柳园镇初中2018-2019学年初中七年级上学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柳园镇初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•淮安)2的相反数是()
A. B. - C. 2 D. -2
2.(2分)(2015•玉林)下列运算中,正确的是()
A. 3a+2b=5ab
B. 2a3+3a2=5a5
C. 3a2b﹣3ba2=0
D. 5a2﹣4a2=1
3.(2分)(2015•广州)四个数﹣3.14,0,1,2中为负数的是()
A. ﹣3.14
B. 0
C. 1
D. 2
4.(2分)(2015•连云港)2014年连云港高票当选全国“十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约18000元,其中“18000”用科学记数法表示为()
A. 0.18×105
B. 1.8×103
C. 1.8×104
D. 18×103
5.(2分)(2015•广安)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为()
A. 133×10
B. 1.33×103
C. 133×104
D. 133×105
6.(2分)(2015•眉山)﹣2的倒数是()
A. B. 2 C. D. -2
7.(2分)(2015•河池)﹣3的绝对值是()
A. -3
B.
C.
D. 3
8.(2分)(2015•海南)﹣2015的倒数是()
A. B. C. ﹣2015 D. 2015
9.(2分)(2015•天津)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()
A. 0.227×107
B. 2.27×106
C. 22.7×105
D. 227×104
10.(2分)(2015•梧州)据《梧州日报》报道,梧州黄埔化工药业有限公司位于万秀区松脂产业园,总投资119000000元,数字119000000用科学记数法表示为()
A. 119×106
B. 11.9×107
C. 1.19×108
D. 0.119×109
11.(2分)(2015•漳州)漳州市被国家交通运输部列为国家公路运输枢纽城市,现拥有营运客货车月21000辆,21000用科学记数法表示为()
A. 0.21×104
B. 21×103
C. 2.1×104
D. 2.1×103
12.(2分)(2015•贵港)3的倒数是()
A. 3
B. -3
C.
D.
二、填空题
13.(1分)(2015•岳阳)据统计,2015年岳阳市参加中考的学生约为49000人,用科学记数法可将49000表示为________ .
14.(1分)(2015•巴中)a是不为1的数,我们把称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是=;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则
a2015= ________.
15.(1分)(2015•张家界)由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为________美元.
16.(1分)(2015•湘西州)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为________ .
17.(1分)(2015•湘潭)在今年的湘潭市“党和人民满意的好老师”的评选活动中,截止到5月底,王老师获得网络点赞共计183000个,用科学记数法表示这个数为________ .
18.(1分)(2015•上海)计算:|﹣2|+2=________ .
三、解答题
19.(10分)检验下列各数是不是方程的解.
(1)x=2;
(2)x=﹣1.
20.(12分)已知数轴上有A、B、C三个点,分别表示有理数-12、-5、5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为秒。

(1)用含的代数式表示P到点A和点C的距离:PA=________ ,PC=________。

(2)当点P从点A出发,向点C移动,点Q以每秒3个单位从点C出发,向终点A移动,请求出经过几秒点P与点Q两点相遇?
(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由。

21.(3分)数轴上点对应的数为,点对应的数为,点为数轴上一动点.
(1)AB的距离是________.
(2)①若点到点的距离比到点的距离大1,点对应的数为________.
(3)当点以每秒钟个单位长度从原点向右运动时,点以每秒钟个单位长度的速度从点向左
运动,点以每秒钟个单位长度的速度从点向右运动,问它们同时出发________秒钟时,
(直接写出答案即可).
22.(10分)如图,检测5个排球,其中质量超过标准的克数记为正数,不足的克数记为负数.
(1)从轻重的角度看,几号球最接近标准?
(2)若每个排球标准质量为260克,求这五个排球的总质量为多少克?
23.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足 +(c-7)2=0.
(1)a=________,b=________,c=________.
(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.
(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=________,
AC=________,BC=________.(用含t的代数式表示)
(4)请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.24.(7分)观察下列等式的规律,解答下列问题:
(1)按此规律,第④个等式为________;第个等式为________;(用含的代数式表示,为正整数)(2)按此规律,计算:
25.(15分)粮库天内进出库的粮食吨数如下(“ ”表示进库,“ ”表示出库):,,,,,.
(1)经过这天,库里的粮食是增多了还是减少了?
(2)经过这天,仓库管理员结算时发现库里还存吨粮食,那么天前库里存粮多少吨?
(3)如果进出的装卸费都是每吨元,那么这天要付多少装卸费?
26.(10分)元旦假期将至,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).(1)当x=400时,顾客到哪家超市购物优惠.
(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.
柳园镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)
一、选择题
1.【答案】D
【考点】相反数及有理数的相反数
【解析】【解答】2的相反数是2,
故选:D.
【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.
2.【答案】C
【解析】【解答】解:A、3a和2b不是同类项,不能合并,A错误;
B、2a3+和3a2不是同类项,不能合并,B错误;
C、3a2b﹣3ba2=0,C正确;
D、5a2﹣4a2=a2,D错误,
故选:C.
【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.
3.【答案】A
【考点】正数和负数
【解析】【解答】解:四个数﹣3.14,0,1,2中为负数的是﹣3.14,故选:A.
【分析】根据负数是小于0的数,可得答案.
4.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】将18000用科学记数法表示为1.8×104.
故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
5.【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:1330用科学记数法表示为1.33×103.
故选B.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
6.【答案】C
【考点】倒数
【解析】【解答】解:﹣2的倒数是-,
故选C.
【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
7.【答案】D
【考点】绝对值及有理数的绝对值
【解析】【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,
∴|﹣3|=3,
故选D.
【分析】根据绝对值的定义直接解答即可.
8.【答案】A
【考点】有理数的倒数
【解析】【解答】∵﹣2015×()=1,
∴﹣2015的倒数是
故选:A
【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.
9.【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将2270000用科学记数法表示为2.27×106.故选B.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
10.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将119000000用科学记数法表示为:1.19×108.
故选:C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
11.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:把21000用科学记数法表示为2.1×104,故选:C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
12.【答案】C
【考点】倒数
【解析】【解答】解:有理数3的倒数是.
故选:C.
【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.
二、填空题
13.【答案】4.9×104
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:用科学记数法可将49000表示为4.9×104,
故答案为:4.9×104.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
14.【答案】-
【考点】倒数,探索数与式的规律
【解析】【解答】解:a1=3,a2是a1的差倒数,即a2==﹣,a3是a2的差倒数,即a3==,a4是a3差倒数,即a4=3,
…依此类推,
∵2015÷3=671…2,
∴a2015=﹣.
故答案为:﹣.
【分析】根据差倒数定义表示出各项,归纳总结即可得到结果.
15.【答案】1.0×1011
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:100 000 000 000=1.0×1011.
故答案为:1.0×1011.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
16.【答案】5.4×106
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将5400000用科学记数法表示为:5.4×106.
故答案为:5.4×106.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
17.【答案】1.83×105
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将183000用科学记数法表示为1.83×105.
故答案为1.83×105.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
18.【答案】4
【考点】绝对值及有理数的绝对值,有理数的加法
【解析】【解答】解:原式=2+2
=4.
故答案为4.
【分析】先计算|﹣2|,再加上2即可.
三、解答题
19.【答案】(1)解:当x=2时,左边= ,右边=0,
∵左边≠右边,
∴x=2不是方程的解
(2)解:当x=﹣1时,左边=﹣3,右边=﹣3,
∵左边=右边,
∴x=﹣1是方程的解
【考点】一元一次方程的解
【解析】【分析】能使方程的左边与右边相等的未知数的值,就是方程的根,根据定义,将x=2分别代入方程的左边和右边,算出左边与右边的值,由于左边≠右边,故x=2不是该方程的解;然后将x=-1分别代入方程的左边和右边,算出左边与右边的值,由于左边=右边,故x=-1是该方程的解。

20.【答案】(1)t
;27-t
(2)依题可得:
PA=t,CQ=3t,
∵P、Q两点相遇,
∴t+3t=5-(-12),
解得:t==4.25,
答:经过4.25秒点P与点Q两点相遇.
(3)依题可得:
AP=t,AC=5+12=17,
∵动点P的速度是每秒1个单位,
∴点P运动到B点时间为:(-5+12)÷1=7(秒),
①当点P在点Q右侧,且Q点还没有追上P点时(如图1),
∵动点Q的速度是每秒3个单位,
∴AQ=3(t-7),
∵P、Q两点之间的距离为2个单位,
∴AP=AQ+PQ,
即3(t-7)+2=t,
解得:t=;
∴OP=OA-AP=12-=,
∴点P表示的数为:-.
②当点P在点Q左侧,且Q点追上了P点时(如图2),
∵动点Q的速度是每秒3个单位,
∴AQ=3(t-7),
∵P、Q两点之间的距离为2个单位,
∴AQ=AP+PQ,
即3(t-7)=2+t,
解得:t=;
∴OP=OA-AP=12-=,
∴点P表示的数为:-.
③当点Q到达C点后,且P点在Q点左侧时(如图3),
∵动点Q的速度是每秒3个单位,
∴AC+CQ=3(t-7),
∵AC=17,
∴CQ=3(t-7)-17,
∵P、Q两点之间的距离为2个单位,
∴AP+PQ+CQ=AC,
即t+2+3(t-7)-17=17,
解得:t=;
∴OP=AP-OA=-12=,
∴点P表示的数为:.
④当点Q到达C点后,且P点在Q点右侧时(如图4),
∵AP=t,PQ=2,
∴AQ=AP-PQ=t-2,
∵动点Q的速度是每秒3个单位,
∴AC+CQ=3(t-7),
∵AC=17,
∴CQ=3(t-7)-17,
∵P、Q两点之间的距离为2个单位,
∴AQ+CQ=AC,
即t-2+3(t-7)-17=17,
解得:t=;
∴OP=AP-OA=-12=,
∴点P表示的数为:.
综上所述:点P表示的数为-,-,,.
【考点】一元一次方程的其他应用,两点间的距离
【解析】【解答】解:(1)∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,∴P到A点的距离为:t,
又∵数轴上有A、B、C三个点,分别表示有理数-12、-5、5,
∴PC=CA-PA=(5+12)-t=27-t,
故答案为:t,27-t.
【分析】(1)根据题意得出PA=t,再由数轴上两点间的距离求出PC.
(2)根据题意表示出PA=t,CQ=3t,再由P点走过的路程+Q点走过的路程=CA,解之即可得出答案.(3)根据题意分情况讨论:①当点P在点Q右侧,且Q点还没有追上P点时,②当点P在点Q左侧,且Q
点追上了P点时,
③当点Q到达C点后,且P点在Q点左侧时,④当点Q到达C点后,且P点在Q点右侧时,分别列出方程,解之即可得出答案.
21.【答案】(1)6
(2)1.5
②若点其对应的数为,数轴上是否存在点,使点到点,点的距离之和为8?若存在,请求出
的值;若不存在,请说明理由.
解:若点在点的左边,
若点在点的右边,
(3)2
【考点】数轴及有理数在数轴上的表示
【解析】【解答】解:(1)|AB|=|-2-4|=6;
(2 )①设点P表示的数为x,根据题意得,
|x+2|-|4-x|=1,
当x<-2时,方程无解;
当-2≤x<4时,原方程可化为,x+2-4+x=1,解得,x=1.5;
当x≥4时,方程无解.
(3 )设t分钟点P到点M,点N的距离相等,
根据题意得,2t+2+t=4-t +3t,
解得:t=2,
答:2分钟点P到点M,点N的距离相等.
【分析】(1)由数轴易求出;
(2)①由数轴易求出;②此题分两种情况当点P在B的右边时;当点P在B的左边时,分别列出方程求解即可;
(3)设t分钟点P到点M,点N的距离相等,根据题意列方程即可得到结论.
22.【答案】(1)解:根据图形可得差的绝对值最小为0.6,
所以从轻重的角度看,5号球最接近标准
(2)解:260×5+(5-3.5+0.7-2.5-0.6)
=1300-0.9
=1299.1(克)
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)从轻重的角度看绝对值越小越接近标准质量;
(2)用标准质量的和再加上5个排球质量超过标准的克数或不足的克数的和即可算出这五个排球的总质量。

23.【答案】(1)-2;1;7
(2)4
(3)AB=3t+3;AC=5t+9;BC=2t+6
(4)解:不变.3BC-2AB=3(2t+6)-2(3t+3)=12
【考点】数轴及有理数在数轴上的表示,探索图形规律
【解析】【解答】解:(1)∵|a+2|+(c-7)2=0,
∴a+2=0,c-7=0,
解得a=-2,c=7,
∵b是最小的正整数,
∴b=1;
(2)(7+2)÷2=4.5,
对称点为7-4.5=2.5,2.5+(2.5-1)=4;
(3 )AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
【分析】(1)由绝对值和平方的非负性可求得a、c的值,再根据b是最小的正整数可求得b的值;(2)由折叠的性质可求得点A与点C的中点的值,根据轴对称的性质即可求得点B 的对称点;
(3)根据平移规律“左减右加”即可求解。

24.【答案】(1)2×34;2×3n
(2)解:①2×31+2×32+2×33+2×34+2×35=32-3+33-32+34-33+35-34+36-35=36-3=726.②31+32+
33+···+3n=(32-3)+(33-32)+(34-33)+···+(3n+1-3n)=(32-3+33-32+34
-33+···+3n+1-3n)=(3n+1-3)
【考点】探索数与式的规律
【解析】【解答】解:(1)由题意得:
第④个等式为:35-34=2×34,
第n个等式为:3n+1-3n=2×3n,
故答案为:35-34=2×34, 3n+1-3n=2×3n.
【分析】(1)由已知的等式可知,第④个等式为35-34=234;第n个等式为3n+1-3n=23n;
(2)①由(1)中的规律可将乘法运算转化为加减运算,中间的项抵消后剩下两边的项相加即可求解;
②由①的计算可将②中的各项乘以2,括号外再乘以,于是可转化为①的计算求解即可。

25.【答案】(1)解:
答:减少了
(2)解:设原存量吨
答:天前存吨
(3)解:吨

答:要付吨
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)根据有理数的加法法则将进出库的数据相加,若结果为正,库里的粮食增多;若结果为负,库里的粮食减少;
(2)根据题意可得相等关系:天前库里存粮的吨数- 库里的粮食减少的吨数=480,列出非常即可求解;
(3)将进出库的数据的绝对值相加,再乘以每吨的装卸费即可求解。

26.【答案】(1)解:依题可得:
在甲超市购物所需费用为:300+(x-300)×0.8=0.8x+60(元),
在乙超市购物所需费用为:200+(x-200)×0.85=0.85x+30(元),
∵x=400,
∴在甲超市购物所需费用为:0.8x+60=0.8×400+60=380(元),
在乙超市购物所需费用为:0.85x+30=0.85×400+30=370(元),
∵370<380,
∴在乙超市购物更优惠.
(2)解:由(1)可得:
0.8x+60=0.85x+30,
解得:x=600.
答:当x=600时,顾客到这两家超市购物实际支付的钱数相同.
【考点】代数式求值,用字母表示数,一元一次方程的实际应用-方案选择问题
【解析】【分析】(1)根据题意分别列出在甲、乙超市购物所需费用的代数式,再将x=400代入、计算、比较大小,即可得出答案.
(2)将(1)中甲、乙超市费用的代数式相等,解之即可得出答案.。

相关文档
最新文档