全国备战高考物理法拉第电磁感应定律的推断题综合备战高考模拟和真题分类汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国备战高考物理法拉第电磁感应定律的推断题综合备战高考模拟和真题分类
汇总
一、法拉第电磁感应定律
1.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。
一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。
已知定值电阻和金属棒的阻值均为R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g,求:
(1)金属棒匀速运动的速度大小;
(2)金属棒与金属导轨间的动摩擦因数μ;
(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。
【答案】(1);(2);(3)mgL2。
【解析】
【分析】
(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;
(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解;
(3)根据功能关系结合焦耳定律求解。
【详解】
(1)金属棒到达cd位置前已经开始做匀速运动,根据平衡条件可得:mg=BIL1,
由于
解得:;
(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里;
根据平衡条件可得:mg=μF A,
通过导体棒的电流I′=,则F A=BI′L1,
解得μ=;
(3)金属棒经过efgh 区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;
根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W 克=mgL 2, 则Q 总=mgL 2,
定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。
【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。
2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:
(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 7
2L
t g
= 【解析】 【详解】
(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有
2
1sin 302
mgL mv ︒=
, 则线框进入磁场时的速度
2sin30v g L gL =︒=
线框ab 边进入磁场时产生的电动势E =BLv 线框中电流
E I R
=
ab 边受到的安培力
22B L v
F BIL R
== 线框匀速进入磁场,则有
22sin 30B L v
mg R
︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为
22422B L v
F BI L mg R
==''=
方向沿斜面向上
(2)设线框再次做匀速运动时速度为v ',则
224sin 30B L v mg R
︒=
'
解得
4v v =
'=根据能量守恒定律有
2211
sin 30222
mg L mv mv Q ︒'⨯+=+
解得4732
mgL
Q =
线框ab 边在上侧磁扬中运动的过程所用的时间1L t v
=
设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:
22sin 302mg t BLIt mv mv ︒-='-
其中
()022BL L x I t R
-=
联立以上两式解得
()02432L x v t v
g
-=
-
线框ab 在下侧磁场匀速运动的过程中,有
00
34x x t v v
='=
所以线框穿过上侧磁场所用的总时间为
12372L
t t t t g
=++=
3.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2mR gr
x =
,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:
(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?
(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =2
rh
x ∆= (3) 12Q mgr =
【解析】 【分析】 【详解】
(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:
2
012
mgr mv =
解得a 棒沿圆弧轨道最低点M 时的速度02v gr 从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:
012mv mv =
解得两棒以相同的速度做匀速运动的速度0
122gr
v v =
= (2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:
2222A B L x
I ILBt BL Rit R
∆Φ===
由动量定理:
21A I mv mv --=
解得22gr
v =
由平抛运动规律得,两棒落到地面后的距离()
1222
h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳
热:220111
(2)22
Q mv m v =
- 解得:1
2
Q mgr =
4.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=
3
,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.
(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1
【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】
(1)由右手定则可知cd 中电流方向为由d 流向c
对cd 杆由平衡条件可得:μ
=+00
22安sin 60(cos 60)m g m g F
=安F BLI
联立可得:I =5A (2) 对ab: 由 =12BLv IR
得 1
10m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+
解得: m 1=1kg
5.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
在M 和P 之间接有阻值为R 的定值电阻,导体杆ab 质量为m 、电阻为r ,并与导轨接触良好。
整个装置处于方向竖直向上磁感应强度为B 的匀强磁场中。
现给ab 杆一个初速度v 0,使杆向右运动。
(1)当ab 杆刚好具有初速度v 0时,求此时ab 杆两端的电压U ;a 、b 两端哪端电势高; (2)请在图2中定性画出通过电阻R 的电流i 随时间t 变化规律的图象;
(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示。
同样给ab 杆一个初速度v 0,使杆向右运动。
请分析说明ab 杆的运动情况。
【答案】(1)0Bl R
U R r
=
+v ;a 端电势高(2) (3)当ab 杆以初速度
v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆
在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。
当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。
【解析】 【分析】
(1)求解产生感应电动势大小,根据全电路欧姆定律求解电流强度和电压,根据右手定则判断电势高低;
(2)分析杆的受力情况和运动情况,确定感应电流变化情况,由此画出图象;
(3)杆在向右运动过程中速度逐渐减小、由此分析安培力的变化,确定运动情况;根据动量定理求解最后的速度大小。
【详解】
(1)ab 杆切割磁感线产生感应电动势: E = Bl v 0
根据全电路欧姆定律:E
I R r
=
+ ab 杆两端电压即路端电压:U IR = 解得0Bl R
U R r
=
+v ;a 端电势高。
(2)杆在向右运动过程中速度逐渐减小、感应电动势逐渐减小,根据闭合电路的欧姆定律可得感应电流逐渐减小,通过电阻R 的电流i 随时间变化规律的图象如图所示:
(3)当ab 杆以初速度v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。
当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。
【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键。
6.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。
求:
(1)金属杆在5s 末的运动速率 (2)第4s 末时外力F 的功率
【答案】(1) 2.5m/s v = (2) 0.18W P = 【解析】(1)由题意,电压表的示数为R
U BLv R r
=⋅+ 5s 末电压表的示数0.2V U = , 所以代入数据可得 2.5m/s v =
(2)由R
U BLv R r
=
⋅+及U -t 图像可知,U 随时间均匀变化,导体棒在力F 作用下匀加速运动 ()1R r v U a t R BL t
+∆∆=
=⋅⋅∆∆ 代入数据可得20.5m/s a = 在4s 末,金属杆的切割速度为()1
2m/s R r v U R
BL
⋅'='+=
⋅
此时拉力F 为22B L v F ma R r
-
=+'
所以4s 末拉力F 的功率为0.18W P Fv =='
【点睛】本题是电磁感应与电路、力学知识的综合,由电路的串联关系先求出电动势,再求出速度;由加速度的定义,求出加速度;根据瞬时功率的表达式,求出第5秒末外力F 的功率.
7.如图(1)所示,两足够长平行光滑的金属导轨MN 、PQ 相距为0.8m ,导轨平面与水平面夹角为α,导轨电阻不计.有一个匀强磁场垂直导轨平面斜向上,长为1m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨电接触良好,金属棒的质量为0.1kg 、与导轨接触端间电阻为1Ω.两金属导轨的上端连接右端电路,电路中R 2为一电阻箱.已知灯泡的电阻R L =4Ω,定值电阻R 1=2Ω,调节电阻箱使R 2=12Ω,重力加速度g=10m/s 2.将电键S 打开,金属棒由静止释放,1s 后闭合电键,如图(2)所示为金属棒的速度随时间变化的图象.求:
(1)斜面倾角α及磁感应强度B 的大小;
(2)若金属棒下滑距离为60m 时速度恰达到最大,求金属棒由静止开始下滑100m 的过程中,整个电路产生的电热;
(3)改变电阻箱R 2的值,当R 2为何值时,金属棒匀速下滑时R 2消耗的功率最大;消耗的最大功率为多少?
【答案】(1)斜面倾角α是30°,磁感应强度B 的大小是0.5T ;
(2)若金属棒下滑距离为60m 时速度恰达到最大,金属棒由静止开始下滑100m 的过程中,整个电路产生的电热是32.42J ;
(3)改变电阻箱R 2的值,当R 2为4Ω时,金属棒匀速下滑时R 2消耗的功率最大,消耗的最大功率为1.5625W . 【解析】
【分析】
(1)电键S打开,ab棒做匀加速直线运动,由速度图象求出加速度,由牛顿第二定律求
解斜面的倾角α.开关闭合后,导体棒最终做匀速直线运动,由F安=BIL,I=得到安培
力表达式,由重力的分力mgsinα=F安,求出磁感应强度B.
(2)金属棒由静止开始下滑100m的过程中,重力势能减小mgSsinα,转化为金属棒的动能和整个电路产生的电热,由能量守恒求解电热.
(3)改变电阻箱R2的值后,由金属棒ab匀速运动,得到干路中电流表达式,推导出R2消耗的功率与R2的关系式,根据数学知识求解R2消耗的最大功率.
【详解】
(1)电键S打开,从图上得:a=gsinα==5m/s2
得sinα=,则得α=30°
金属棒匀速下滑时速度最大,此时棒所受的安培力F安=BIL
又 I=,R总=R ab+R1+=(1+2+)Ω=6Ω
从图上得:v m=18.75m/s
由平衡条件得:mgsinα=F安,所以mgsinα=
代入数据解得:B=0.5T;
(2)由动能定理:mg•S•sinα﹣Q=mv m2﹣0
由图知,v m=18.75m/s
得Q=mg•S•sinα﹣mvm2=32.42J;
(3)改变电阻箱R2的值后,金属棒匀速下滑时的速度为v m′,则有
mgsinα=BI总L
R2和灯泡并联电阻 R并′==()Ω,
R2消耗的功率:P2==
由上联立解得 P2=()2
由数学知识得,当=R2,即R2=4Ω时,R2消耗的功率最大:
最大功率为 P2m=()2()=W=1.5625W.
8.如图所示,平等光滑金属导轨AA1和CC1与水平地面之间的夹角均为θ,两导轨间距为L,A、C两点间连接有阻值为R的电阻,一根质量为m、电阻也为R的直导体棒EF跨在导轨上,两端与导轨接触良好。
在边界ab和cd之间(ab与cd与导轨垂直)存在垂直导轨平面的匀强磁场,磁场的磁感应强度为B,现将导体棒EF从图示位置由静止释放,EF进入磁场就开始匀速运动,棒穿过磁场过程中棒中产生的热量为Q。
整个运动的过程中,导体棒EF与导轨始终垂直且接触良好,其余电阻不计,取重力加速度为g。
(1)棒释放位置与ab间的距离x;
(2)求磁场区域的宽度s;
(3)导体棒穿过磁场区域过程中流过导体横截面的电量。
【答案】(1)(2)(3)
【解析】(1)导体棒EF从图示位置由静止释放,根据牛顿第二定律
EF进入磁场就开始匀速运动,由受力平衡:
由闭合电路欧姆定律:
导体棒切割磁感线产生电动势:E=BLv
匀加速阶段由运动学公式v2=2ax
联立以上各式可解得棒释放位置与ab间的距离为:
(2)EF进入磁场就开始匀速运动,由能量守恒定律:
A,C两点间电阻R与EF串联,电阻大小相等,则
连立以上两式可解得磁场区域的宽度为:
(3) EF在磁场匀速运动:s=vt
由电流定义流过导体棒横截面的电量q=It
联立解得:
【点睛】此题综合程度较高,由运动分析受力,根据受力情况列方程,两个运动过程要结合分析;在匀速阶段要明确能量转化关系,电量计算往往从电流定义分析求解.
9.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab 在水平向右的拉力F 作用下,以水平速度v 沿金属导轨向右做匀速直线运动,导体棒ab 始终与金属导轨形成闭合回路.已知导体棒ab 的长度恰好等于平行导轨间距l ,磁场的磁感应强度大小为B ,忽略摩擦阻力.
(1)求导体棒ab 运动过程中产生的感应电动势E 和感应电流I ;
(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的.如图乙(甲图中导体棒ab )所示,为了方便,可认为导体棒ab 中的自由电荷为正电荷,每个自由电荷的电荷量为q ,设导体棒ab 中总共有N 个自由电荷.
a.求自由电荷沿导体棒定向移动的速率u ;
b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率.
【答案】(1) Blv F Bl (2) F NqB 宏观角度 【解析】
(1)根据法拉第电磁感应定律,感应电动势E Blv =
导体棒水平向右匀速运动,受力平衡,则有F BIl F ==安 联立解得:F I Bl
=
(2)a 如图所示:
每个自由电荷沿导体棒定向移动,都会受到水平向左的洛伦兹力1f quB =
所有自由电荷所受水平向左的洛伦兹力的合力宏观表现为安培力F 安
则有:1F Nf NquB F ===安
解得:F u NqB
= B, 宏观角度:非静电力对导体棒ab 中所有自由电荷做功的功率等于感应电源的电功率,则
有:P P EI Fv ===非电
拉力做功的功率为:P Fv =拉
因此P P =非拉, 即非静电力做功的功率等于拉力做功的功率;
微观角度:如图所示:
对于一个自由电荷q ,非静电力为沿棒方向所受洛伦兹力2f qvB =
非静电力对导体棒ab 中所有自由电荷做功的功率2P Nf u 非=
将u 和2f 代入得非静电力做功的功率P Fv =非
拉力做功的功率P Fv =拉
因此P P =非拉 即非静电力做功的功率等于拉力做功的功率.
10.如图甲所示是航空母舰上一种弹射装置的模型,“E”字形铁芯长为l 的三个柱脚的两条缝中存在正对的由B 指向A 、C 的磁场,该磁场任意时刻均可视为处处大小相等方向相同(如图乙所示),初始时缝中有剩余磁场,磁感应强度为B 0;绕在B 柱底部的多匝线圈P 用于改变缝中磁场的强弱,已知通过线圈P 加在缝中的磁场与线圈中的电流大小存在关系B=k 1I .Q 为套在B 柱上的宽为x 、高为y 的线圈共n 匝,质量为m ,电阻为R ,它在外力作用下可沿B 柱表面无摩擦地滑动,现在线圈P 中通以I=k 2t 的电流,发现Q 立即获得方向向右大小为a 的加速度,则
(1)线圈P 的电流应从a 、b 中的哪一端注入?t=0时刻线圈Q 中的感应电流大小I 0。
(2)为了使Q 向右运动的加速度保持a 不变,试求Q 中磁通量的变化率与时间t 的函数关系
(3)若在线圈Q 从靠近线圈P 处开始向右以加速度a 匀加速直到飞离B 柱的整个过程中,可将Q 中的感应电流等效为某一恒定电流I ,则此过程磁场对线圈Q 做的功为多少?
【答案】(1)a 入b 出、I 0=
(2)(3)mal+I 2R 【解析】
试题分析:1)a 入b 出
F=ma
F=2nI 0LB 0
得:I 0=
2)E=I=
F=2nILB B=B 0+k 1k 2t 可得:=
3)W=ΔE k +Q=mal+I 2R
考点:考查了法拉第电磁感应定理
11.如图所示,两足够长的平行光滑的金属导轨MN 、PQ 相距为d ,导轨平面与水平面的夹角30θ=︒,导轨电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面向上.长为的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m 、电阻为r R =.两金属导轨的上端连接一个灯泡,灯泡的电阻L R R =,重力加速度为g .现闭合开关S ,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为F mg =的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它的额定功率.求:
(1)金属棒能达到的最大速度v m ;
(2)灯泡的额定功率P L ;
(3)若金属棒上滑距离为L 时速度恰达到最大,求金属棒由静止开始上滑4L 的过程中,金属棒上产生的电热Q r .
【答案】(1) 22mgR B d ;(2) 22224m g R B d
;(3) 322444m g R mgL B d - 【解析】
【详解】
解:(1)金属棒先做加速度逐渐减小的加速运动,当加速度为零时,金属棒达到最大速度,此后开始做匀速直线运动;设最大速度为m v ,当金属棒达到最大速度时,做匀速直线运动,由平衡条件得:30F BId mgsin =+︒
又:F mg = 解得:2mg I Bd = 由
2L E E I R r R
==+,m E Bdv = 联立解得:22
m mgR v B d =; (2)灯泡的额定功率:222222()24L L mg m g R P I R R Bd B d
=== (3)金属棒由静止开始上滑4L 的过程中,由能量守恒定律可知:
2144302
m Q F L mg Lsin mv =•-•︒- 金属棒上产生的电热:322
44
124r m g R Q Q mgL B d ==-
12.固定在匀强磁场中的正方形导线框abcd ,边长为l ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜线.磁场的磁感应强度为B ,方向垂直纸面向里.现有一段与ab 段的材料、粗细、长度均相同的电阻丝PQ 架在导线框上,如图所示.若PQ 以恒定的速度v 从ad 滑向bc ,当其滑过13
l 的距离时,通过aP 段电阻的电流是多大?方向如何?
【答案】
611Blv R
方向由P 到a 【解析】
【分析】
【详解】 PQ 右移切割磁感线,产生感应电动势,相当于电源,外电路由Pa 与Pb 并联而成,PQ 滑过3
l 时的等效电路如图所示,
PQ 切割磁感线产生的感应电动势大小为E=Blv ,方向由Q 指向P .
外电路总电阻为 122331293
3R R R R R R ⋅==+外 电路总电流为:
92119
E Blv Blv I R R R R R =
==++外 aP 段电流大小为 26311ap Blv I I R =
=, 方向由P 到a .
答:通过aP 段电阻的电流是为611Blv R
方向由P 到a
13.如图所示,两根互相平行的金属导轨MN 、PQ 水平放置,相距d=1m 、且足够长、不计电阻。
AC 、BD 区域光滑,其它区域粗糙且动摩擦因数μ=0.2,并在AB 的左侧和CD 的右侧存在着竖直向下的匀强磁场,磁感应强度B=2T 。
在导轨中央放置着两根质量均为m=1kg ,电阻均为R=2Ω的金属棒a 、b ,用一锁定装置将一弹簧压缩在金属棒a 、b 之间(弹簧与a 、b 不栓连),此时弹簧具有的弹性势能E=9J 。
现解除锁定,当弹簧恢复原长时,a 、b 棒刚好进入磁场,且b 棒向右运动x=0.8m 后停止,g 取10m/s 2,求:
(1)a 、b 棒刚进入磁场时的速度大小;
(2)金属棒b 刚进入磁场时的加速度大小
(3)整个运动过程中电路中产生的焦耳热。
【答案】(1)3m/s (2)8m/s 2(3)5.8J
【解析】
【分析】
对ab 系统,所受的合外力为零,则动量守恒,根据动量守恒定律和能量关系列式求解速度;(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,求解感应电流,根据牛顿第二定律求解b 刚进入磁场时的加速度;(3)由能量守恒求解产生的热量.
【详解】
(1)对ab 系统,由动量守恒:0=mv a -mv b 由能量关系:221122
P a b E mv mv =
+ 解得v a =v b =3m/s
(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,则有:
E a =E b =Bdv a =6V 又:232a E I A R == 对b ,由牛顿第二定律:BId+μmg=ma b
解得a b =8m/s 2
(3)由动量守恒可知,ab 棒速率时刻相同,即两者移动相同距离后停止,则对系统,由能量守恒:E P =2μmgx+Q
解得Q=5.8J
【点睛】
此题是力、电磁综合题目,关键是分析两棒的受力情况和运动情况,运用动量守恒定律和能量守恒关系列式求解.
14.如图所示,两光滑轨道相距L =0.5m ,固定在倾角为37θ=︒的斜面上,轨道下端接入阻值为R =1.6Ω的定值电阻。
整个轨道处在竖直向上的匀强磁场中,磁感应强度B =1T 。
一质量m =0.1kg 的金属棒MN 从轨道顶端由静止释放,沿轨道下滑,金属棒沿轨道下滑x =3.6m 时恰好达到最大速度(轨道足够长),在该过程中,金属棒始终能保持与轨道良好接触。
(轨道及金属棒的电阻不计,重力加速度g 取10m/s 2, sin37° = 0.6,cos37°= 0.8)求:
(1)金属棒下滑过程中,M 、N 哪端电势高;
(2)求金属棒下滑过程中的最大速度v ;
(3)求该过程回路中产生的焦耳热Q 。
【答案】(1)M 端电势较高 (2)6m/s (3)0.36J
【解析】
【详解】
(1)根据右手定则,可判知M 端电势较高
(2)设金属棒的最大速度为v ,根据法拉第电磁感应定律,回路中的感应电动势
E =BLv cos θ
根据闭合电路欧姆定律,回路中的电流强度
I =E /R
金属棒所受安培力F 为
F =BIL
对金属棒,根据平衡条件列方程
mg sin θ=F cos θ
联立以上方程解得:
v =6m/s
(3)根据能量守恒
21sin 2
mgx mv Q θ=
+ 代入数据解得: 0.36J Q =
【点睛】
本题是力学和电磁学的综合题,综合运用了电磁感应定律、能量守恒定律以及共点力平衡问题,要注意此题中棒不是垂直切割磁感线,产生的感应电动势不是E =BLv .应根据有效
切割速度求解。
15.如图甲所示,两竖直放置的平行金属导轨,导轨间距L =0.50m ,导轨下端接一电阻R =5Ω的小灯泡,导轨间存在一宽h =0.40m 的匀强磁场区域,磁感应强度B 按图乙所示规律变化,t =0时刻一金属杆自磁场区域上方以某一初速度沿导轨下落,t 1时刻金属杆恰好进入磁场,直至穿越磁场区域,整改过程中小灯泡的亮度始终保持不变.已知金属杆的质量m =0.10kg ,金属杆下落过程中始终保持水平且与导轨良好接触,不计金属杆及导轨的电阻,g 取10m/s 2.求:
(1)金属杆进入磁场时的速度v ;
(2)图乙中t 1的数值;
(3)整个过程中小灯泡产生的总焦耳热Q .
【答案】(1)5m/s (2)0.04s (3)0.6J
【解析】
解:(1)金属杆进入磁场时受力平衡mg BIL =
E I R
= E BLv = 整理得22
5m /s mgR v B L == (2)根据法拉第电磁感应定律1B E Lh t ∆=
⋅ 01
B B BLv Lh t -=⋅ ()0100.04s B B h t B v -==
(3)整个过程中小灯泡产生的总焦耳热()212E Q t t R
=+ 20.08s h t v
=
= 解得:0.6J Q =。