安富实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安富实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)已知|x+y|+(x﹣y+5)2=0,那么x和y的值分别是()
A. ﹣,
B. ,﹣
C. ,
D. ﹣,﹣【答案】A
【考点】解二元一次方程组,偶次幂的非负性,绝对值的非负性
【解析】【解答】解:∵|x+y|+(x﹣y+5)2=0,
∴x+y=0,x﹣y+5=0,
即,
①+②得:2x=﹣5,
解得:x=﹣,
把x=﹣代入①得:y= ,
即方程组的解为,
故答案为:A.
【分析】根据非负数之和为0,则每一个数都为0,得出x+y=0,x﹣y+5=0,再解二元一次方程组求解,即可得出答案。

2、(2分)如果关于x的不等式x>2a﹣1的最小整数解为x=3,则a的取值范围是()
A. 0<a<2
B. a<2
C. ≤a<2
D. a≤2
【答案】C
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】解:∵关于x的不等式x>2a﹣1的最小整数解为x=3,
∴2≤2a﹣1<3,
解得:≤a<2.
故答案为:C.
【分析】由题意可得不等式组2≤2a﹣1<3,解这个不等式组即可求解。

3、(2分)下列图形中,线段AD的长表示点A到直线BC距离的是()
A. B.
C. D. 【答案】D
【考点】点到直线的距离
【解析】【解答】解:∵线段AD的长表示点A到直线BC距离∴过点A作BC的垂线,
A、过点A作DA⊥AB,故A不符合题意;
B、AD与BC相交,故B不符合题意;
C、过点A作DA⊥AB,故C不符合题意;
D、过点A作AD⊥BC,交BC的延长线于点D,故D符合题意;故答案为:D
【分析】根据已知条件线段AD的长表示点A到直线BC距离,因此应该过点A作BC的垂线,观察图形即可得出答案。

4、(2分)若为非负数,则x的取值范围是()
A.x≥1
B.x≥-
C.x>1
D.x>-
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:由题意得
≥0,
2x+1≥0,
∴x≥- .
故答案为:B.
【分析】非负数即正数和0,由为非负数列出不等式,然后再解不等式即可求出x的取值范围。

5、(2分)已知关于x、y的方程组的解满足3x+2y=19,则m的值为()
A. 1
B.
C. 5
D. 7
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:,
①+②得x=7m,
①﹣②得y=﹣m,
依题意得3×7m+2×(﹣m)=19,
∴m=1.
故答案为:A.
【分析】观察方程组,可知:x的系数相等,y的系数互为相反数,因此将两方程相加求出x、将两方程相减求出y,再将x、y代入方程3x+2y=19,建立关于m的方程求解即可。

6、(2分)用代入法解方程组的最佳策略是()
A.消y,由②得y= (23-9x)
B.消x,由①得x= (5y+2)
C.消x,由②得x= (23-2y)
D.消y,由①得y= (3x-2)
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:因为方程②中x的系数是方程①中x的系数的3倍,所以用代入法解方程组的最佳策略是:
由①得
再把③代入②,消去x.
故答案为:B
【分析】因为方程②中x的系数是方程①中x的系数的3倍,故用代入法解该方程组的时候,将原方程组中的①方程变形为用含y的代数式表示x,得出③方程,再将③代入②消去x得到的方程也是整数系数,从而使解答过程简单。

7、(2分)a与b是两个连续整数,若a<<b,则a,b分别是()
A. 6,8
B. 3,2
C. 2,3
D. 3,4
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵4<7<9,
∴2<<3,
∵a<<b,且a与b是两个连续整数,
∴a=2,b=3.故答案为:C
【分析】根号7的被开方数介于两个完全平方数4和9之间,根据算术平方根的意义,从而得出根号7应该介于2和3之间,从而得出答案。

8、(2分)是二元一次方程的一个解,则a的值为()
A.1
B.
C.3
D.-1
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:将x=1,y=3代入2x+ay=3得:2+3a=3,
解得:a= .
故答案为:B.
【分析】方程的解就是能使方程的左边和右边相等的未知数的值,根据定义将将x=1,y=3代入2x+ay=3即可得出关于字母a的方程,求解即可得出a的值。

9、(2分)已知同一平面上的两个角的两条边分别平行,则这两个角()
A. 相等
B. 互补
C. 相等或互补
D. 不能确定
【答案】C
【考点】平行线的性质
【解析】【解答】解:如图:
①∠B和∠ADC的两边分别平行,
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∴∠B=∠ADC,
②∠B和∠CDE的两边分别平行,
∵∠ADC+∠CDE=180°,
∴∠B+∠CDE=180°.
∴同一平面上的两个角的两条边分别平行,则这两个角相等或互补。

故答案为:C
【分析】首先根据题意作图,然后由平行线的性质与邻补角的定义,即可求得同一平面上的两个角的两条边分别平行,则这两个角相等或互补。

10、(2分)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个
公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】平行线的判定
【解析】【解答】解:①过两点有且只有一条直线,正确;
②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故本小题错误;
③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,该说法正确;
④经过直线外一点有且只有一条直线与已知直线平行,正确,
【分析】②两条不相同的直线如果相交,有且只有一个公共点,如果平行,没有公共点。

11、(2分)二元一次方程组的解是()
A. B. C. D.
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故答案为:B.
【分析】观察方程组中未知数的系数特点:x的系数相等,因此利用①﹣②消去x,求出y的值,再将y的值代入方程①,就可求出x的值,即可得出方程组的解。

12、(2分)下列命题:
①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;
④如果一个数的立方根等于它本身,那么它一定是1或0.
其中正确有()个.
A. 1
B. 2
C. 3
D. 4
【答案】A
【考点】立方根及开立方
【解析】【解答】解:①负数没有立方根,错误;
②一个实数的立方根不是正数就是负数或0,故原命题错误;
③一个正数或负数的立方根与这个数的符号一致,正确;
④如果一个数的立方根等于它本身,那么它一定是±1或0,故原命题错误;
其中正确的是③,有1个;
故答案为:A
【分析】根据立方根的定义与性质,我们可知:1.正数、负数、0都有立方根;2.正数的立方根为正数,负数的立方根为负数;0的立方根仍为0;与0的立方根都为它本身。

二、填空题
13、(1分)如图,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=________°.
【答案】20
【考点】平行线的性质,三角形的外角性质
【解析】【解答】解:如图
∵AB∥CD
∴∠2=∠4=50°
∵∠4=∠1+∠3,∠1=30°
∴∠3=50°-30°=20°
故答案为:20【分析】挖掘题中隐含条件是AB∥CD,可求出∠4的度数,再根据三角形的外角性质,得出∠4=∠1+∠3,计算即可求出结果。

14、(1分)不等式组无解,则m的取值范围是________.
【答案】m≥3
【考点】一元一次不等式组的应用
【解析】【解答】解:∵不等式组无解,
∴m的取值范围是:m≥3.
故答案为:m≥3.
【分析】一元一次不等式组无解,当未知数大于较大的数,小于较小的数时,此时无解,所以.
15、(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。

16、(1分)在两个连续整除a和b之间,a<<b,,那么a+b的值是________.
【答案】7
【考点】估算无理数的大小,代数式求值
【解析】【解答】解:∵9<11<16,
∴3<<4.
∴a=3,b=4.
∴a+b=7.
故答案为:7
【分析】根号11的被开方数11介于两个完全平方数9和16之间,从而根据算术平方根的意义,被开方数越大,其算数平方根也越大,从而得出。

根号11介于3和4之间,进而得出a,b的值,再代入代数式计算即可。

17、(1分)利用计算器计算:=________(精确到0.01).
【答案】0.86
【考点】实数的运算
【解析】【解答】原式≈2.449-1.587=0.862≈0.86.故答案为:0.86.【分析】根据实数的运算性质即可求解。

18、(1分)如果一个角的两边分别与另一个角的两边平行,那么这两个角的大小关系是________. 【答案】相等或互补
【考点】平行线的性质
【解析】【解答】解:如图,
∠1的两边和∠3的两边分别平行,∠2和∠3的两边互相平行,∴∠3=∠4,∠4=∠1,∠4+∠2=180°,∴∠3=∠1,∠3+∠2=180°,∴∠3和∠1相等,∠3和∠2互补.故答案为:相等或互补.
【分析】根据平行线的性质可得∠3=∠4,∠4=∠1,∠4+∠2=180°,由等量代换可得∠3=∠1,∠3+∠2=180°。

即这两个角相等或互补.
三、解答题
19、(5分)如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分∠ADC,CE平分∠BCD,
∴∠1=∠ADE,∠2=∠BCE,
∵∠1+∠2=90°,
即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
∴∠BEC+∠AED=90°,
又∵DA ⊥AB,
∴∠A=90°,
∴∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠ADE+∠BCE=90°,
∴∠BEC+∠BCE=90°,
∴∠B=90°,
即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.
20、(5分)把下列各数分别填入相应的集合里:-2.4,3,- ,,,0,,-(-2.28),3.14,-∣-4∣,-2.1010010001……(相邻两个1之间的0的个数逐次加1).
正有理数集合:( …);
整数集合:( …);
负分数集合:( …);
无理数集合:( …).
【答案】解:正有理数集合:(3,, -(-2.28), 3.14 …);
整数集合:( 3,0,-∣-4∣ …);
负分数集合:(-2.4,- ,, …);
无理数集合:(, -2.1010010001…… …).
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类,正整数、0、负整数统称为整数,无限不循环的小数是无理数。

逐一填写即可。

21、(5分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD
的度数.
【答案】解:由角的和差,得∠EOF=∠COE-COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.
由对顶角相等,得∠BOD=∠AOC=34°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据图形求出∠EOF=∠COE-COF的度数,由角平分线的性质求出∠AOF=∠EOF的度数,由角的和差和由对顶角相等,求出∠BOD=∠AOC的度数.
22、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
23、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据
求得∠BOD。

24、(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。

正有理数、0、负有理数统称有理数。

非负整数包括正整数和0;无理数是无限不循环的小数。

将各个数准确填在相应的括号里。

25、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
26、(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1= ∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.。

相关文档
最新文档