2018年广西省北部湾经济区中考数学试卷

合集下载

2018年广西北部湾经济区中考数学试卷含答案解析

2018年广西北部湾经济区中考数学试卷含答案解析

第 1 页广西北部湾经济区2018年初中学业水平统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的倒数是( )A .3-B .3C .13-D .132.下列美丽的壮锦图案是中心对称图形的是( )ABCD3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为( )A .38110⨯B .48.110⨯C .58.110⨯D .50.8110⨯4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为 ( ) A .7分 B .8分 C .9分D .10分 5.下列运算正确的是( )A .2()+1+1a a a =B .235()a a =C .233+4a a a =D .523a a a ÷=第 2 页6.如图,ACD ∠是ABC △的外角,CE 平分ACD ∠,若60A ∠=︒, 40B ∠=︒,则ECD ∠等于( )A .40︒B .45︒C .50︒D .55︒7.若m n >,则下列不等式正确的是( )A .22m n -<-B .44m n > C .66m n <D .88m n ->-8.从2-,1-,2这三个数中任取两个不同的数相乘,积为正数的概率是 ( )A .23B .12C .13D .149.将抛物线21 6212y x x =-+向左平移2个单位后,得到新抛物线的解析式为 ( ) A .21(+52)8y x =- B .21(+52)4y x =- C .21(+32)8y x =-D .21(+32)4y x =-10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .π+3B .π3-C .2π3-D .2π23-11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为 ( ) A .2()801+100x = B .2100180()x -= C .8012100()x +=D .28()01100x +=12.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP △沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP OF =,则cos ADF ∠的值为( )A .1113B .1315C .1517D .1719第 3 页第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 13.,则实数x 的取值范围是 . 14.因式分解:2 22a -= .15.已知一组数据6,,3351x ,,,的众数是3和5,则这组数据的中位数是 . 16.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30︒,从甲楼顶部B 处测得乙楼底部D 处的俯角是45︒.已知甲楼的高AB 是120m ,则乙楼的高CD 是 m (结果保留根号).17.观察下列等式:031=,133=,239=,3327=,4381=,53243=,…,根据其中规律可得22081103+3+3++3L 的结果的个位数字是 .18.如图,矩形ABCD 的顶点,A B 在x 轴上,且关于y 轴对称,反比例函数10() k y x x=>的图像经过点C ,反比例函数20() k y x x=<的图像分别与,AD CD 交于点 , E F ,若7BEF S =△,1230k k +=,则1k 等于.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演第 4 页算步骤)19.(本小题满分6分)计算:114+3tan60()2--︒.20.(本小题满分6分) 解分式方程:21133x xx x -=--.21.(本小题满分8分)如图,在平面直角坐标系中,已知ABC △的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)将ABC △向下平移5个单位后得到111A B C △,请画出111A B C △; (2)将ABC △绕原点O 逆时针旋转90︒后得到222A B C △,请画出222A B C △; (3)判断以1,,O A B 为顶点的三角形的形状.(无须说明理由)22.(本小题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林第 5 页学校对本校100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m = ,n = ;(2)在扇形统计图中,求“C 等级”所对应圆心角的度数;(3)成绩等级为A 的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛.请用树状图法或列表法求出恰好选中“1男1女”的概率.23.(本小题满分8分)如图,在ABCD Y 中,AE BC ⊥,AF CD ⊥,垂足分别为 ,E F ,且 BE DF =.(1)求证:ABCD Y 是菱形;(2)若5AB =,6AC =,求ABCD Y 的面积.24.(本小题满分10分)某公司在甲、乙两仓库共存放某种原料450吨.如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30第 6 页吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(1030a ≤≤),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况.25.(本小题满分10分)如图,ABC △内接于⊙O ,CBG A ∠=∠,CD 为直径,OC 与 AB 相交于点E ,过点E 作EF BC ⊥,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD . (1)求证: PG 与⊙O 相切; (2)若58EF AC =,求BEOC的值. (3)在(2)的条件下,若⊙O 的半径为8,PD OD =,求OE 的长.26.(本小题满分10分)如图,抛物线25+y ax ax c =-与坐标轴分别交于点A ,C ,E 三点,其中0()3, A -,()0,4C,点B在x轴上,AC BC=,过点B作BD x⊥轴交抛物线于点D,点,M N分别是线段,CO BC上的动点,且CM BN=,连接, ,MN AM AN.(1)求抛物线的解析式及点D的坐标;(2)当CMN△是直角三角形时,求点M的坐标;(3)试求出+AM AN的最小值.广西北部湾经济区2018年初中学业水平统一考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】根据倒数的定义,如果两个数的乘积等于1,那么我们就说这两个数互为倒,除0以外的数都存在倒数.因此3-的倒数为1 3 -.【考点】倒数定义,有理数乘法的运算律2.【答案】A【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形.【考点】中心对称图形3.【答案】B【解析】4810008.110=⨯,故选B.第7页第 8 页【考点】科学记数法. 4.【答案】B 【解析】12410684+++=.【考点】用折线图求数据的平均分问题. 5.【答案】D【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得2()+1+a a a a =;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得236()a a =;选项C错误,直接运用整式的加法法则,23a 和a 不是同类项,不可以合并; 选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得523 a a a ÷=. 【考点】整式的乘法,幂的乘方,整式的加法,同底数幂的除法. 6.【答案】C【解析】ABC △的外角6040100ACD A B ∠=∠+∠=+=o o o ,又因为CE 平分ACD ∠,所以111005022ACE ECD ACD ∠=∠=∠=⨯=o o . 【考点】三角形外角的性质,角平分线的定义. 7.【答案】B【解析】A :不等式两边同时减去一个相等的数,不等式的符号不改变,错误 B :不等式两边同时除以一个相等的正数,不等式的符号不改变,正确 C :不等式两边同时乘以一个相等的正数,不等式的符号不改变,错误 D :不等式两边同时乘以一个相等的负数,不等式的符号改变,错误. 【考点】不等式的性质 8.【答案】C【解析】总共有三个数字,两两相乘有三种情况;根据同号得正,异号得负,而只有-2与-1相乘时才得正数,所以是13. 【考点】概率统计,有理数乘法 9.【答案】D【解析】方法1:先把解析式配方为顶点式,再把顶点平移.抛物线216212y x x -=+可配方成2(1+32)6y x =-,顶点坐标为(6,3).因为图形向左平移2个单位,所以第 9 页顶点向左平移2个单位,即新的顶点坐标变为(4,3),而开口大小不变,于是新抛物线解析式为21(+32)4y x =-方法2:直接运用函数图像左右平移的“左加右减”法则.向左平移2个单位,即原来解析式中所有的“x ”均要变为“x +2”,于是新抛物线解析式为2)1(+26+2+21()2y x x =-,整理得21 4+112y x x -=,配方后得21(+32)4y x =-. 【考点】配方法,函数图像的平移规律,点的平移规律 10.【答案】D【解析】莱洛三角形的面积实际上是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加减去两个等边三角形的面积,即32ABC S S S =⨯-⨯△阴影扇形. 由题意可得,2602π23603S π=⨯⨯=扇形.要求等边三角形ABC 的面积需要先求高.如下图,过AD 垂直BC 于D ,可知, 在Rt∆ABD 中, sin602AD ADAB ︒==, 所以22sin603AD π=⨯=o ,所以112222233ABC S BC AD ππ=⨯⨯=⨯⨯=△. 所以232322π23ABC S S S π=⨯-⨯=⨯-⨯=-△阴影扇形. 故选D .【考点】等边三角形的性质与面积计算,扇形的面积计算公式 11.【答案】A【解析】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1 +x )吨,2018年蔬菜产量为80(1 + x ) (1 + x )吨.预计2018年蔬菜产量达到100吨,即80(1 + x )(1 + x ) =100,即80(1 + x ) = 100.故选A .【考点】由实际问题抽象出一元二次方程 12.【答案】C【解析】由题意得:Rt DCP Rt DEP △≌△,所以4,DC DE CP EP === 在 Rt OEF △和 Rt OBP △中,,,EOF BOP B E OP OF ∠∠∠∠===第 10()Rt OEF Rt OBP AAS △≌△,所以,OE OB EF BP ==设EF 为x ,则,4BP x DF DE EF x ==-=-,又因为++BF OF OB OP OE PE PC ====,3PC BC BP x =-=-. 所以,()431AF AB BF x x =-=--=+在Rt DAF △,222AF AD DF +=,也就是222((134))x x ++=- 解之得35x =,所以35EF =,317455DF -== 最终,在Rt DAF △中,17cos ADF DF ∠==.【考点】折叠问题,勾股定理列方程,解三角形,三角函数值第Ⅱ卷二.填空题 13.【答案】5x ≥【解析】根据被开方数是非负数,则有50x -≥,∴5x ≥. 【考点】二次根式有意义的条件. 14.【答案】()(211)a a +-【解析】22()22212()1)(1a a a a -=-=+-步骤一:先提公因式2得到:22(1)a -, 步骤二:再利用平方差公式因式分解得到结果:()(211)a a +-. 【考点】因式分解 15.【答案】4【解析】解:因为众数为3和5,所以 5x =,所以中位数为:()3524+÷=. 【考点】中位数. 16.【答案】【解析】∵俯角是45o ,∴ 45BDA ∠=o ,∴ 120m AB AD ==,又∵30CAD ∠=o ∴在Rt △ADC中tan tan30CD CDA AD ∠===o ,∴CD =m ) 【考点】三角函数 17.【答案】3【解析】∵ 031=,133=,239=,3327=,4381=∴个位数4个数一循环, ∴2018104()453+÷=余,∴1+3+913=,∴22081103+3+3++3L 的个位数字是3. 【考点】循环规律 18.【答案】9【解析】根据题意,设点C 的坐标为1,k a a ⎛⎫⎪⎝⎭, ∵矩形ABCD 关于y 轴对称, ∴12k OB OA a AB a AD BC a=====,,, ∴点F 的纵坐标为1k a ,将其代入2k y x=,得点F 的横坐标为21akk ,即点F 的坐标为211,ak k k a ⎛⎫⎪⎝⎭,点E 的坐标为2,k a a ⎛⎫-- ⎪⎝⎭, ∵1230k k +=,∴11=22kS a k a=g 矩形,()121211112223BCF k ak S a k k k a k ∆⎛⎫=-=-= ⎪⎝⎭g g , ()1222121111121229DEF k kak k S a k k k a ak k ∆⎛⎫⎛⎫⎡⎤⎛⎫=--+=++=⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭g g g , 2111223ABE k S a k a ∆⎛⎫=-= ⎪⎝⎭g g , ∴1111221-27393BEF BCF DEF ABE S S S S S k k k k ∆∆∆∆=--=---=矩形,即1779k =,解得19k =. 【考点】反比例函数的图象与性质,矩形的性质,三角形的面积. 三、解答题 19.【答案】2【解析】解:422=+-=+原式【考点】实数的综合运算. 20.【答案】32x =【解析】解:方程左右两边同乘3(1)x -, 得31)3(2x x x --=,3332x x x -+=,32x =, 检验:当32x =时,3()10x -≠, 所以,原分式方程的解为32x =.【考点】解分式方程.21.【答案】(1)如图所示,111A B C △即为所求; (2)如图所示,222A B C △即为所求; (3)三角形的形状为等腰直角三角形. 【解析】(1)如图所示,111A B C △即为所求; (2)如图所示,222A B C △即为所求; (3)三角形的形状为等腰直角三角形.【考点】平面直角坐标系中的作图变换—平移与旋转. 22.【答案】(1)51 30(2)“C 等级”对应圆心角的度数为108° (3)恰好选中是1男和1女的概率是12. 【解析】(1)m =0.51⨯100 =51看扇形可知D 的百分数为15%,则其频率为0.15,则人数为0.15⨯100 =15; 总人数为100,则C 的人数=总人数-(A 、B 、D )人数, 即n =100-4-51-15 =30(2)圆周角为360o ,根据频数之和为1,求出C 的频率为0.3,则“C 等级”对应圆心角的度数为0.3360108⨯=o o(3)将1名男生和3名女生标记为A 1、A 2、A 3、A 4 ,用树状图表示如下:由树状图可知随机挑选2名学生的情况总共有12种,其中恰好选中1男和1女的情况有6种, 概率=61122=【考点】统计表,扇形统计图,概率统计.23.【答案】证明(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵BE=DF,∴△AEB≌△AFD(ASA).∴AB=AD,∴四边形ABCD是菱形.(2)如图,连接BD交AC于点O∵由(1)知四边形ABCD是菱形,AC = 6.∴AC⊥BD,1632AO OC AC===⨯=,∵AB=5,AO=3,在Rt△AOB中,2222534BO AB AO=-=-=∴BD=2BO=8,∴168242S ABCD AC BD=⋅=⨯⨯=Y【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵BE=DF,∴△AEB≌△AFD(ASA).∴AB=AD,∴四边形ABCD是菱形.(2)如图,连接BD交AC于点O∵由(1)知四边形ABCD是菱形,AC = 6.∴AC⊥BD,1632AO OC AC===⨯=,∵AB=5,AO=3,在Rt△AOB中,4BO=∴BD=2BO=8,∴168242S ABCD AC BD=⋅=⨯⨯=Y【考点】平行四边形的性质;全等三角形的性质与判定;勾股定理;菱形的判定与性质、面积计算.24.【答案】(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,根据题意得:450(140%)30(160%). x yy x +=⎧⎨--=-⎩,解得:240210. xy=⎧⎨=⎩,答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m吨原料到工厂,则从乙仓库运300m-吨原料到工厂总运费120100300()()(20000)30W a m m a m=-+-=-+即()2030000W a m=-+. (3)①当1020a≤<,200a->,由一次函数的性质可知,W随着m的增大而增大②当20a=时,200a-=,W随着m的增大没有变化③当2030a<≤,200a-<,W随着m的增大而减小.【解析】(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,根据题意得:450(140%)30(160%). x yy x +=⎧⎨--=-⎩,解得:240210. xy=⎧⎨=⎩,答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m吨原料到工厂,则从乙仓库运300m-吨原料到工厂总运费120100300()()(20000)30W a m m a m=-+-=-+即()2030000W a m=-+. (3)①当1020a≤<,200a->,由一次函数的性质可知,W随着m的增大而增大②当20a=时,200a-=,W随着m的增大没有变化③当2030a<≤,200a-<,W随着m的增大而减小.【考点】二元一次方程组;一次函数的性质及应用25.【答案】解:(1)证明:如图1,连接OB,则OB OD=∴BDC DBO∠=∠∵»»BCBC = ∴A BDC ∠=∠ ∴A BDC ∠=∠ 又∵CBG A ∠=∠ ∴CBG DBO ∠=∠ CD 是⊙O 直径 ∴90DBO OBC ∠+∠=︒ ∴90CBG OBC ∠+∠=︒ ∴90OBG ∠=︒点B 在圆上, ∴ PG 与⊙O 相切. (2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC ∠=∠=∠12AM AC =∵»»AC AC =∴1 2ABC AOC ∠=∠ 又∵ 90EFB OGA ∠=∠=︒ ∴BEF OAM △∽△ ∴BEF OAM △∽△12EF AC OA OC AM =⋅= ∴12EF BEOC AC =又∵58EF AC = ∴552284BE EF OC AC =⨯=⨯= 方法二: ∵CD 是⊙O 直径 ∴ 90DBC ∠=o 又∵DCB ECF ∠=∠∴DCB ECF =△△ ∴DCB ECF ∽△△ ∴EF ECDB DC=又∵BDE EAC ∠=∠DBE AEC ∠=∠∴DB BEAC EC=①⨯②得:EF DB EC BEDB AC DC EC⨯=⨯即∵EF BEAC DC=58BE DC = 又 ∵2DC OC = ∴528BE OC = ∴54BE OC = (3)∵ PD OD =, 90PDO ∠=︒ ∴8BD OD == 在 Rt DBC ∆中,8BC = 又OD OB =∴DOB △是等边三角形 ∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC ∠=∠+∠= ∴30OCB ∠=︒12EF FCCE EF =⋅∴可设,2,3EF x EC x FC x === ∴83BF x =-在Rt BEF ∆中,222BE EF BF =+222210(43)213EH BE BH =-=-=22100(83)x x =+-∴4OE EH OH =-=. 【解析】解 :(1)证明: 如图1,连接OB ,则OB OD = ∴BDC DBO ∠=∠∵»»BCBC = ∴A BDC ∠=∠ ∴A BDC ∠=∠ 又∵CBG A ∠=∠ ∴CBG DBO ∠=∠ CD 是⊙O 直径 ∴90DBO OBC ∠+∠=︒ ∴90CBG OBC ∠+∠=︒ ∴90OBG ∠=︒点B 在圆上, ∴PG 与⊙O 相切. (2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC ∠=∠=∠12AM AC =∵»»AC AC =∴1 2ABC AOC ∠=∠ 又∵ 90EFB OGA ∠=∠=︒ ∴BEF OAM △∽△ ∴BEF OAM △∽△12EF AC OA OC AM =⋅= ∴12EF BEOC AC =又∵58EF AC =∴552284BE EF OC AC =⨯=⨯= 方法二: ∵CD 是⊙O 直径 ∴ 90DBC ∠=o 又∵DCB ECF ∠=∠ ∴DCB ECF =△△ ∴DCB ECF ∽△△ ∴EF ECDB DC=又∵BDE EAC ∠=∠DBE AEC ∠=∠∴DB BEAC EC=①⨯②得:EF DB EC BEDB AC DC EC⨯=⨯即∵EF BEAC DC=58BE DC = 又 ∵2DC OC = ∴528BE OC = ∴54BE OC = (3)∵ PD OD =, 90PDO ∠=︒ ∴8BD OD == 在 Rt DBC ∆中,8BC = 又OD OB =∴DOB △是等边三角形 ∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC ∠=∠+∠= ∴30OCB ∠=︒12EF FCCE EF =⋅∴可设,2,3EF x EC x FC x === ∴83BF x =-在Rt BEF △中,222BE EF BF =+222210(43)213EH BE BH =-=-=22100(83)x x =+-∴2134OE EH OH =-=-.【考点】切线的性质和判断,相似三角形.26.【答案】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+ 可得1,4,6a c =-=∴抛物线的解析式为215466y x x =-++ ∵AC BC =, ∴ABC △是等腰三角形. 又点B 在x 轴上,∴()3,0B 又∵BD x ⊥轴,D 在抛物线上, ∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a ∵CM BN =∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+ ①当90CMN ∠=︒时,CMN COB △∽△ 由CM CN CO CB =得41+45a a -=解得:169a = 16(0,)9M ②当∠CNM=90°时,CNM COB △∽△ 由CM CN CB CO =得41+54a a -=解得:119a = 11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M(3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠ ∵OCB ACM ∠=∠ ∴ ACM DBN ∠=∠ 又∵,CM BN AC BD == ∴( )CAM BDN SAS ≅△△ ∴AM DN =∴AM AN DN AN +=+当A 、N 、D 三点共线时,DN AN AD += 即AM AN +的最小值为AD ∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得,2222+6+561AD AB BD ===∴AM AN +的最小值为61.【解析】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+ 可得1,4,6a c =-=∴抛物线的解析式为215466y x x =-++ ∵AC BC =, ∴ABC △是等腰三角形. 又点B 在x 轴上,∴()3,0B 又∵BD x ⊥轴,D 在抛物线上, ∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a ∵CM BN =∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+ ①当90CMN ∠=︒时,CMN COB △∽△ 由CM CN CO CB =得41+45a a -=解得:169a = 16(0,)9M徐老师第 21 ②当90CNM ∠=︒时,CNM COB △∽△ 由CM CN CB CO =得41+54a a -=解得:119a = 11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M (3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠∵OCB ACM ∠=∠∴ ACM DBN ∠=∠又∵,CM BN AC BD ==∴( )CAM BDN SAS ≅△△∴AM DN =∴AM AN DN AN +=+当A 、N 、D 三点共线时,DN AN AD +=即AM AN +的最小值为AD∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得,2222+6+561AD AB BD ===∴AM AN +的最小值为61.【考点】用待定系数法求解析式,动点形成相似三角形的运用,全等三角形的证明,动点中线段和最值问题的转化。

最新广西南宁市中考数学试卷和答案(word打印版)

最新广西南宁市中考数学试卷和答案(word打印版)

三、解答题(本大题共 8 小题,共 66 分 .解答应写出文字说明、证明过程或演算步骤 .)
19. (本题满分 6 分)计算: 4 3tan60
12
1 (
)
1
2
x
2x
20. (本题满分 6 分)解分式方程:
1
x1
3x 3
21. (本题满分 8 分)如图,在平面直角坐标系中,已知 △ABC 的三个顶点坐标分别是 A ( 1 , 1 ), B( 4 , 1 ), C (3,3 ) ( 1 )将 △ABC 向下平移 5 个单位后得到 △A 1 B1 C1 ,请画出 △A 1B1 C1 ; ( 2 )将 △ABC 绕原点 O 逆时针旋转 90 °后得到△A 2B2C 2 , 请画出 △A 2B2C 2 ; ( 3 )判断以 O, A 1 , B 为顶点的三角形的形状(无须说明理由)
学习 -----好资料
2018 年广西北部湾经济区六市同城初中毕业升学统一考试
(六市:南宁、北海、钦州、防城港、崇左和来宾市)
数学
(考试时间: 120 分钟 满分: 120 分)
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分。在每小题给出的四个选项中只有一项是符合要求的)
1. -3 的倒数是 A. -3
13 B.
15 17 D. 19
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)


13. 要使二次根式 x 5 在实数范围内有意义,则实数 x 的取值范围是 14. 因式分解: 2a 2-2=
15. 已知一组数据 6, x, 3 , 3 , 5 , 1 的众数是 3 和 5 ,则这组数据的
D. 2 π- 2 3

2018年广西省中考数学真题试卷4套(含答案及详细解析)

2018年广西省中考数学真题试卷4套(含答案及详细解析)

2018年广西省中考数学真题试卷4套(含答案及详细解析)2018年广西贵港市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3分)﹣8的倒数是()A.8B.﹣8C.D.2.(3分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3分)下列运算正确的是()A.2a﹣a=1B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.(3分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5B.﹣3C.3D.16.(3分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3B.1C.﹣1D.﹣37.(3分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥38.(3分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16B.18C.20D.2411.(3分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.512.(3分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若分式的值不存在,则x的值为.14.(3分)因式分解:ax2﹣a=.15.(3分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM 是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.D【解析】﹣8的倒数是﹣.故选:D.2.A【解析】将数据2180000用科学记数法表示为2.18×106.故选:A.3.D【解析】A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.C【解析】∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.D【解析】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.D【解析】∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,7.A【解析】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.C【解析】A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.A【解析】∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.B【解析】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,故选:B.11.C【解析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.B【解析】∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣1【解析】若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.14.a(x+1)(x﹣1)【解析】原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).15.5.5【解析】∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是(5+6)=5.5,故答案为:5.5.16.70°【解析】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.17.4π【解析】∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.18.2n﹣1,0【解析】∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.20.解:如图所示,△ABC为所求作21.解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.22.解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°×=86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.23.解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.24.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.25.解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析是为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析是为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,P(,﹣2﹣1).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,n2﹣2n﹣3=1﹣2﹣3=﹣4,P(1,﹣4);综上所述:P(1,﹣4)或(,﹣2﹣1).26.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,B D=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=32018年广西桂林市中考数学真题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(3分)2018的相反数是()A.2018B.﹣2018C.D.2.(3分)下列图形是轴对称图形的是()A.B.C.D.3.(3分)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°4.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)6.(3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×10117.(3分)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=28.(3分)一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和69.(3分)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.10.(3分)若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.11.(3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.12.(3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)比较大小:﹣30.(填“<”,“=”,“>”)14.(3分)因式分解:x2﹣4=.15.(3分)某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.(3分)如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的.值是第1列第2列第3列第4列列行第1行1234第2行8765第3行9101112第4行16151413……………第n行…………三、解答题:本大题共8小题,共66分.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别月生活支出x(单位:元)频数(人数)频率第一组x<30040.10第二组300≤x<35020.05第三组350≤x<40016n第四组400≤x<450m0.30第五组450≤x<50040.10第六组x≥50020.05请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.(10分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD 的长.26.(12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【参考答案】一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.B【解析】2018的相反数是:﹣2018.故选:B.2.A【解析】A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.3.B【解析】∵直线被直线a、b被直线c所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.4.C【解析】从正面看下面是一个长方形,如图所示:故C选项符合题意,故选:C.5.B【解析】a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.6.A【解析】将128 000 000 000 000用科学记数法表示为:1.28×1014.故选:A.7.C【解析】A,2x﹣x=x,错误;B,x(﹣x)=﹣x2,错误;C,(x2)3=x6,正确;D,x2+x=x2+x,错误;故选:C.8.D【解析】将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.9.A【解析】∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.10.D【解析】由题意可知:解得:故选:D.11.C【解析】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.12.B【解析】如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△P AB与△NCA中,,∴△P AB∽△NCA,∴=,设P A=x,则NA=PN﹣P A=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.13.<【解析】﹣3<0,故答案为:<.14.(x+2)(x﹣2)【解析】x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).15.84【解析】(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.16.3【解析】∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:317.3【解析】如图,作EM⊥x轴于点M,则EM=1.∵△ODE的面积是,∴OD•EM=,∴OD=.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y=(k>0)的图象过点E,∴k=3×1=3.故答案为3.18.(505,2)【解析】由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).三、解答题:本大题共8小题,共66分.19.解:原式=3+1﹣6×+2=3+1﹣3+2=3.20.解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:21.(1)证明:∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)解:由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°22.解:(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率;23.解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时24.解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.25.(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)解:连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠F AC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)解:过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.26.解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).2018年广西柳州市中考数学真题一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3分)计算:0+(﹣2)=()A.﹣2B.2C.0D.﹣202.(3分)如图,这是一个机械模具,则它的主视图是()A.B.C.D.3.(3分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1B.C.D.5.(3分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个7.(3分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sin B==()A.B.C.D.8.(3分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°9.(3分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7%B.13.3%C.26.7%D.53.3%11.(3分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3分)如图,a∥b,若∠1=46°,则∠2=°.14.(3分)如图,在平面直角坐标系中,点A的坐标是.15.(3分)不等式x+1≥0的解集是.16.(3分)一元二次方程x2﹣9=0的解是.17.(3分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6分)计算:2+3.20.(6分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.22.(8分)解方程=.23.(8分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG 的长.26.(10分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x 轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【参考答案】一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.A【解析】0+(﹣2)=﹣2.故选:A.2.C【解析】主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.3.B【解析】A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.4.B【解析】∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.5.C【解析】7000000000=7×109.故选:C.6.C【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.7.A【解析】∵∠C=90°,BC=4,AC=3,∴AB=5,∴sin B==,故选:A.8.D【分析】直接利用圆周角定理即可得出答案.【解析】∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.9.A【解析】根据题意知,买一斤需要付费0.8a元,故选:A.10.D【解析】由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.11.B【解析】(2a)•(ab)=2a2b.故选:B.12.C【解析】由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共18分)13.46°【解析】∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.14.(﹣2,3)【解析】由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).15.x≥﹣1【解析】移项得:x≥﹣1.故答案为:x≥﹣1.16.x1=3,x2=﹣3【解析】∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.17.【解析】设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.18.5【解析】过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,。

广西壮族自治区广西北部湾经济区2018届数学中考模拟试卷及参考答案

广西壮族自治区广西北部湾经济区2018届数学中考模拟试卷及参考答案
广西壮族自治区广西北部湾经济区2018届数学中考模拟试卷
一、 单选题 1. 若a+b<0,a<0,b>0,则a,﹣a,b,﹣b的大小关系是( ) A . a<﹣b<b<﹣a B . ﹣b<a<﹣a<b C . a<﹣b<﹣a<b D . ﹣b<a<b<﹣a 2. 如图放置的几何体的左视图是( )
A.
三、 解答题 19. 计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣ | 20. 如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再
把△A′B′C′绕点C'顺时针旋转90°,得到△A″B″C′,
(1) 请你画出△A′B′C′和△A″B″C′(不要求写画法). (2) 求出线段A′C′在旋转过程中所扫过的面积.(结果保留) 21. 如图是某校甲班学生外出去基地参观,乘车、行步、骑车的人数分布直方图和扇形统计图.
(1) 根据统计图求甲班步行的人数; (2) 甲班步行的对象根据步行人数通过全班随机抽号来确定;乙班学生去基地分两段路走,即学校﹣﹣A地﹣﹣基地
,每段路走法有乘车或步行或骑车,你认为哪个班的学生有步行的可能性少?(利用列表法或树状图求概率说明).
22. 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E.过点D作DF⊥AC交AC于点F.
A. B.2C.4D.6 12. 如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y= (k>0,x>0)的图象相交于点A,与x轴 相交于点B,则OA2﹣OB2=10,则k的值是( )
A . 5 B . 10 C . 15 D . 20 二、 填空题
13. 一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众 数是________.

广西南宁市中考数学试卷和答案(word打印版)

广西南宁市中考数学试卷和答案(word打印版)

D. -8m>-8n


A. 2 3
B. 1 2
C. 1 3
9. 将抛物线 y 1 x2 6x 21 向左平移 2 个单位后,得到新抛物线的解析式为 2
D. 1 4
(
)
A. y = 1 (x - 8)2+5 2
B. y = 1 (x - 4)2+5 2
C. y 1 (x 8)23 2
D. y 1 (x 4)23 2
2
20.(本题满分 6 分)解分式方程: x 1 2x
x 1
3x 3
21.(本题满分 8 分)如图,在平面直角坐标系中,已知△ABC 的三个顶
--
--
点坐标分别是 A(1,1),B(4,1),C(3,3) (1)将△ABC向下平移 5 个单位后得到△ A1B1C1 ,请画出△ A1B1C1 ; (2)将△ABC绕原点 O 逆时针旋转 90°后得到△ A2B2C2 , 请画出△ A2B2C2 ; (3)判断以 O, A1 ,B 为顶点的三角形的形状(无须说明理由)
--
2018 年广西北部湾经济区六市同城初中毕业升学统一考试
(六市:南宁、北海、钦州、防城港、崇左和来宾市)
数学
(考试时间:120 分钟 满分:120 分)
一、选择题(本大题共 12小题,每小题 3 分,共 36 分。在每小题给出的四个选项中只有一项是符合要求的)
1. -3 的倒数是

)
A. -3
B. 3
2. 下列美丽的壮锦图案是中心对称图形的是
C. 1 3
D. 1 3


A
B
C

3. 2018年俄罗斯世界杯开幕式于6月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000 名观众,其中数

2018年广西北部湾经济区中考数学试卷(含答案与解析)

2018年广西北部湾经济区中考数学试卷(含答案与解析)

数学试卷 第1页(共36页)数学试卷 第2页(共36页)绝密★启用前广西北部湾经济区2018年初中学业水平统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的倒数是( )A .3-B .3C .13-D .132.下列美丽的壮锦图案是中心对称图形的是( )ABCD3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为( )A .38110⨯B .48.110⨯C .58.110⨯D .50.8110⨯4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为 ( ) A .7分 B .8分 C .9分D .10分 5.下列运算正确的是( )A .2()+1+1a a a =B .235()a a =C .233+4a a a =D .523a a a ÷=6.如图,ACD ∠是ABC △的外角,CE 平分ACD ∠,若60A ∠=︒, 40B ∠=︒,则ECD ∠等于( )A .40︒B .45︒C .50︒D .55︒7.若m n >,则下列不等式正确的是( )A .22m n -<-B .44m n >C .66m n <D .88m n ->-8.从2-,1-,2这三个数中任取两个不同的数相乘,积为正数的概率是( )A .23B .12C .13D .149.将抛物线21 6212y x x =-+向左平移2个单位后,得到新抛物线的解析式为 ( )A .21(+52)8y x =-B .21(+52)4y x =-C .21(+32)8y x =-D .21(+32)4y x =-10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .π+3B .π3-C .2π3-D .2π23-11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为( )A .2()801+100x =B .2100180()x -= C .8012100()x +=D .28()01100x +=12.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP △沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP OF =,则cos ADF ∠的值为( ) A .1113 B .1315 C .1517 D .1719第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 13.要使二次根式5x -在实数范围内有意义,则实数x 的取值范围是 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)14.因式分解:2 22a -= .15.已知一组数据6,,3351x ,,,的众数是3和5,则这组数据的中位数是 . 16.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30︒,从甲楼顶部B 处测得乙楼底部D 处的俯角是45︒.已知甲楼的高AB 是120m ,则乙楼的高CD 是 m (结果保留根号).17.观察下列等式:031=,133=,239=,3327=,4381=,53243=,…,根据其中规律可得22081103+3+3++3的结果的个位数字是 .18.如图,矩形ABCD 的顶点,A B 在x 轴上,且关于y 轴对称,反比例函数10() k y x x=>的图像经过点C ,反比例函数20() ky x x=<的图像分别与,AD CD 交于点 , E F ,若7BEF S =△,1230k k +=,则1k 等于 .三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:114+3tan60()2--︒.20.(本小题满分6分) 解分式方程:21133x xx x -=--.21.(本小题满分8分)如图,在平面直角坐标系中,已知ABC △的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)将ABC △向下平移5个单位后得到111A B C △,请画出111A B C △; (2)将ABC △绕原点O 逆时针旋转90︒后得到222A B C △,请画出222A B C △; (3)判断以1,,O A B 为顶点的三角形的形状.(无须说明理由)22.(本小题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m = ,n = ;(2)在扇形统计图中,求“C 等级”所对应圆心角的度数;(3)成绩等级为A 的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛.请用树状图法或列表法求出恰好选中“1男1女”的概率.数学试卷 第5页(共36页) 数学试卷 第6页(共36页)23.(本小题满分8分)如图,在ABCD 中,AE BC ⊥,AF CD ⊥,垂足分别为 ,E F ,且 BE DF =. (1)求证:ABCD 是菱形;(2)若5AB =,6AC =,求ABCD 的面积.24.(本小题满分10分)某公司在甲、乙两仓库共存放某种原料450吨.如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨. (1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(1030a ≤≤),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况. 25.(本小题满分10分)如图,ABC △内接于⊙O ,CBG A ∠=∠,CD 为直径,OC 与 AB 相交于点E ,过点E 作EF BC ⊥,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD . (1)求证: PG 与⊙O 相切; (2)若58EF AC =,求BEOC的值. (3)在(2)的条件下,若⊙O 的半径为8,PD OD =,求OE 的长.26.(本小题满分10分)如图,抛物线25+y ax ax c =-与坐标轴分别交于点A ,C ,E 三点,其中0()3, A -,()0,4C ,点B 在x 轴上,AC BC =,过点B 作BD x ⊥轴交抛物线于点D ,点,M N 分别是线段,CO BC 上的动点,且CM BN =,连接, , MN AM AN . (1)求抛物线的解析式及点D 的坐标;(2)当CMN △是直角三角形时,求点M 的坐标; (3)试求出+AM AN 的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------4广西北部湾经济区2018年初中学业水平统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】根据倒数的定义,如果两个数的乘积等于1,那么我们就说这两个数互为倒,除0以外的数都存在倒数.因此3-的倒数为13-.【考点】倒数定义,有理数乘法的运算律 2.【答案】A【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形. 【考点】中心对称图形 3.【答案】B【解析】4810008.110=⨯,故选B . 【考点】科学记数法. 4.【答案】B 【解析】12410684+++=.【考点】用折线图求数据的平均分问题. 5.【答案】D【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得2()+1+a a a a =;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得236()a a =;选项C 错误,直接运用整式的加法法则,23a 和a 不是同类项,不可以合并; 选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得523 a a a ÷=. 【考点】整式的乘法,幂的乘方,整式的加法,同底数幂的除法. 6.【答案】C【解析】ABC △的外角6040100ACD A B ∠=∠+∠=+=,又因为CE 平分ACD ∠,所以5 / 18111005022ACE ECD ACD ∠=∠=∠=⨯=.【考点】三角形外角的性质,角平分线的定义. 7.【答案】B【解析】A :不等式两边同时减去一个相等的数,不等式的符号不改变,错误 B :不等式两边同时除以一个相等的正数,不等式的符号不改变,正确 C :不等式两边同时乘以一个相等的正数,不等式的符号不改变,错误 D :不等式两边同时乘以一个相等的负数,不等式的符号改变,错误. 【考点】不等式的性质 8.【答案】C【解析】总共有三个数字,两两相乘有三种情况;根据同号得正,异号得负,而只有-2与-1相乘时才得正数,所以是13.【考点】概率统计,有理数乘法 9.【答案】D【解析】方法1:先把解析式配方为顶点式,再把顶点平移.抛物线21 6212y x x -=+可配方成2(1+32)6y x =-,顶点坐标为(6,3).因为图形向左平移2个单位,所以顶点向左平移2个单位,即新的顶点坐标变为(4,3),而开口大小不变,于是新抛物线解析式为21(+32)4y x =-方法2:直接运用函数图像左右平移的“左加右减”法则.向左平移2个单位,即原来解析式中所有的“x ”均要变为“x +2”,于是新抛物线解析式为2)1(+26+2+21()2y x x =-,整理得21 4+112y x x -=,配方后得21(+32)4y x =-.【考点】配方法,函数图像的平移规律,点的平移规律 10.【答案】D【解析】莱洛三角形的面积实际上是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加减去两个等边三角形的面积,即32ABC S S S =⨯-⨯△阴影扇形. 由题意可得,2602π23603S π=⨯⨯=扇形.要求等边三角形ABC 的面积需要先求高.如下图,过AD 垂直BC 于6D ,可知,在Rt∆ABD 中, sin602AD ADAB ︒==, 所以22sin603AD π=⨯=,所以112222233ABC S BC AD ππ=⨯⨯=⨯⨯=△. 所以232322π23ABC S S S π=⨯-⨯=⨯-⨯=-△阴影扇形. 故选D .【考点】等边三角形的性质与面积计算,扇形的面积计算公式 11.【答案】A【解析】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x )吨,2018年蔬菜产量为80(1 + x ) (1 + x )吨.预计2018年蔬菜产量达到100吨,即80(1 + x )(1 + x ) =100,即80(1 + x ) = 100.故选A . 【考点】由实际问题抽象出一元二次方程 12.【答案】C【解析】由题意得:Rt DCP Rt DEP △≌△,所以4,DC DE CP EP === 在 Rt OEF △和 Rt OBP △中,,,EOF BOP B E OP OF ∠∠∠∠===()Rt OEF Rt OBP AAS △≌△,所以,OE OB EF BP ==设EF 为x ,则,4BP x DF DE EF x ==-=-,又因为++BF OF OB OP OE PE PC ====,3PC BC BP x =-=-. 所以,()431AF AB BF x x =-=--=+在Rt DAF △,222AF AD DF +=,也就是222((134))x x ++=- 解之得35x =,所以35EF =,317455DF -==最终,在Rt DAF △中,17cos ADF DF ∠==.【考点】折叠问题,勾股定理列方程,解三角形,三角函数值第Ⅱ卷二.填空题 13.【答案】5x ≥【解析】根据被开方数是非负数,则有50x -≥,∴5x ≥.7 / 18【考点】二次根式有意义的条件. 14.【答案】()(211)a a +-【解析】22()22212()1)(1a a a a -=-=+-步骤一:先提公因式2得到:22(1)a -, 步骤二:再利用平方差公式因式分解得到结果:()(211)a a +-. 【考点】因式分解 15.【答案】4【解析】解:因为众数为3和5,所以 5x =,所以中位数为:()3524+÷=. 【考点】中位数. 16.【答案】【解析】∵俯角是45,∴ 45BDA ∠=,∴ 120m AB AD ==,又∵30CAD ∠= ∴在Rt △ADC中tan tan30CD CDA AD ∠==∴CD =m ) 【考点】三角函数 17.【答案】3【解析】∵ 031=,133=,239=,3327=,4381=∴个位数4个数一循环, ∴2018104()453+÷=余, ∴1+3+913=, ∴22081103+3+3++3的个位数字是3.【考点】循环规律 18.【答案】9【解析】根据题意,设点C 的坐标为1,k a a ⎛⎫⎪⎝⎭,∵矩形ABCD 关于y 轴对称, ∴12k OB OA a AB a AD BC a=====,,, ∴点F 的纵坐标为1k a ,将其代入2k y x =,得点F 的横坐标为21akk ,即点F 的坐标为211,ak k k a ⎛⎫ ⎪⎝⎭,点E 的坐标为2,k a a ⎛⎫-- ⎪⎝⎭,8∵1230k k +=, ∴11=22k S ak a=矩形,()121211112223BCF k ak S a k k k a k ∆⎛⎫=-=-= ⎪⎝⎭,()1222121111121229DEF k k ak k S a k k k a a k k ∆⎛⎫⎛⎫⎡⎤⎛⎫=--+=++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭, 2111223ABE k S a k a ∆⎛⎫=-= ⎪⎝⎭, ∴1111221-27393BEF BCF DEF ABE S S S S S k k k k ∆∆∆∆=--=---=矩形,即1779k =,解得19k =. 【考点】反比例函数的图象与性质,矩形的性质,三角形的面积. 三、解答题 19.【答案】23+ 【解析】解:43323223=+--=+原式【考点】实数的综合运算. 20.【答案】32x =【解析】解:方程左右两边同乘3(1)x -, 得31)3(2x x x --=,3332x x x -+=,32x =, 检验:当32x =时,3()10x -≠, 所以,原分式方程的解为32x =. 【考点】解分式方程.21.【答案】(1)如图所示,111A B C △即为所求; (2)如图所示,222A B C △即为所求; (3)三角形的形状为等腰直角三角形. 【解析】(1)如图所示,111A B C △即为所求; (2)如图所示,222A B C △即为所求;(3)三角形的形状为等腰直角三角形.【考点】平面直角坐标系中的作图变换—平移与旋转.22.【答案】(1)5130(2)“C等级”对应圆心角的度数为108°(3)恰好选中是1男和1女的概率是1 2 .【解析】(1)m=0.51⨯100 =51看扇形可知D的百分数为15%,则其频率为0.15,则人数为0.15⨯100 =15;总人数为100,则C的人数=总人数-(A、B、D)人数,即n =100-4-51-15 =30(2)圆周角为360,根据频数之和为1,求出C的频率为0.3,则“C等级”对应圆心角的度数为0.3360108⨯=(3)将1名男生和3名女生标记为A1、A2、A3、A4 ,用树状图表示如下:由树状图可知随机挑选2名学生的情况总共有12种,其中恰好选中1男和1女的情况有6种,概率=61 122=【考点】统计表,扇形统计图,概率统计.23.【答案】证明(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵BE=DF,∴△AEB≌△AFD(ASA).∴AB=AD,∴四边形ABCD是菱形.(2)如图,连接BD交AC于点O∵由(1)知四边形ABCD是菱形,AC = 6.9/ 18∴AC⊥BD,1632AO OC AC===⨯=,∵AB=5,AO=3,在Rt△AOB中,2222534BO AB AO=-=-=∴BD=2BO=8,∴168242S ABCD AC BD=⋅=⨯⨯=【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵BE=DF,∴△AEB≌△AFD(ASA).∴AB=AD,∴四边形ABCD是菱形.(2)如图,连接BD交AC于点O∵由(1)知四边形ABCD是菱形,AC = 6.∴AC⊥BD,1632AO OC AC===⨯=,∵AB=5,AO=3,在Rt△AOB中,2222534BO AB AO=-=-=∴BD=2BO=8,∴168242S ABCD AC BD=⋅=⨯⨯=【考点】平行四边形的性质;全等三角形的性质与判定;勾股定理;菱形的判定与性质、面积计算.24.【答案】(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,根据题意得:450(140%)30(160%). x yy x +=⎧⎨--=-⎩,解得:240210. xy=⎧⎨=⎩,答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m吨原料到工厂,则从乙仓库运300m-吨原料到工厂1011 / 18总运费120100300()()(20000)30W a m m a m =-+-=-+即()2030000W a m =-+.(3)①当1020a ≤<, 200a ->,由一次函数的性质可知,W 随着m 的增大而增大②当20a =时, 200a -=,W 随着m 的增大没有变化③当2030a <≤, 200a -<,W 随着m 的增大而减小.【解析】(1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨,根据题意得:450(140%)30(160%).x y y x +=⎧⎨--=-⎩, 解得:240210.x y =⎧⎨=⎩, 答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m 吨原料到工厂,则从乙仓库运300m -吨原料到工厂总运费120100300()()(20000)30W a m m a m =-+-=-+即()2030000W a m =-+.(3)①当1020a ≤<, 200a ->,由一次函数的性质可知,W 随着m 的增大而增大②当20a =时, 200a -=,W 随着m 的增大没有变化③当2030a <≤, 200a -<,W 随着m 的增大而减小.【考点】二元一次方程组;一次函数的性质及应用25.【答案】解 :(1)证明:如图1,连接OB ,则OB OD =∴BDC DBO ∠=∠∵BC BC =∴A BDC ∠=∠∴A BDC ∠=∠又∵CBG A ∠=∠∴CBG DBO ∠=∠CD 是⊙O 直径∴90DBO OBC ∠+∠=︒∴90CBG OBC ∠+∠=︒∴90OBG ∠=︒点B 在圆上,∴ PG 与⊙O 相切.(2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC ∠=∠=∠1212AM AC =∵AC AC = ∴12ABC AOC ∠=∠又∵ 90EFB OGA ∠=∠=︒∴BEF OAM △∽△∴BEF OAM △∽△12EFAC OA OC AM =⋅= ∴12EF BEOC AC= 又∵58EF AC = ∴552284BEEFOC AC =⨯=⨯=方法二:∵CD 是⊙O 直径∴ 90DBC ∠=又∵DCB ECF ∠=∠∴DCB ECF =△△∴DCB ECF ∽△△ ∴EF ECDB DC =又∵BDE EAC ∠=∠DBE AEC ∠=∠ ∴DB BEAC EC =①⨯②得:EFDB EC BEDB AC DC EC⨯=⨯13 / 18即∵EF BE AC DC = 58BE DC = 又 ∵2DC OC =∴528BEOC =∴54BEOC =(3)∵ PD OD =, 90PDO ∠=︒∴8BD OD ==在 Rt DBC ∆中,8BC =又OD OB =∴DOB △是等边三角形∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC ∠=∠+∠=∴30OCB ∠=︒12EF FCCE EF =⋅∴可设,2,3EF x EC x FC x ===∴83BF x =-在Rt BEF ∆中,222BE EF BF =+222210(43)213EH BE BH =-=-= 22100(83)x x =+-∴2134OE EH OH =-=-.【解析】解 :(1)证明:如图1,连接OB ,则OB OD =∴BDC DBO ∠=∠∵BC BC =∴A BDC ∠=∠∴A BDC ∠=∠14又∵CBG A ∠=∠∴CBG DBO ∠=∠CD 是⊙O 直径∴90DBO OBC ∠+∠=︒∴90CBG OBC ∠+∠=︒∴90OBG ∠=︒点B 在圆上,∴PG 与⊙O 相切.(2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC ∠=∠=∠ 12AM AC = ∵AC AC =∴12ABC AOC ∠=∠ 又∵ 90EFB OGA ∠=∠=︒∴BEF OAM △∽△∴BEF OAM △∽△12EF AC OA OC AM =⋅= ∴12EF BE OC AC = 又∵58EF AC = ∴552284BE EF OC AC =⨯=⨯= 方法二:∵CD 是⊙O 直径∴ 90DBC ∠=又∵DCB ECF ∠=∠∴DCB ECF =△△15 / 18∴DCB ECF ∽△△ ∴EF EC DB DC = 又∵BDE EAC ∠=∠ DBE AEC ∠=∠∴DB BEAC EC =①⨯②得:EF DB EC BEDB AC DC EC ⨯=⨯即∵EFBEAC DC =58BEDC =又 ∵2DC OC =∴528BE OC =∴54BE OC =(3)∵ PD OD =, 90PDO ∠=︒∴8BD OD ==在 Rt DBC ∆中,8BC =又OD OB =∴DOB △是等边三角形∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC∠=∠+∠= ∴30OCB ∠=︒12EF FCCE EF =⋅∴可设,2,3EF x EC x FC x ===∴83BF x =-在Rt BEF △中,222BE EF BF =+16 222210(43)213EH BE BH =-=-= 22100(83)x x =+-∴2134OE EH OH =-=-.【考点】切线的性质和判断,相似三角形.26.【答案】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+可得1,4,6a c =-= ∴抛物线的解析式为215466y x x =-++ ∵AC BC =, ∴ABC △是等腰三角形.又点B 在x 轴上,∴()3,0B又∵BD x ⊥轴,D 在抛物线上,∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a∵CM BN =∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+①当90CMN ∠=︒时,CMN COB △∽△由CM CN CO CB =得41+45a a -=解得:169a = 16(0,)9M ②当∠CNM=90°时,CNM COB △∽△由CM CN CB CO =得41+54a a -=解得:119a = 11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M (3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠∵OCB ACM ∠=∠17 / 18∴ ACM DBN ∠=∠又∵,CM BN AC BD ==∴( )CAM BDN SAS ≅△△∴AM DN =∴AM AN DN AN +=+当A 、N 、D 三点共线时,DN AN AD +=即AM AN +的最小值为AD∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得, 2222+6+561AD AB BD === ∴AM AN +的最小值为61.【解析】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+可得1,4,6a c =-= ∴抛物线的解析式为215466y x x =-++ ∵AC BC =, ∴ABC △是等腰三角形.又点B 在x 轴上,∴()3,0B又∵BD x ⊥轴,D 在抛物线上,∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a∵CM BN =∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+①当90CMN ∠=︒时,CMN COB △∽△由CM CN CO CB =得41+45a a -=解得:169a = 16(0,)9M ②当90CNM ∠=︒时,CNM COB △∽△由CM CN CB CO =得41+54a a -=解得:119a =18 11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M (3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠∵OCB ACM ∠=∠∴ ACM DBN ∠=∠又∵,CM BN AC BD ==∴( )CAM BDN SAS ≅△△∴AM DN =∴AM AN DN AN +=+当A 、N 、D 三点共线时,DN AN AD +=即AM AN +的最小值为AD∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得,2222+6+561AD AB BD ===∴AM AN +的最小值为61.【考点】用待定系数法求解析式,动点形成相似三角形的运用,全等三角形的证明,动点中线段和最值问题的转化。

2018年广西北部湾经济区中考数学试卷含答案解析

2018年广西北部湾经济区中考数学试卷含答案解析

徐老师广西北部湾经济区2018年初中学业水平统一考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3-的倒数是()A .3-B .3C .13-D .132.下列美丽的壮锦图案是中心对称图形的是()A B C D3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为()A .38110⨯B .48.110⨯C .58.110⨯D .50.8110⨯4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A .7分B .8分C .9分D .10分5.下列运算正确的是()A .2()+1+1a a a =B .235()a a =C .233+4a a a =D .523a a a ÷=6.如图,ACD ∠是ABC △的外角,CE 平分ACD ∠,若60A ∠=︒, 40B ∠=︒,则ECD ∠等于()A .40︒B .45︒C .50︒D .55︒7.若m n >,则下列不等式正确的是()A .22m n -<-B .44m n >C .66m n<D .88m n->-8.从2-,1-,2这三个数中任取两个不同的数相乘,积为正数的概率是()A .23B .12C .13D .149.将抛物线21 6212y x x =-+向左平移2个单位后,得到新抛物线的解析式为()A .21(+52)8y x =-B .21(+52)4y x =-C .21(+32)8y x =-D .21(+32)4y x =-10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为()A .B .πC .2πD .2π-11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为()A .2()801+100x =B .2100180()x -=C .8012100()x +=D .28()01100x +=12.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP △沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP OF =,则cos ADF ∠的值为()A .1113B .1315C .1517D .1719第Ⅱ卷(非选择题共84分)徐老师二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)13在实数范围内有意义,则实数x 的取值范围是.14.因式分解:2 22a -=.15.已知一组数据6,,3351x ,,,的众数是3和5,则这组数据的中位数是.16.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30︒,从甲楼顶部B 处测得乙楼底部D 处的俯角是45︒.已知甲楼的高AB 是120m ,则乙楼的高CD 是m (结果保留根号).17.观察下列等式:031=,133=,239=,3327=,4381=,53243=,…,根据其中规律可得22081103+3+3++3 的结果的个位数字是.18.如图,矩形ABCD 的顶点,A B 在x 轴上,且关于y 轴对称,反比例函数10() k y x x=>的图像经过点C ,反比例函数20() k y x x=<的图像分别与 ,AD CD 交于点 , E F ,若7BEF S =△,1230k k +=,则1k 等于.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:114+3tan60()2--︒.20.(本小题满分6分)解分式方程:21133x x x x -=--.21.(本小题满分8分)如图,在平面直角坐标系中,已知ABC △的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)将ABC △向下平移5个单位后得到111A B C △,请画出111A B C △;(2)将ABC △绕原点O 逆时针旋转90︒后得到222A B C △,请画出222A B C △;(3)判断以1,,O A B 为顶点的三角形的形状.(无须说明理由)22.(本小题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:徐老师(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应圆心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛.请用树状图法或列表法求出恰好选中“1男1女”的概率.23.(本小题满分8分)如图,在ABCD⊥,垂足分别为,E F,且BE DF=.中,AE BC⊥,AF CD(1)求证:ABCD是菱形;(2)若5的面积.AC=,求ABCDAB=,624.(本小题满分10分)某公司在甲、乙两仓库共存放某种原料450吨.如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(1030a ≤≤),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况.25.(本小题满分10分)如图,ABC △内接于⊙O ,CBG A ∠=∠,CD 为直径,OC 与 AB 相交于点E ,过点E 作EF BC ⊥,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD .(1)求证: PG 与⊙O 相切;(2)若58EF AC =,求BEOC的值.(3)在(2)的条件下,若⊙O 的半径为8,PD OD =,求OE 的长.26.(本小题满分10分)如图,抛物线25+y ax ax c =-与坐标轴分别交于点A ,C ,E 三点,其中0()3, A -,()0,4C ,点B 在x 轴上,AC BC =,过点B 作BD x ⊥轴交抛物线于点D ,点,M N 分别是线段,CO BC 上的动点,且CM BN =,连接, , MN AM AN .(1)求抛物线的解析式及点D 的坐标;徐老师(2)当CMN △是直角三角形时,求点M 的坐标;(3)试求出+AM AN 的最小值.广西北部湾经济区2018年初中学业水平统一考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】根据倒数的定义,如果两个数的乘积等于1,那么我们就说这两个数互为倒,除0以外的数都存在倒数.因此3-的倒数为13-.【考点】倒数定义,有理数乘法的运算律2.【答案】A【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形.【考点】中心对称图形3.【答案】B【解析】4810008.110=⨯,故选B .【考点】科学记数法.4.【答案】B【解析】12410684+++=.【考点】用折线图求数据的平均分问题.5.【答案】D【解析】选项A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得2()+1+a a a a =;选项B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得236()a a =;选项C错误,直接运用整式的加法法则,23a 和 a 不是同类项,不可以合并;选项D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得523 a a a ÷=.【考点】整式的乘法,幂的乘方,整式的加法,同底数幂的除法.6.【答案】C【解析】ABC △的外角6040100ACD A B ∠=∠+∠=+= ,又因为CE 平分ACD ∠,所以111005022ACE ECD ACD ∠=∠=∠=⨯= .【考点】三角形外角的性质,角平分线的定义.7.【答案】B【解析】A :不等式两边同时减去一个相等的数,不等式的符号不改变,错误B :不等式两边同时除以一个相等的正数,不等式的符号不改变,正确C :不等式两边同时乘以一个相等的正数,不等式的符号不改变,错误D :不等式两边同时乘以一个相等的负数,不等式的符号改变,错误.【考点】不等式的性质8.【答案】C【解析】总共有三个数字,两两相乘有三种情况;根据同号得正,异号得负,而只有-2与-1相乘时才得正数,所以是13.【考点】概率统计,有理数乘法9.【答案】D【解析】方法1:先把解析式配方为顶点式,再把顶点平移.抛物线21 6212y x x -=+可配方成2(1+32)6y x =-,顶点坐标为(6,3).因为图形向左平移2个单位,所以顶点向左平移2个单位,即新的顶点坐标变为(4,3),而开口大小不变,于是新抛徐老师物线解析式为21(+32)4y x =-方法2:直接运用函数图像左右平移的“左加右减”法则.向左平移2个单位,即原来解析式中所有的“x ”均要变为“x +2”,于是新抛物线解析式为2)1(+26+2+21()2y x x =-,整理得21 4+112y x x -=,配方后得21(+32)4y x =-.【考点】配方法,函数图像的平移规律,点的平移规律10.【答案】D【解析】莱洛三角形的面积实际上是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加减去两个等边三角形的面积,即32ABC S S S =⨯-⨯△阴影扇形.由题意可得,2602π23603S π=⨯⨯=扇形.要求等边三角形ABC 的面积需要先求高.如下图,过AD 垂直BC 于D ,可知,在Rt∆ABD 中, sin 602AD ADAB ︒==,所以22sin 603AD π=⨯= ,所以112222233ABC S BC AD ππ=⨯⨯=⨯⨯=△.所以232322π23ABC S S S π=⨯-⨯=⨯-⨯=-△阴影扇形.故选D .【考点】等边三角形的性质与面积计算,扇形的面积计算公式11.【答案】A【解析】由题意知,蔬菜产量的年平均增长率为 ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+ )吨,2018年蔬菜产量为80(1+ )(1+ )吨.预计2018年蔬菜产量达到100吨,即80(1+ )(1+ )=100,即80(1+ )=100.故选A .【考点】由实际问题抽象出一元二次方程12.【答案】C【解析】由题意得:Rt DCP Rt DEP △≌△,所以4,DC DE CP EP ===在 Rt OEF △和 Rt OBP △中,,,EOF BOP B E OP OF∠∠∠∠===()Rt OEF Rt OBP AAS △≌△,所以,OE OB EF BP==设EF 为x ,则,4BP x DF DE EF x ==-=-,又因为++BF OF OB OP OE PE PC ====,3PC BC BP x =-=-.所以,()431AF AB BF x x=-=--=+在Rt DAF △,222AF AD DF +=,也就是222((134))x x ++=-解之得35x =,所以35EF =,317455DF -==最终,在Rt DAF △中,17cos ADF DF ∠==.【考点】折叠问题,勾股定理列方程,解三角形,三角函数值第Ⅱ卷二.填空题13.【答案】5x ≥【解析】根据被开方数是非负数,则有50x -≥,∴5x ≥.【考点】二次根式有意义的条件.14.【答案】()(211)a a +-【解析】22()22212()1)(1a a a a -=-=+-步骤一:先提公因式2得到:22( 1)a -,步骤二:再利用平方差公式因式分解得到结果:()(211)a a +-.【考点】因式分解15.【答案】4【解析】解:因为众数为3和5,所以 5x =,所以中位数为:()3524+÷=.【考点】中位数.16.【答案】【解析】∵俯角是45 ,∴ 45BDA ∠= ,∴ 120m AB AD ==,又∵30CAD ∠=∴在Rt △ADC 中tan tan303CD CDA AD ∠=== ,∴ CD =m )【考点】三角函数17.【答案】3【解析】∵031=,133=,239=,3327=,4381=∴个位数4个数一循环,∴2018104()453+÷=余,∴1+3+913=,徐老师∴22081103+3+3++3 的个位数字是3.【考点】循环规律18.【答案】9【解析】根据题意,设点C 的坐标为1,k a a ⎛⎫⎪⎝⎭,∵矩形ABCD 关于y 轴对称,∴12k OB OA a AB a AD BC a=====,,,∴点F 的纵坐标为1k a ,将其代入2k y x =,得点F 的横坐标为21akk ,即点F 的坐标为211,ak k k a ⎛⎫ ⎪⎝⎭,点E 的坐标为2,k a a ⎛⎫-- ⎪⎝⎭,∵1230k k +=,∴11=22k S a k a =矩形,()121211112223BCF k ak S a k k k a k ∆⎛⎫=-=-= ⎪⎝⎭ ,()1222121111121229DEF k k ak k S a k k k a a k k ∆⎛⎫⎛⎫⎡⎤⎛⎫=--+=++= ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭ ,2111223ABE kS a k a∆⎛⎫=-= ⎪⎝⎭,∴1111221-27393BEF BCF DEF ABE S S S S S k k k k ∆∆∆∆=--=---=矩形,即1779k =,解得19k =.【考点】反比例函数的图象与性质,矩形的性质,三角形的面积.三、解答题19.【答案】2+【解析】解:422=+--=+原式【考点】实数的综合运算.20.【答案】32x =【解析】解:方程左右两边同乘3(1)x -,得31)3(2x x x --=,3332x x x -+=,32x =,检验:当32x =时,3()10x -≠,所以,原分式方程的解为32x =.【考点】解分式方程.21.【答案】(1)如图所示,111A B C △即为所求;(2)如图所示,222A B C △即为所求;(3)三角形的形状为等腰直角三角形.【解析】(1)如图所示,111A B C △即为所求;(2)如图所示,222A B C △即为所求;(3)三角形的形状为等腰直角三角形.【考点】平面直角坐标系中的作图变换—平移与旋转.22.【答案】(1)5130(2)“C 等级”对应圆心角的度数为108°(3)恰好选中是1男和1女的概率是12.【解析】(1)m =0.51⨯100=51看扇形可知D 的百分数为15%,则其频率为0.15,则人数为0.15⨯100=15;总人数为100,则C 的人数=总人数-(A 、B 、D )人数,即n =100-4-51-15=30(2)圆周角为360 ,根据频数之和为1,求出C 的频率为0.3,则“C 等级”对应圆心角的度数为0.3360108⨯=(3)将1名男生和3名女生标记为A 1、A 2、A 3、A 4,用树状图表示如下:由树状图可知随机挑选2名学生的情况总共有12种,其中恰好选中1男和1女的情况有6种,概率=61122=【考点】统计表,扇形统计图,概率统计.徐老师23.【答案】证明(1)∵四边形ABCD 是平行四边形,∴∠B =∠D .∵AE ⊥BC ,AF ⊥DC ,∴∠AEB =∠AFD =90°,又∵BE=DF ,∴△AEB ≌△AFD (ASA ).∴AB=AD ,∴四边形ABCD 是菱形.(2)如图,连接BD 交AC 于点O∵由(1)知四边形ABCD 是菱形,AC =6.∴AC ⊥BD ,1632AO OC AC ===⨯=,∵AB =5,AO =3,在Rt △AOB 中,4BO ===∴BD=2BO =8,∴168242S ABCD AC BD =⋅=⨯⨯= 【解析】(1)∵四边形ABCD 是平行四边形,∴∠B =∠D .∵AE ⊥BC ,AF ⊥DC ,∴∠AEB =∠AFD =90°,又∵BE=DF ,∴△AEB ≌△AFD (ASA ).∴AB=AD ,∴四边形ABCD 是菱形.(2)如图,连接BD 交AC 于点O∵由(1)知四边形ABCD 是菱形,AC =6.∴AC ⊥BD ,1632AO OC AC ===⨯=,∵AB =5,AO =3,在Rt △AOB 中,4BO ===∴BD =2BO =8,∴168242S ABCD AC BD =⋅=⨯⨯= 【考点】平行四边形的性质;全等三角形的性质与判定;勾股定理;菱形的判定与性质、面积计算.24.【答案】(1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨,根据题意得:450(140%)30(160%).x y y x +=⎧⎨--=-⎩,解得:240210.x y =⎧⎨=⎩,答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m 吨原料到工厂,则从乙仓库运300m -吨原料到工厂总运费120100300()()(20000)30W a m m a m =-+-=-+即()2030000W a m =-+.(3)①当1020a ≤<, 200a ->,由一次函数的性质可知,W 随着m 的增大而增大②当20a =时, 200a -=,W 随着m 的增大没有变化③当2030a <≤, 200a -<,W 随着m 的增大而减小.【解析】(1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨,根据题意得:450(140%)30(160%).x y y x +=⎧⎨--=-⎩,解得:240210.x y =⎧⎨=⎩,答:故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意,从甲仓库运m 吨原料到工厂,则从乙仓库运300m -吨原料到工厂总运费120100300()()(20000)30W a m m a m =-+-=-+即()2030000W a m =-+.(3)①当1020a ≤<, 200a ->,由一次函数的性质可知,W 随着m 的增大而增大②当20a =时, 200a -=,W 随着m 的增大没有变化③当2030a <≤, 200a -<,W 随着m 的增大而减小.【考点】二元一次方程组;一次函数的性质及应用25.【答案】解:(1)证明:如图1,连接OB ,则OB OD =∴BDC DBO∠=∠徐老师∵ BCBC =∴A BDC ∠=∠∴A BDC ∠=∠又∵CBG A ∠=∠∴CBG DBO ∠=∠CD 是⊙O 直径∴90DBO OBC ∠+∠=︒∴90CBG OBC ∠+∠=︒∴90OBG ∠=︒点B 在圆上,∴PG 与⊙O 相切.(2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC∠=∠=∠12AM AC =∵AC AC =∴1 2ABC AOC ∠=∠又∵ 90EFB OGA ∠=∠=︒∴BEF OAM △∽△∴BEF OAM△∽△12EF AC OA OC AM =⋅=∴12EF BEOC AC =又∵58EF AC =∴552284BE EF OC AC =⨯=⨯=方法二:∵CD 是⊙O 直径∴ 90DBC ∠= 又∵DCB ECF∠=∠∴DCB ECF =△△∴DCB ECF ∽△△∴EF ECDB DC=又∵BDE EAC∠=∠DBE AEC∠=∠∴DB BEAC EC=①⨯②得:EF DB EC BEDB AC DC EC⨯=⨯即∵EF BEAC DC=58BE DC =又∵2DC OC =∴528BE OC =∴54BE OC =(3)∵ PD OD =, 90PDO ∠=︒∴8BD OD ==在 Rt DBC ∆中,8BC =又OD OB=∴DOB △是等边三角形∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC ∠=∠+∠=∴30OCB ∠=︒12EF FCCE EF=⋅∴可设,2,3EF x EC x FC x ===∴83BF x=-在Rt BEF ∆中,222BE EF BF =+222210(43)213EH BE BH =-=-=22100(83)x x =+-徐老师∴4OE EH OH =-=-.【解析】解:(1)证明:如图1,连接OB ,则OB OD =∴BDC DBO∠=∠∵ BCBC =∴A BDC ∠=∠∴A BDC ∠=∠又∵CBG A ∠=∠∴CBG DBO ∠=∠CD 是⊙O 直径∴90DBO OBC ∠+∠=︒∴90CBG OBC ∠+∠=︒∴90OBG ∠=︒点B 在圆上,∴PG 与⊙O 相切.(2)方法一:如图2过O 作OM ⊥AC 于点M ,连接OA ,则12AOM COM AOC∠=∠=∠12AM AC =∵AC AC =∴1 2ABC AOC ∠=∠又∵ 90EFB OGA ∠=∠=︒∴BEF OAM △∽△∴BEF OAM△∽△12EF AC OA OC AM =⋅=∴12EF BEOC AC =又∵58EF AC =∴552284BE EF OC AC =⨯=⨯=方法二:∵CD 是⊙O 直径∴ 90DBC ∠= 又∵DCB ECF ∠=∠∴DCB ECF =△△∴DCB ECF ∽△△∴EF ECDB DC=又∵BDE EAC∠=∠DBE AEC∠=∠∴DB BEAC EC=①⨯②得:EF DB EC BEDB AC DC EC⨯=⨯即∵EF BEAC DC=58BE DC =又∵2DC OC =∴528BE OC =∴54BE OC =(3)∵ PD OD =, 90PDO ∠=︒∴8BD OD ==在 Rt DBC ∆中,8BC =又OD OB=∴DOB △是等边三角形∴60DOB ∠=︒∵ ,DOB OBC OCB OB OC ∠=∠+∠=∴30OCB ∠=︒徐老师12EF FCCE EF=⋅∴可设,2,3EF x EC x FC x ===∴83BF x=-在Rt BEF △中,222BE EF BF =+222210(43)213EH BE BH =-=-=22100(83)x x =+-∴2134OE EH OH =-=-.【考点】切线的性质和判断,相似三角形.26.【答案】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+可得1,4,6a c =-=∴抛物线的解析式为215466y x x =-++∵AC BC =,∴ABC △是等腰三角形.又点B 在x 轴上,∴()3,0B 又∵BD x ⊥轴,D 在抛物线上,∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a ∵CM BN=∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+①当90CMN ∠=︒时,CMN COB △∽△由CM CNCO CB =得41+45a a -=解得:169a =16(0,)9M ②当∠CNM=90°时,CNM COB △∽△由CM CN CB CO =得41+54a a -=解得:119a =11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M(3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN ∠=∠∵OCB ACM ∠=∠∴ ACM DBN ∠=∠又∵,CM BN AC BD ==∴( )CAM BDN SAS ≅△△∴AM DN=∴AM AN DN AN+=+当A 、N 、D 三点共线时,DN AN AD +=即AM AN +的最小值为AD ∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得,2222+6+561AD AB BD ===∴AM AN +的最小值为61.【解析】解:(1)根据题意,把A (-3,0),C (0,4)带入25y ax ax c =-+可得1,4,6a c =-=∴抛物线的解析式为215466y x x =-++∵AC BC =,∴ABC △是等腰三角形.又点B 在x 轴上,∴()3,0B 又∵BD x ⊥轴,D 在抛物线上,∴D (3,5)(2)由(1)得4,5OC BC ==,设()0,M a ∵CM BN=∴4CM BN a ==-,5(4)1CN BC BN a a =-=--=+①当90CMN ∠=︒时,CMN COB △∽△由CM CN CO CB =得41+45a a -=解得:169a =16(0,)9M徐老师第21页②当90CNM ∠=︒时,CNM COB△∽△由CM CN CB CO =得41+54a a -=解得:119a =11(0,)9M 综上所述:当CMN △是直角三角形时,16(0,)9M 或11(0,)9M (3)连接DN 、AD ,如右图,BD y ⊥轴∴OCB DBN∠=∠∵OCB ACM∠=∠∴ ACM DBN∠=∠又∵,CM BN AC BD==∴( )CAM BDN SAS ≅△△∴AM DN=∴AM AN DN AN+=+当A 、N 、D 三点共线时,DN AN AD+=即AM AN +的最小值为AD∵6,5AB BD ==∴在 Rt ABD △中,由勾股定理得,AD ===∴AM AN +【考点】用待定系数法求解析式,动点形成相似三角形的运用,全等三角形的证明,动点中线段和最值问题的转化。

广西北部湾经济区四市同城2018届数学中考模拟试卷

广西北部湾经济区四市同城2018届数学中考模拟试卷

广西北部湾经济区四市同城2018届数学中考模拟试卷一、选择题(每小题3分;共36分)1.如图,把等腰直角三角尺的直角顶点放在直尺的一边上,则∠1+∠2的度数为()A. 60°B. 90°C. 120°D. 135°2.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.3.据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A. 0.332×106B. 3.32×105C. 3.32×104D. 33.2×1044.下列计算结果正确的是()A. (mn)6÷(mn)3=mn3B. (x+y)6÷(x+y)2·(x+y)3=x+yC. x10÷x10=0D. (m-2n)3÷(-m+2n)3=-15.下列说法中正确的是()A. “打开电视,正在播放《新闻联播》”是必然事件;B. 某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖;C. 数据1,1,2,2,3的众数是3;D. 想了解无锡市城镇居民人均年收入水平,宜采用抽样调查6.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE 的周长是()A. 3B. 4C. 5D. 67.某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众”.小明给此直播节目发了一条短信,他成为“幸运观众”的概率是()A. B. C. D.8.若关于x的一元二次方程kx2 - 6x + 9 = 0有两个不相等的实数根,则k的取值范围是()A. k<1B. k<1且k≠0C. k≠0D. k>19.已知y=ax2+k的图象上有三点A(﹣3,y1),B(1,y2),C(2,y3),且y2<y3<y1,则a的取值范围是()A. a>0B. a<0C. a≥0D. a≤010.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A. B. C. D.11.如图,一个半径为r(r<1)的圆形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A. πr2B.C. r2D. r212.如图,在Rt△ABC中,∠C=90°,AC= ,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A. 1B.C.D.二、填空题(每小题3分;共18分)13.求代数式a()2-+c+1的值是________.14.为了解居民用水情况,小明在某小区随机抽查了20户家庭的月用水量,结果如下表:(1)则这20户家庭的月用水量的众数是________m3,中位数是________m3.15.分解因式:ma2﹣4ma+4m=________.16.扇形的圆心角为120°,弧长为6πcm,那么这个扇形的面积为________ cm2.17.如下图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是________ .18.如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A按逆时针旋转90°后得到△AO1B1,则点B1的坐标是________.三、解答题(每小题3分;共46分)19.计算:(﹣)﹣2﹣| ﹣2|+(π﹣2016)0﹣﹣tan60°.20.解不等式组:,并把它的解集在数轴上表示出来.21.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)22.松山区种子培育基地用A,B,C三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C型号种子的发芽率为80%,根据试验数据绘制了下面两个不完整的统计图:(1)求C型号种子的发芽数;(2)通过计算说明,应选哪种型号的种子进行推广?(3)如果将所有已发芽的种子放在一起,从中随机取出一粒,求取到C型号发芽种子的概率.23.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)24.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,用哪种方式购票更省钱?25.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是________.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.26.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.参考答案一、选择题1. D2. D3. B4. D5. D6. C7. B8.B9.A 10. D 11. C 12. A二、填空题13.1 14.(1)5;5.5 15.m(a﹣2)216.27π 17.n2+2n 18.(﹣1,﹣3)三、解答题19.解:原式=4﹣2+ +1﹣4﹣v=﹣120.【解答】解:由①得,x≤2,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:21. 解:如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.22.(1)解:读图可知:C型号种子占1﹣30%﹣30%=40%,即1500×40%=600粒;因为其发芽率为80%,故其发芽数是600×80%=480粒(2)解:A型号种子数为1500×30%=450,发芽率为:×100%≈93%;B型号种子数为1500×30%=450,发芽率为:×100%≈82%;C型号种子的发芽率为80%,所以应选A型号的种子进行推广(3)解:在已发芽的种子中;有A型号的420粒,B型号的370粒,C型号的480粒;故从中随机取出一粒,求取到C型号发芽种子的概率为=23. (1)解:延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,如图所示.∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36× =24,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t= = 小时=20分钟,∴轮船照此速度与航向航向,上午11::00到达海岸线(2)∵BD=BC,BE⊥CD,∴DE=EC,在RT△BEC中,∵BC=12,∠BCE=30°,∴BE=6,EC=6 ≈10.2,∴CD=20.4,∵20<20.4<21.5,∴轮船不改变航向,轮船可以停靠在码头.24.(1)解:设去了x个成人,则去了(12﹣x)个学生,依题意得40x+20(12﹣x)=400,解得:x=8,12﹣x=4;答:他们一共去了8个成人,4个学生(2)解:若按团体票购票:16×40×0.6=384∵384<400,∴按团体票购票更省钱25.(1)50°(2)解:如图:①∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm;②当点P与点M重合时,PB+CP的值最小,最小值是8cm.26.(1)解:∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:,解得:,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4)(2)解:设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D= B′D= m,则点B′的坐标为(m+1,0),点G′的坐标为(1,m),将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),,∴k=1(3)解:设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均为钝角,∴△AOQ≌△PQN,如图2,延长PQ交直线y=﹣1于点H,则∠QHN=∠OMQ=90°,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x= (负值舍去),当x= 时,HN=QM=﹣x2+2x+2= ,点M(,0),∴点N坐标为(+ ,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1)。

2018年广西中考数学试题(含答案和解析)

2018年广西中考数学试题(含答案和解析)

2018年广西中考数学试题(含答案和解析)一、选择题(本大题共12小题,每小题3分,计36分.在每小题给出的四个选项中只有一个选项是符合要求的.)1.(3分)(2014年广西北海)计算(﹣2)+(﹣3)的结果是()A.﹣5 B.﹣1 C.1 D. 5【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选A【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.2.(3分)(2014年广西北海)从上面看如图所示的几何体,得到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有1个正方形,下面一层有3个正方形.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2014年广西北海)甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1环,各自的方差见如下表格:甲乙丙丁方差0.293 0.375 0.362 0.398由上可知射击成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【解答】解:∵0.293<0.362<0.375<0.398.∴甲的射击成绩最稳定.故选:A.【点评】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.(3分)(2014年广西北海)若两圆的半径分别是1cm和4cm,圆心距为5cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离【考点】圆与圆的位置关系.【分析】设两圆的半径分别为R和r,且R≥r,圆心距为P:外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R ﹣r.【解答】解:∵⊙O1与⊙O2的圆心距是5cm,它们的半径分别为1cm和4cm. 1+4=5.∴两圆外切.故选C.【点评】本题利用了两圆外切时,圆心距等于两圆半径之和的性质求解.5.(3分)(2014年广西北海)在平面直角坐标系中,点M(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点M(﹣2,1)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(3分)(2014年广西北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D. 11【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.【解答】解:∵D、E分别是边AB、AC的中点.∴DE是△ABC的中位线.∴BC=2DE=2×5=10.故选C.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.7.(3分)(2014年广西北海)下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D. 4个【考点】轴对称图形.【分析】利用关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:圆弧、角、等腰梯形都是轴对称图形.故选;C.【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.8.(3分)(2014年广西北海)下列命题中,不正确的是()A. n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半【考点】命题与定理.【分析】利用多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质逐一判断后即可确定正确的选项.【解答】解:A、n边形的内角和等于(n﹣2)•180°,正确;B、两组对边分别相等的四边形是平行四边形,故错误;C、垂直于弦的直径平分弦所对的两条弧,正确;D、直角三角形斜边上的中线等于斜边的一半,正确.故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质,难度不大.9.(3分)(2014年广西北海)已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是()A.5πB.6πC.8πD. 10π【考点】弧长的计算.【分析】直接利用弧长公式l=求出即可.【解答】解:此扇形的弧长是:=10π.故选:D.【点评】此题主要考查了弧长计算,正确记忆弧长公式是解题关键.10.(3分)(2014年广西北海)北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A.+1.8=B.﹣1.8=C.+1.5=D.﹣1.5=【考点】由实际问题抽象出分式方程.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.【解答】解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x.由题意得,﹣1.5=.故选D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.(3分)(2014年广西北海)如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D. 60°【考点】旋转的性质.【专题】计算题.【分析】先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.【解答】解:∵DC∥AB.∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置.∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA=65°.∴∠CAD=180°﹣∠ADC﹣∠DCA=50°.∴∠BAE=50°.故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.12.(3分)(2014年广西北海)函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】分a>0和a<0两种情况讨论二次函数和反比例函数图象所在的象限,然后选择答案即可.【解答】解:a>0时,y=ax2+1开口向上,顶点坐标为(0,1).y=位于第一、三象限,没有选项图象符合.a<0时,y=ax2+1开口向下,顶点坐标为(0,1).y=位于第二、四象限,B选项图象符合.故选B.【点评】本题考查了二次函数图象与反比例函数图象,熟练掌握系数与函数图象的关系是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年广西北海)已知∠A=43°,则∠A的补角等于137度.【考点】余角和补角.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=43°.∴它的补角=180°﹣4°=137°.故答案为:137.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.14.(3分)(2014年广西北海)因式分解:x2y﹣2xy2=xy(x﹣2y).【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而得出答案.【解答】解:x2y﹣2xy2=xy(x﹣2y).故答案为:xy(x﹣2y).【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.15.(3分)(2014年广西北海)若一元二次方程x2﹣6x+m=0有两个相等的实数根,则m的值为9.【考点】根的判别式.【分析】满足△=b2﹣4ac=0,得到有关m的方程即可求出m的值.【解答】9解:∵关于x的一元二次方程x2﹣6x+m=0有两个相等的实数根.∴△=b2﹣4ac=36﹣4m=0.解得:m=9.故答案为:9.【点评】此题主要考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.(3分)(2014年广西北海)某校男子足球队的年龄分布如图的条形统计图,则这些足球队的年龄的中位数是15岁.【考点】中位数;条形统计图.【分析】根据年龄分布图和中位数的概念求解.【解答】解:根据图示可得,共有:8+10+4+2=24(人).则第12名和第13名的平均年龄即为年龄的中位数.即中位数为15.故答案为:15.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.(3分)(2014年广西北海)下列式子按一定规律排列:,,,,…,则第2014个式子是.【考点】单项式.【专题】规律型.【分析】根据已知式子得出各项变化规律,进而得出第n个式子是:,求出即可.【解答】解:∵,,,,….∴第n个式子是:.∴第2014个式子是:.故答案为:.【点评】此题主要考查了数字变化规律,得出分子与分母的变化规律是解题关键.18.(3分)(2014年广西北海)如图,反比例函数y=(x>0)的图象交Rt△OAB 的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为20.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义以及相似三角形的性质得出S△ODE=S△OBC=k,S△AOB=k+5,=,进而求出即可.【解答】解:过D点作x轴的垂线交x轴于E点.∵△ODE的面积和△OBC的面积相等=.∵△OAC的面积为5.∴△OBA的面积=5+.∵AD:OD=1:2.∴OD:OA=2:3.∵DE∥AB.∴△ODE∽△OAB.∴=()2.即=.解得:k=20.【点评】本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.三、解答题(本大题共8小题,满分66分,解答应写出必要的文字说明、演算步骤或推理过程)19.(6分)(2014年广西北海)计算:()﹣1﹣|﹣2|+﹣(+1)0.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=3﹣4+2﹣1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2014年广西北海)解方程组.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:.①+②得:7x=14.解得:x=2.把x=2代入①得6+y=3.解得:y=﹣3.则原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2014年广西北海)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.【考点】列表法与树状图法.【分析】(1)利用树形图”或“列表法”即可求出两辆汽车行驶方向所有可能的结果;(2)根据(1)中的列表情况即可求出这两辆汽车都向左转的概率.【解答】解:(1)两辆汽车所有9种可能的行驶方向如下:甲汽车乙汽车左转右转直行左转(左转,左转)(右转,左转)(直行,左转)右转(左转,右转)(右转,右转)(直行,右转)直行(左转,直行)(右转,直行)(直行,直行)(2)由上表知:两辆汽车都向左转的概率是:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(8分)(2014年广西北海)已知△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.【考点】作图—复杂作图;切线的判定.【分析】(1)作出线段AC的垂直平分线进而得出AC垂直平分线与线段AB的交点O,进而以AO为半径做圆即可;(2)连接CO,再利用已知得出∠OCB=90°,进而求出即可.【解答】解:(1)作图如图1:(2)证明:如图2.连接OC,∵OA=OC,∠A=25°∴∠AOC=50°.又∵∠C=40.∴∠AOC+∠C=90°∴∠OCB=90°∴OC⊥BC∴BC是⊙O的切线.【点评】此题主要考查了复杂作图以及切线的判定利用线段垂直平分线的性质得出圆心位置是解题关键.23.(8分)(2014年广西北海)如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)【考点】解直角三角形的应用.【分析】通过解直角△BAE求得BD=AB•tan∠BAE,通过解直角△CED求得CE=CD•cos∠BAE.然后把相关角度所对应的函数值和相关的线段长度代入进行求值即可.【解答】解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°.∴∠DCE=22°.又∵tan∠BAE=.∴BD=AB•tan∠BAE.又∵cos∠BAE=.∴CE=CD•cos∠BAE=(BD﹣BC)•cos∠BAE=(AB•tan∠BAE﹣BC)•cos∠BAE=(10×0.4040﹣0.5)×0.9272≈3.28(m).【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算BD的值是解题的关键.24.(8分)(2014年广西北海)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于 1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?【考点】一次函数的应用.【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【解答】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000,[700x+100(100﹣x)≤40000,x≤50];(2)令y≥12600.则140x+6000≥12600.∴x≥47.1.又∵x≤50∴经销商有以下三种进货方案:方案A品牌(块)B品牌(块)①48 52②49 51③50 50(3)∵140>0.∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000.∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点评】本题主要考查了一次函数和一元一次不等式组的实际应用,难度适中,得出商场获得的利润y与购进空调x的函数关系式是解题的关键.在解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.25.(10分)(2014年广西北海)如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当=时,求sin∠CFE的值.【考点】四边形综合题.【专题】综合题.【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等,利用全等三角形的对应边相等即可得证;(2)由(1)得到BC=AB=EG,利用等式的性质得到BE=CG,根据FG=BE,等量代价得到FG=CG,即三角形FCG为等腰直角三角形,得到∠FCG=45°,即可得证;(3)如图,作CH⊥EF于H,则△EHC∽△EGF,利用相似得比例,根据BE 与BC的比值,设出BE,EC,以及EG,FG,利用勾股定理表示出EF,CF,进而表示出HC,在直角三角形HC中,利用锐角三角函数定义即可求出sin∠CFE 的值.【解答】(1)证明:∵EP⊥AE.∴∠AEB+∠GEF=90°.又∵∠AEB+∠BAE=90°.∴∠GEF=∠BAE.又∵FG⊥BC.∴∠ABE=∠EGF=90°.在△ABE与△EGF中..∴△ABE≌△EGF(AAS).∴FG=BE;(2)证明:由(1)知:BC=AB=EG.∴BC﹣EC=EG﹣EC.∴BE=CG.又∵FG=BE.∴FG=CG.又∵∠CGF=90°.∴∠FCG=45°=∠DCG.∴CF平分∠DCG;(3)解:如图,作CH⊥EF于H.∵∠HEC=∠GEF,∠CHE=∠FGE=90°.∴△EHC∽△EGF.∴=.根据=,设BE=3a,则EC=3a,EG=4a,FG=CG=3a.∴EF=5a,CF=3 a.∴=,HC=a.∴sin∠CFE==.【点评】此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,以及锐角三角函数定义,熟练掌握判定与性质是解本题的关键.26.(12分)(2014年广西北海)如图(1),抛物线y=﹣x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).(1)求此抛物线的解析式;(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A的坐标代入抛物线的解析式,即可得到关于c的方程,求的c 的值,则抛物线的解析式即可求解;(2)①连接MC、MD,证明△COM∽△MED,根据相似三角形的对应边的比相等即可求解;②分四边形是▱ACGF和四边形是▱ACFG两种情况进行讨论,根据平行四边形的性质即可求解.【解答】解:(1)由已知有:﹣(﹣2)2+(﹣2)+c=0.∴c=3,抛物线的解析式是:y=﹣x2+x+3.(2)①令D(x,y),(x>0,y>0).则E(x,0),M(,0),由(1)知C(0,3).连接MC、MD.∵DE、CD与⊙O相切.∴∠CMD=90°.∴△COM∽△MED.∴=.∴=.又∵y=﹣x2+x+3.∴x=(1±).又∵x>0.∴x=(1+).∴y=(3+),则D点的坐标是:((1+,(3+)).②假设存在满足条件的点G(a,b).若构成的四边形是▱ACGF,(下图1)则G与C关于直线x=2对称.∴G点的坐标是:(4,3);若构成的四边形是▱ACFG,(下图2)则由平行四边形的性质有b=﹣3.又∵﹣a2+a+3=﹣3.∴a=2±2.此时G点的坐标是:(2±2,﹣3)【点评】本题考查了待定系数法求二次函数的解析式以及相似三角形的判定与性质,平行四边形的性质,正确求得当CD与⊙M相切时D点的坐标是关键.。

2018年广西北部湾经济区中考数学试卷

2018年广西北部湾经济区中考数学试卷

广西北部湾经济区2018年初中学业水平统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的倒数是( )A .3-B .3C .13-D .132.下列美丽的壮锦图案是中心对称图形的是( )ABCD3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为( )A .38110⨯B .48.110⨯C .58.110⨯D .50.8110⨯4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为 ( ) A .7分 B .8分 C .9分D .10分 5.下列运算正确的是( )A .2()+1+1a a a =B .235()a a =C .233+4a a a =D .523a a a ÷=6.如图,ACD ∠是ABC △的外角,CE 平分ACD ∠,若60A ∠=︒, 40B ∠=︒,则ECD ∠等于( )A .40︒B .45︒C .50︒D .55︒7.若m n >,则下列不等式正确的是( )A .22m n -<-B .44m n > C .66m n <D .88m n ->-8.从2-,1-,2这三个数中任取两个不同的数相乘,积为正数的概率是 ( )A .23B .12C .13D .149.将抛物线21 6212y x x =-+向左平移2个单位后,得到新抛物线的解析式为 ( ) A .21(+52)8y x =- B .21(+52)4y x =- C .21(+32)8y x =-D .21(+32)4y x =-10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为( )A .π+3B .π3-C .2π3-D .2π23-11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为 ( ) A .2()801+100x = B .2100180()x -= C .8012100()x +=D .28()01100x +=12.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP △沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP OF =,则cos ADF ∠的值为( )A .1113B .1315C .1517D .1719第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)13.,则实数x 的取值范围是 . 14.因式分解:2 22a -= .15.已知一组数据6,,3351x ,,,的众数是3和5,则这组数据的中位数是 . 16.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30︒,从甲楼顶部B 处测得乙楼底部D 处的俯角是45︒.已知甲楼的高AB 是120m ,则乙楼的高CD 是 m (结果保留根号).17.观察下列等式:031=,133=,239=,3327=,4381=,53243=,…,根据其中规律可得22081103+3+3++3L 的结果的个位数字是 .18.如图,矩形ABCD 的顶点,A B 在x 轴上,且关于y 轴对称,反比例函数10() k y x x=>的图像经过点C ,反比例函数20() k y x x=<的图像分别与,AD CD 交于点 , E F ,若7BEF S =△,1230k k +=,则1k 等于.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:114+3tan60()2--︒.20.(本小题满分6分) 解分式方程:21133x xx x -=--.21.(本小题满分8分)如图,在平面直角坐标系中,已知ABC △的三个顶点坐标分别是(1,1)A ,(4,1)B ,(3,3)C .(1)将ABC △向下平移5个单位后得到111A B C △,请画出111A B C △; (2)将ABC △绕原点O 逆时针旋转90︒后得到222A B C △,请画出222A B C △; (3)判断以1,,O A B 为顶点的三角形的形状.(无须说明理由)22.(本小题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应圆心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛.请用树状图法或列表法求出恰好选中“1男1女”的概率.23.(本小题满分8分)如图,在ABCD⊥,垂足分别为 ,E F,且BE DF=.⊥,AF CDY中,AE BC(1)求证:ABCDY是菱形;(2)若5Y的面积.AC=,求ABCDAB=,624.(本小题满分10分)某公司在甲、乙两仓库共存放某种原料450吨.如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(1030a ≤≤),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,请求出总运费W 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,W 的变化情况.25.(本小题满分10分)如图,ABC △内接于⊙O ,CBG A ∠=∠,CD 为直径,OC 与 AB 相交于点E ,过点E 作EF BC ⊥,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD . (1)求证: PG 与⊙O 相切; (2)若58EF AC =,求BEOC的值. (3)在(2)的条件下,若⊙O 的半径为8,PD OD =,求OE 的长.26.(本小题满分10分)如图,抛物线25+y ax ax c =-与坐标轴分别交于点A ,C ,E 三点,其中0()3, A -,M N分()0,4C,点B在x轴上,AC BC=,过点B作BD x⊥轴交抛物线于点D,点,别是线段,MN AM AN.CO BC上的动点,且CM BN=,连接, ,(1)求抛物线的解析式及点D的坐标;(2)当CMN△是直角三角形时,求点M的坐标;(3)试求出+AM AN的最小值.。

2018年广西北部湾经济区中考数学三模试卷(有答案)

2018年广西北部湾经济区中考数学三模试卷(有答案)

2018年广西北部湾经济区中考数学三模试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1084.(3分)如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为()A.αB.C.90﹣αD.90﹣α5.(3分)在一次中学生汉字听写大赛中,某中学代表队6名同学的笔试成绩分别为75,85,91,85,95,85.关于这6名学生成绩,下列说法正确的是()A.平均数是87 B.中位数是88 C.众数是85 D.方差是2306.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(3分)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.()﹣1﹣22=﹣2 D.(a﹣b)2=a2﹣b28.(3分)三角形的外接圆的圆心为()A.三条高的交点B.三条边的垂直平分线的交点C.三条角平分线的交点D.三条中线的交点9.(3分)某市为治理污水,需要铺设一段全长3000m的污水排放管道,为了尽量减少施工队城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务,求原计划每天铺设多长管道.若设原计划每天铺设x米,则根据题意所列方程正确的是()A.B.C.D.10.(3分)如图,在4×4的正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.11.(3分)若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.(3分)已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:B.2:3:4 C.1::2 D.1:2:3二.填空题(共6小题,满分18分,每小题3分)13.(3分)分解因式:16m2﹣4=.14.(3分)一艘轮船以16海里/时的速度从港口A出发向北偏东65°方向航行,另一艘轮船以12海里/时的速度同时从港口A出发向南偏东25°方向航行,离开港口2小时后,两船相距海里.15.(3分)要使分式和都有意义,则x的取值范围是.16.(3分)我市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计2009年比2008年增长7%,求这两年的平均增长率.若这两年GDP年平均增长率为x%,则可列方程是.17.(3分)在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为.18.(3分)如图,点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.三.解答题(共2小题,满分12分,每小题6分)19.(6分)计算:(﹣1)2+3tan30°﹣(﹣2)(+2)+2sin60°.20.(6分)解方程:=1﹣.四.解答题(共2小题,满分16分,每小题8分)21.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移3个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使PA1+PC2的值最小,并求最小值.22.(8分)某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.五.解答题(共1小题,满分8分,每小题8分)23.(8分)如图,在正方形ABCD中,P是BD上一点,AP的延长线交CD于点Q,交B C的延长线于点G,点M是GQ的中点,连接CM.求证:PC⊥MC.六.解答题(共1小题,满分10分,每小题10分)24.(10分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W 与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?七.解答题(共1小题,满分10分,每小题10分)25.(10分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(Ⅰ)求证:PA是⊙O的切线;(Ⅱ)若BC=2,AB=2,求sin∠ABD的值.八.解答题(共1小题,满分10分,每小题10分)26.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2018年广西北部湾经济区中考数学三模试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:﹣2017的倒数是﹣.故选:B.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:5 300万=5 300×103万美元=5.3×107美元.故选C.4.【解答】解:如图,过C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,∵∠ABD=52°,∠ABC=116°,∴∠DBC=∠CBE=64°,∴BC平分∠DBE,∴CE=CF,又∵AC平分∠BAD,∴CE=CG,∴CF=CG,又∵CG⊥AD,CF⊥DB,∴CD平分∠BDG,∵∠CBE是△ABC的外角,∠DBE是△ABD的外角,∴∠ACB=∠CBE﹣∠CAB=(∠DBE﹣∠DAB)=∠ADB,∴∠ADB=2∠ACB=2α°,∴∠BDG=180°﹣2α°,∴∠BDC=∠BDG=90°﹣α°,故选:C.5.【解答】解:(75+85+91+85+95+85)÷6=86,故A错误;按大小顺序排列95,91,85,85,85,75,中间两个数为85,故B错误;出现了3次,次数最多,故众数是85,故C正确,S2= [(75﹣86)2+3(85﹣86)2+(91﹣86)2+(95﹣86)2]=38.3,故D错误;故选:C.6.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.7.【解答】解:A、4a﹣2a=2a,故此选项错误;B、a6÷a3=a3,故此选项错误;C、()﹣1﹣22=2﹣4=﹣2,正确;D、(a﹣b)2=a2﹣2ab+b2,故此选项错误;故选:C.8.【解答】解:A、三角形三条高的交点是三角形的垂心,故A错误;B、由于三角形的外心是三角形三条边的垂直平分线的交点,故B正确;C、三角形三条角平分线的交点是三角形的内心,故C错误;D、三角形三边中线的交点是三角形的重心,故D错误;故选:B.9.【解答】解:由题意可得,,故选:B.10.【解答】解:∵由题意,共16﹣3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为P=.∴选D.11.【解答】解:一元二次方程nx2﹣2x﹣1=0无实数根,说明△=b2﹣4ac<0,即(﹣2)2﹣4×n×(﹣1)<0,解得n<﹣1,所以n+1<0,﹣n>0,故一次函数y=(n+1)x﹣n的图象不经过第三象限.故选:C.12.【解答】解:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:3,所以内切圆半径,外接圆半径和高的比是1:2:3.故选D.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)14.【解答】解:如图所示,∠1=65°,∠2=25°,故∠AOB=90°,即△AOB是直角三角形,OA=16×2=32海里,OB=12×2=24海里,由勾股定理得,AB===40海里.故答案为40.15.【解答】解:x应满足①x2+2x≥0;②|x|﹣4≥0;③x2﹣2x≥0;④x+4≥0;⑤≠;⑥x2﹣x﹣2≥0;⑦x2+x﹣2≥0;⑧≠2,依次解得:①x≤﹣2或x≥0;②x≤﹣4或x≥4;③x≤0或x≥2;④x≥﹣4;⑤x≠4,x≠﹣1;⑥x≤﹣1或x≥2;⑦x≤﹣2或x≥1;⑧x≠﹣3,x≠2,∴综合可得x=﹣4或x>4.故答案为:x=﹣4或x>4.16.【解答】解:设2007年的国内生产总值为1,∵2008年国内生产总值(GDP)比2007年增长了12%,∴2008年的国内生产总值为1+12%;∵2009年比2008年增长7%,∴2009年的国内生产总值为(1+12%)(1+7%),∵这两年GDP年平均增长率为x%,∴2009年的国内生产总值也可表示为:(1+x%)2,∴可列方程为:(1+12%)(1+7%)=(1+x%)2.17.【解答】解:由折叠的性质得,∠EC′D′=∠C=90°,C′E=CE,∵点B、C′、D′在同一直线上,∴∠BC′E=90°,∵BC=12,BE=2CE,∴BE=8,C′E=CE=4,在Rt△BC′E中,=2,∴∠C′BE=30°,①当点C′在BC的上方时,如图1,过E作EG⊥AD于G,延长EC′交AD于H,则四边形ABEG是矩形,∴EG=AB=6,AG=BE=8,∵∠C′BE=30°,∠BC′E=90°,∴∠BEC′=60°,由折叠的性质得,∠C′EF=′CEF,∴∠C′EF=∠CEF=60°,∵AD∥BC∴∠HFE=∠CEF=60°,∴△EFH是等边三角形,∴在Rt△EFG中,EG=6,∴GF=2,∴AF═8+2;②当点C′在BC的下方时,如图2,过F作FG⊥AD于G,D′F交BE于H,同①可得,四边形ABGF是矩形,△EFH是等边三角形,∴AF=BG,FG=AB=6,∠FEH=60°,在Rt △EFG 中,GE=2,∵BE=8,∴BG=8﹣2,∴AF=8﹣2,综上所述,AF 的长是8+2或8﹣2.故答案为:8或8﹣2.18.【解答】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=的交点, ∴点A 与点B 关于原点对称, ∴OA=OB ,∵△ABC 为等腰直角三角形, ∴OC=OA ,OC ⊥OA , ∴∠DOC +∠AOE=90°, ∵∠DOC +∠DCO=90°, ∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,,∴△COD ≌△OAE (AAS ),设A点坐标为(a,),则OD=AE=,CD=OE=a,∴C点坐标为(﹣,a),∵﹣•a=﹣8,∴点C在反比例函数y=﹣图象上.故答案为:y=﹣.三.解答题(共2小题,满分12分,每小题6分)19.【解答】解:(﹣1)2+3tan30°﹣(﹣2)(+2)+2sin60°=4﹣2+3×﹣(5﹣4)+2×=4﹣2+﹣1+=3.20.【解答】解:=1﹣方程两边同乘以x﹣2,得1﹣x=x﹣2﹣3解得,x=3,检验:当x=3时,x﹣2≠0,故原分式方程的解是x=3.四.解答题(共2小题,满分16分,每小题8分)21.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求;(3)如图所示:作出A1的对称点A′,连接A′C2,交x轴于点P,则点P即为所求,最短距离为=.22.【解答】解:(1)20÷40%=50(人)15÷50=30%答:本次调查的学生共有50人,在扇形统计图中,m的值是30%.(2)50×20%=10(人)50×10%=5(人).(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,12种,则P(一男一女)==答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是.故答案为:50、30%.五.解答题(共1小题,满分8分,每小题8分)23.【解答】证明:∵BD为正方形ABCD的对角线,∴∠ADP=∠CDP,AD=CD.在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴∠DCP=∠DAG.又∵四边形ABCD为正方形,∴AD∥BG,∴∠DAG=∠G.∴∠DCP=∠G.又∵∠QCG=90°,M为GQ中点,∴CM=QM,∴∠MCQ=∠MQC.又∵∠G+∠MQC=90°,∴∠DCP+∠MCQ=90°,∴PC⊥MC.六.解答题(共1小题,满分10分,每小题10分)24.【解答】解:(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,,解得,,即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)由题意可得,W=6x+,化简,得W=4x+100,即W与x之间的函数关系式是:W=4x+100;(3),解得,10≤x≤12.5,故有三种购买方案,由W=4x+100可知,W随x的增大而增大,故当x=12时,,即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.七.解答题(共1小题,满分10分,每小题10分)25.【解答】(Ⅰ)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(Ⅱ)解:∵AO⊥BC,BC=2,∴BE=,又∵AB=6∴sin∠BAE==,∵OA=OB∴∠ABD=∠BAO,∴sin∠ABD=sin∠BAE=.八.解答题(共1小题,满分10分,每小题10分)26.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。

广西北部湾经济区四市同城2018届数学中考模拟试卷(6月份)

广西北部湾经济区四市同城2018届数学中考模拟试卷(6月份)

广西北部湾经济区四市同城2018届数学中考模拟试卷(6月份)一、单1.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A、α+β=180°B、α+β=90°C、β=3αD、α﹣β=90°+2.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A、6→3B、7→16C、7→8D、6→15+3.我市今年参加中考人数约为42000人,将42000用科学记数法表示为()A、4.2×104B、0.42×105C、4.2×103D、42×103+4.下列运算中不正确的是()A、a3+a2=a5B、a3?a2=a5C、a3÷a2=aD、(a3)2=a6+5.下列调查中,适宜采用普查方式的是()A、调查电视台节目的收视率B、调查市民对皮影表演艺术的喜爱程度C、调查炮弹的杀伤力的情况D、调查宇宙飞船的零部件质量+6.在△ABC中,点D,E分别是边AB,BC的中点.若DE=6,则AC=()A、8B、10C、12D、14+7.一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球;随机从中摸出一球,不再放回,充分搅均后再随机摸出一球。

则两次都摸到红球的概率是()A、B、C、D、+8.若一元二次方程x2+2x+m=0中的b2﹣4ac=0,则这个方程的两根为()A、x1=1,x2=﹣1B、x1=x2=1C、x1=x2=﹣1D、不确定+9.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有(??)A 、1个B 、2个C 、3个D 、4个 +10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五 寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳 子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木 长为x 尺,绳子长为y 尺,则下列符合题意的方程组 是()A 、+ B 、 C 、 D 、11.如图,点A ,B ,C ,D ,E ,F ,G ,H 为⊙O 的八等分点,AD 与BH 的交点为I ,若⊙ O 的半径为1,则HI 的长 等于()A 、2﹣B 、2+C 、2D 、 + 12.如图,将直线y=x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y= (k >0,x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2=10,则k 的 值 是()A、5B、10C、15D、20+二、填空题13.若有意义,则x的取值范围为.+14.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.Array+.15.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=+16.如图,在⊙O中,圆周角∠ACB=150°,弦AB=4,则扇形OAB的面积是.+17.如图①,②,③,④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第8个“广”字中的棋子个数是.+18.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是°.+三、解答题19.计算:(﹣1)2+3tan30°﹣(﹣2)(+2)+2sin60°.+20.解不等式,并在数轴上表示不等式组的解.+21.如图,在平行四边形ABCD中,AB<BC.(1)、利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)、若BC=7,CD=5,求CE的长.+22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)3第二组(15≤x<30)6第三组(30≤x<45)7第四组(45≤x<60)b 0.15 a 0.35 0.20(1)、频数分布表中a= , b= ,并将统计图补充完整;(2)、如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)、已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?+23.如图,一艘船在A处望见灯塔E在北偏东60°方向上,此船沿正东方向航行60 海里后到达B处,在B处测得灯塔E在北偏东15°方向上.(Ⅰ)求∠AEB的度数;(Ⅱ)①求A处到灯塔E的距离AE;②已知灯塔E周围40海里内有暗礁,问:此船继续向东方向航行,有无触礁危险?(参考数据:≈1.414,≈1.732)+24.某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.(1)、求每辆A,B两种自行车的进价分别是多少?(2)、现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.+25.如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.(1)、求证:BC是⊙O的切线;(2)、⊙O的半径为5,tanA=,求FD的长.+26.如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)、求顶点D的坐标(用含a的代数式表示);(2)、若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转18 0°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年广西省北部湾经济区中考数学试卷
2018年广西省北部湾经济区中考数学试卷
试卷满分:120分教材版本:人教版
一、选择题:本大题共12小题,每小题3分,共30
分.
1.-3的倒数是()
A. -3
B.3
C. 1
D. 13
3
2.下列美丽的壮锦图案是中心对称图形的是()
A B C D 3. 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卡日尼基球场举行,该球场可容纳81000名观
众,其中数据81000用科学记数法表示为
()
A.81×103
B.8.1×104
C. 8.1×105
D.0.81
×105
4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图表示,则该球员平均
每节得分为()
A .7分
B .8分
C .9分
D .10分
5.下列运算正确的是( )
A .a (a +1)=a 2+1
B .(a 2)3=a 5
C .3a 2
+a =
4a 3 D .a 5÷a 2=a 3
6.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若
∠A =60°,∠B =40°,则∠ECD 等于( )
A .40°
B .45°
C .50°
D .55°
7. 若m >n ,则下列不等式正确的是( )
A . m -2<n -2
B . 4
m >4n C .6m <6n D . -8m >-8n
8. 从-2,-1,2这三个数中任取两个不同的数相
乘,积为正数的概率是( )
A . 23
B . 12
C . 13
D . 14
9.将抛物线y =1
2x 2
-6x +21向左平移2个单位后,得到新抛物线的解析式为( )
A . y =1
2(x -8)2+5 B . y =12
(x -4)2
+5 C . y =12(x -8)2+3 D . y =12(x -4)2+3 10.如图,分别以等边三角形ABC 的三个顶点为圆心,
以边长为半径画弧,得到的封闭图形是莱洛三角
形.若AB =2,则莱洛三角形的面积(即阴影部
分面积)为( )
A . π+3
B . π-3
C . 2π-3
D . 2π-
23
11. 某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜 产量的年平均增长率为x ,则可列方程为( )
A.80(1+x)2=100
B. 100(1+x)2=80
C. 80(1+2x)=100
D. 80(1+x2)=100
12.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交A于点O,F,且OP=OF,则cos
∠ADF的值为()
A. 11
13B. 13
15
C. 15
17
D. 17
19
二、填空题:本大题共6小题,每小题3分,共18
分.
13.5
x 在实数范围内有意义,则实数x的取值范围是 .
14.因式分解:2a2-2= .
15.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是 .
16.如图,从甲楼底部A处测得乙楼顶部C处的仰角
是30°,从甲楼顶部B处测得乙楼底部D处的
俯角是45°,已知甲楼的高AB是120m,则乙楼
的高CD是m.
17.观察下列等式:30=1,31=3,32=9,33=27,34=81,35= 243,…,根据其中规律可得30+31+32+33+…+32018的结果的个位数字是 . 18.如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=1k
(x>0)的图象经
x
过点C,反比例函数y=2k
(x<0)的图象分别
x
与AD,CD交于点E,F,若S△BEF=7,k1+3 k2
=0,则k1= .
三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)
19.计算:4-+3tan 60°-121
1()2-.
20.解分式方程:1x x --1=233x x -.
21.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1)B (4,1)C (3,3).
(1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请
画出△A 1B 1C 1;
(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2;
(3)判断以O ,A 1,B 1为顶点的三角形的形状.(无
须说明理由)
22.某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按ABCD四个等级进行统计,绘制成如下不完整的统计表和扇形统计图.
(1)求m=,n=;
(2)在扇形统计图中,求“C等级”所对应圆心角的度数;
(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图或列表法求出恰好选中“1男1女”的概率.
23.如图,在□ABCD中,AE⊥BC,AF⊥CD,垂足分别是EF,且BE=DF.
(1)求证:□ABCD是菱形;
(2)若AB=5,AC=6,求□ABCD的面积.
24.某公司在甲、乙两仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存
原料的40%,那么乙仓库剩余的原料比甲仓库
剩余的原料多30吨,
(1)求甲、乙两仓库各存放原料多少吨?
(2)现公司需将300吨原料运往工厂,从甲乙两仓库到工厂的运价分别是120元/吨和100元/吨,经协商,从甲仓库到工厂的运价可优惠a元/吨,(10≤a≤30),从乙仓库到工厂的运价不变,设
从甲仓库运m吨原料到工厂,请求出总运费w
关于m的函数解析式(不要求写出m的取值范
围);
(3)在(2)的条件下,请根据函数的性质说明,随
着m 的增大,w 的变化情况.
25.如图,△ABC 内接于⊙O ,∠CBG =∠A ,CD 为直径,OC 与AB 相交于点E ,过点E 作EF ⊥BC ,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD ,
(1)求证:PG 与⊙O 相切;
(2)若58EF AC ,求BE OC
的值.
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.

26.如图,抛物线y=ax2-5ax+c与坐标轴分别交于A,C,E三点,其中A(-3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛
物线于点D,点M,N分别是线段CO,BC上的动
点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.。

相关文档
最新文档