幅度可以很小,即使在几毫伏以下,也能获得不失真的解调。
解调信号由12脚单端输出,7C 为输出耦合隔直电容,用以耦合低频、隔除直流。
MC1496采用单电源供电,5脚通过5R 过接到正电源,以便为器件部管子提供合适的静态偏置电流。
设输入信号为双边带信号
tU t U u c sm s Ω=cos cos ω (3-10)
同步信号c u 与载波信号同频同相关信号,当c u 大信号时用付利叶级数展开成
+-+-πωπωπωπω7/7cos 45/5cos 43/3cos 4/cos 4t t t t c c c c (3-11) 则输出信号为
+Ω+Ω+Ω-Ω-Ω+Ω=+-+-Ω==t t AU t t AU t t AU t t AU t t AU t AU t t t t t t AU u Au u c sm c sm c sm c sm c sm sm c c c c c sm s c cos 6cos )5/2(cos 4cos )5/2(cos 4cos )3/2(cos 2cos )3/2(cos 2cos )/2(cos )/2()
7/7cos 45/5cos 43/3cos 4/cos 4(cos cos 0ωπωπωπωπωπππωπωπωπωω(3-12)
由上式可见,只要用低通滤波器滤除高频分量,即可获得低频信号输出。
若输入信号为单边带信号,同理也获得低频信号输出。
波形如图3-8所示。
图3-8 同步检波波形图
3.4 混频设计
启动Multisim11程序,Ctrl+N 新建电路图文件,Ctrl+B 调用MC1496电路模块,将元器件放到电子工作平台的电路窗口上,搭建混频电路,在元器件栏中单击要选择的元器件库图标,打开该元器件库。
在屏幕出现的元器件库对话框中选择所需的元器件,本实验常用元器件库有2个:信号源库、基本元件库。
鼠标点击元器件,可选中该元器件。
单击鼠标右键,可进行旋转,调整元器件位置,双击该元器件,在弹出的元器件特性对话框中,可以设置或编辑元器件的各种特性参数。
在界面右侧选择双踪示波器,用鼠标连线将所有器件连接,保存,点击界面上方正中绿色三角按钮,双击示波器可观察波形。
其Multisim 电路图如图3-9所示。
用模拟乘法器实现混频,就是在x U 端和y U 端分别加上两个不同频率的信号,相差一中频,再经过带通滤波器取出中频信号。
t U t U s s x ωcos )(= ;t U t U y 00cos )(ω= (3-13)
])cos()[cos(2
1
cos cos )(00000t t U KU t
t U KU t U s s s s s c ωωωωωω-++== (3-14) 经带通滤波器后,取差频
t U KU t U s s )cos(2
1
)(000ωω-=
(3-15) i s ωωω=-0为所需要的中频频率。
图3-9 MC1496混频电路
图3-9中,正弦波由10端(X 输入端)注入,高频信号源输出的正弦波由1端(Y 输入端)输入,混频后的中频电压由6端经带通滤波器输出,其中8C ﹑2L ﹑5C ﹑17R 构成一选频滤波回路,调节可变电阻12R 能使1﹑4脚直流电位差为零,可以减小输出信号的波形失真,使电路平衡。
在2﹑3脚之间加接电阻,可扩展输入信号s u 的线性围。
输入正弦波信号30mV ,70MHz ,调幅信号载波振幅为10V ,载波频率为60 MHz ,调制指数为0.6,输出波形杂乱且有毛刺,调节12R 无效。
降低调幅信号的载波振幅值,波形渐渐清晰,直至载波振幅为0.5V。
出现波形如图3-10所示。
图3-10 MC1496混频波形图
3.5 乘积型鉴相设计
启动Multisim11程序,Ctrl+N新建电路图文件,Ctrl+B调用MC1496电路模块,将元器件放到电子工作平台的电路窗口上,搭建乘积型鉴相电路,在元器件栏中单击要选择的元器件库图标,打开该元器件库。
在屏幕出现的元器件库对话框中选择所需的元器件,本实验常用元器件库有2个:信号源库、基本元件库。
鼠标点击元器件,可选中该元器件。
单击鼠标右键,可进行旋转,调整元器件位置,双击该元器件,在弹出的元器件特性对话框中,可以设置或编辑元器件的各种特性参数。
在界面右侧选择双踪示波器,用鼠标连线将所有器件连接,保存,点击界面上方正中绿色三角按钮,双击示波器可观察波形。
其Multisim电路图如。