【人教版】八年级下册数学《期末测试题》含答案

合集下载

新人教版八年级数学下册期末考试题及答案【完整】

新人教版八年级数学下册期末考试题及答案【完整】

新人教版八年级数学下册期末考试题及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.使x2-有意义的x的取值范围是________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是_________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、x2≥4、x>3.5、46、20三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、3.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、略.5、(1)2;(2)60︒;(3)见详解6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。

【人教版】数学八年级下册《期末检测试题》附答案

【人教版】数学八年级下册《期末检测试题》附答案
5.如图所示是 个大小相同的正方形相连,共有正方形的项点 个,从中任取 个点为顶点构成正方形,共可以组成正方形的个数为( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据正方形的判定,画出正方形即可解决问题;
【详解】解:如图所示:一共有11个正方形.故选D.
【点睛】本题考查正方形的判定和性质,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
22.小慧根据学习函数的经验,对函数 的图像与性质进行了探究.下面是小慧的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是;
(2)列表,找出 与 的几组对应值.
-1
0
1
2
3
1
0
1
2
其中, ;
(3)在平面直角坐标系xOy中,描出上表中以各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,解决下列问题.
2020-2021学年第二学期期末测试
人教版数学八年级试题
学校________班级________姓名________成绩________
一、选择题
1.下列格式中,属于最简二次根式的是()
A. B. C. D.
2.下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()
A. B.
C. D.
16.如图,过点A(2,0)的两条直线 , 分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB= .
(1)求点B 坐标;
(2)若△ABC的面积为4,求 的解析式.
17.如图,矩形ABCD中,点E为边CD上的一点,将矩形ABCD沿BE翻折,点A,D分别落在 处, 与 相交于点P,请用无刻度的直尺分别按下列要求画图(保留画图痕迹)

新人教版八年级数学下册期末考试及答案【完整】

新人教版八年级数学下册期末考试及答案【完整】

新人教版八年级数学下册期末考试及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.化简1x-)A x-B x C x-D x 5.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,12C.6,8,11 D.5,12,236.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.323(1)0m n-+=,则m-n的值为________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知关于x ,y 的方程组325x y a x y a-=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、C5、B6、B7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、4415、96、6三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、3.3、(1)a≥2;(2)-5<x<14、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

人教版八年级下学期期末考试数学试卷及答案解析(共六套)

人教版八年级下学期期末考试数学试卷及答案解析(共六套)

人教版八年级下学期期末考试数学试卷(一)一、选择题1、下列二次根式中,是最简二次根式的是()A、B、C、D、2、平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A、120°B、60°C、30°D、15°3、甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示A、甲B、乙C、丙D、丁4、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A、y1<y2B、y1=y2D、无法确定5、如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A、16B、24C、4D、86、下列命题中,正确的是()A、有一组邻边相等的四边形是菱形B、对角线互相平分且垂直的四边形是矩形C、两组邻角相等的四边形是平行四边形D、对角线互相垂直且相等的平行四边形是正方形7、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A、22.5°B、60°C、67.5°D、75°8、关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A、k≤1C、k=1D、k≥19、已知正比例函数y=kx的图象与反比例函数y= 的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A、x1=﹣1,x2=1B、x1=﹣1,x2=2C、x1=﹣2,x2=1D、x1=﹣2,x2=210、中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1, S2, S3,若S 1+S2+S3=18,则正方形EFGH的面积为()A、9B、6C、5D、二、填空题11、关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为________.12、如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为________.13、某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是________.14、将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=________15、反比例函数y= 在第一象限的图象如图,请写出一个满足条件的k值,k=________16、如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为________.17、如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为________ m.18、如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB 的长为________,线段BC的长为________.三、解答题19、计算:(1)﹣+(+1)(﹣1)(2)× ÷ .20、解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题21、如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22、为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24、如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25、在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y= 的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y= 的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y= (x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y= (x>0)交于点Q,与x轴交于点H,若QH= OP,求k的值.五、填空题26、如图,在数轴上点A表示的实数是________.27、我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v= (s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:________;并写出这两个变量之间的函数解析式:________.六、解答题28、已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1, x2(用含m的代数式表示);①求方程的两个实数根x1, x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29、四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)答案解析部分一、选择题1、【答案】A【考点】最简二次根式【解析】【解答】解:A、为最简二次根式,符合题意;B、=2 ,不合题意;C、= ,不合题意;D、=2,不合题意,故选A【分析】利用最简二次根式的定义判断即可.2、【答案】B【考点】平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A 可求出∠A的度数,进而可求出∠C的度数.3、【答案】D【考点】方差【解析】【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.4、【答案】C【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2= ,∵1>,∴y1>y2.故选C.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.5、【答案】C【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴BO=OD= AC=2,AO=OC= BD=3,AC⊥BD,∴AB= = ,∴菱形的周长为4 .故选:C.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.6、【答案】D【考点】命题与定理【解析】【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.7、【答案】C【考点】正方形的性质【解析】【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠D BC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.8、【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.9、【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.10、【答案】B【考点】勾股定理的证明【解析】【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1, S2, S3,S 1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1, S2, S3,得出答案即可.二、<b >填空题</b>11、【答案】8【考点】一元二次方程的解【解析】【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.12、【答案】5【考点】直角三角形斜边上的中线,三角形中位线定理【解析】【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD= AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF= ×10=5cm.故答案为:5.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.13、【答案】23【考点】折线统计图【解析】【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【分析】根据中位数的定义求解即可.14、【答案】5【考点】解一元二次方程-配方法【解析】【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.15、【答案】3【考点】反比例函数的性质【解析】【解答】解:∵反比例函数y= 的图象在第一象限,∴k>0,∴k=3,故答案为:3.【分析】根据反比例函数y= 的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.16、【答案】【考点】勾股定理,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x= ,∴DE的长为.故答案为:【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.17、【答案】500【考点】勾股定理的应用【解析】【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC= =500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.18、【答案】2;2【考点】勾股定理【解析】【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE= = = ,在Rt△BEC中,BC= = =2 .故答案分别为2,2 .【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE,Rt△BEC中利用勾股定理即可解决问题.三、<b >解答题</b>19、【答案】(1)解:原式=3 ﹣2 +3﹣1= +2(2)解:原式=2 × ×=8【考点】二次根式的混合运算【解析】【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.20、【答案】(1)解:x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x 1=5,x2=1(2)解:2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x= ,x 1= ,x2=【考点】解一元二次方程-公式法,解一元二次方程-因式分解法【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.四、<b >解答题</b>21、【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS)(2)证明:如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.22、【答案】(1)25(2)解:男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示(3)解:男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8(4)解:女生队表现更突出一些,理由:从众数看,女生好于男生(5)解:由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标【考点】统计表,扇形统计图,条形统计图,方差【解析】【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.23、【答案】解:∵∠B=90°,AB=BC=2,∴AC= =2 ,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【考点】勾股定理,勾股定理的逆定理【解析】【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.24、【答案】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF= AB,同理:NM∥CD,MN= DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO= AO,MO= CO,在矩形ABCD中,AO=CO= AC,BO=DO= BD,∴EM=EO+MO= AC,同理可证FN= BD,∴EM=FN,∴四边形EFMN是矩形(3)解:∵DM⊥AC于点M,由(2)MO= CO,∴DO=CD,在矩形ABCD中,AO=CO= AC,BO=DO= BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3 ,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6 ,∴矩形的面积为BC•CD=36【考点】矩形的判定与性质【解析】【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF= AB,NM∥CD,MN= DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.25、【答案】(1)解:∵反比例函数y= 的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=(2)解:∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(xE , yE),∵△ADE的面积=6,∴•AD•|xE|=6,∴xE=±3,∵点E在反比例函数y= 图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a= ,∴一次函数解析式为y= x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y= x﹣1(3)解:由(2)可知,直线OE解析式为y= x,设点P(xP , yP),取OP中点M,则OM= OP,∴M(xP ,xP),∴Q(xP + ,xP),∴H(,0),∵点P、Q在反比例函数y= 图象上,∴xP • xP=(xP+ )xP,∴xP= ,∴P(,),∴k= .【考点】反比例函数与一次函数的交点问题,矩形的性质,坐标与图形变化-平移【解析】【分析】(1)利用待定系数法即可解决.(2)设点E(xE , yE),由△ADE的面积=6,得•AD•|xE |=6,列出方程即可解决.(3)设点P(xP,y P ),取OP中点M,则OM= OP,则M(xP,xP),Q(xP+ ,xP),列出方程求出xP即可解决问题.五、<b >填空题</b>26、【答案】【考点】实数与数轴【解析】【解答】解:OB= = ,∵OB=OA,∴点A表示的实数是,故答案为:.【分析】首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.27、【答案】矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S 为常数,且S≠0)【考点】反比例函数的应用【解析】【解答】解:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数,这两个变量之间的函数解析式为:a= (S为常数,且S≠0).故答案为:矩形的面积S一定时,矩形的长a是矩形的宽b的反比例函数;a= (S为常数,且S≠0).【分析】根据矩形的面积公式S=ab,即可得知:当面积S固定时,矩形的长a 是矩形的宽b的反比例函数,由此即可得出结论.六、<b >解答题</b>28、【答案】(1)证明:∵mx2﹣3(m﹣1)x+2m﹣3=0(m>3)是关于x的一元二次方程,∴△=[(﹣3(m﹣1)]2﹣4m(2m﹣3)=m2﹣6m+9=(m﹣3)2,∵m>3,∴(m﹣3)2>0,即△>0,∴方程总有两个不相等的实数根(2)①由求根公式得x= ,∴x=1,或x= ,∵m>3,∴>3,当x1<x2,∴x1=1,x2=2﹣;当x1>x2,这种情况不存在;∴x1=1,x2=2﹣;②∵mx1<8﹣4x2,∴m<8﹣4(2﹣),解得:3<m<2 .【考点】根的判别式,根与系数的关系【解析】【分析】(1)由于m>3,此方程为关于x的一元二次方程,再计算出判别式△=(m﹣3)2,然后根据判别式的意义即可得到结论;(2)②由求根公式得到x=1,或x= ,即可得到结论;②根据mx1<8﹣4x2,即可得到结果.29、【答案】(1)解:①补全图形如图1所示,②结论:AP=BN,AP⊥BN.理由:延长NB交AP于H,交OP于K.∵四边形ABCD是正方形,∴OA=OB,AO⊥BO,∴∠1+∠2=90°,∵四边形OPMN是正方形,∴OP=ON,∠PON=90°,∴∠2+∠3=90°,∴∠1=∠3,在△APO和△BNO中,,∴△APO≌△BNO,∴AP=BN,∴∠4=∠5,在△OKN中,∠5+∠6=90°,∵∠7=∠6,∴∠4+∠7=90°,∴∠PHK=90°,∴AP⊥BN.(2)解:解题思路如下:a.首先证明△APO≌△BNO,AP=BN,∠OPA=ONB.b.作OT⊥AB于T,MS⊥BC于S,由题意可知AT=TB=1,c.由∠APO=30°,可得PT= ,BN=AP= +1,可得∠POT=∠MNS=60°.d.由∠POT=∠MNS=60°,OP=MN,可证,△OTP≌△NSM,∴PT=MS= ,∴CN=BN﹣BC= ﹣1,∴SC=SN﹣CN=2﹣,在RT△MSC中,CM2=MS2+SC2,∴MC的长可求.【考点】正方形的性质【解析】【分析】(1)①根据题意作出图形即可.②结论:AP=BN,AP⊥BN,只要证明△APO≌△BNO即可.(2)在RT△CMS中,求出SM,SC即可解决问题.人教版八年级下学期期末考试数学试卷(二)一、选择题1、计算的结果是()A、1B、﹣1C、±1D、﹣22、下列二次根式中,能与合并的是()A、B、C、D、3、下列说法正确的是()A、已知a、b、c是三角形的三边长,则a2+b2=c2B、在直角三角形中,两边的平方和等于第三边的平方C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c24、已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当∠ABC=90°时,它是矩形B、当AC=BD时,它是正方形C、当AB=BC时,它是菱形D、当AC⊥BD时,它是菱形5、矩形的面积是48cm2,一边与一条对角线的比是4:5,则该矩形的对角线长是()A、6cmB、8cmC、10cmD、24cm6、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量7、一次函数y=﹣x+1的图象不经过的象限是()A、第一象限B、第二象限C、第三象限D、第四象限8、某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是()A、2B、3C、﹣2D、﹣3二、填空题9、计算:• =________.10、若一个三角形三边的长度之比为3:4:5,且周长为60cm,则它的面积是________ cm2.11、如图,菱形ABCD中,∠A=60°,BD=3,则菱形ABCD的周长是________.12、若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1________y2(选择“>”、“<”、=”填空).13、中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:14、一组数据的方差s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据的平均数是________.三、解答题15、计算:(+ )(﹣1)16、如图,台风过后,一所学校的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部12米处,已知旗杆原长24米,求旗杆在离底部多少米的位置断裂?17、已知:在平面直角坐标系xOy中,一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB.(1)直接写出点A、点B的坐标;(2)在所给平面直角坐标系内画一次函数的图象.18、如果三角形的三边长a,b,c满足+|12﹣b|+(a﹣13)2=0,你能确定这个三角形的形状吗?请说明理由.19、小丽上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小丽离家的距离y(米)和所经过的时间x(分)之间的函数关系图象如图所示.请根据图象回答下列问题:(1)小丽去超市途中的速度是________米/分;在超市逗留了________分;(2)求小丽从超市返回家中所需要的时间?20、已知:如图,在▱ABCD中,E、F是对角线BD上的两点,且BE=DF,求证:四边形AECF是平行四边形.四、解答题21、某校八年级(1)班组织了一次朗读比赛,A队10人的比赛成绩(10分制)分别是:10、8、7、9、8、10、10、9、10、9.(1)计算A队的平均成绩和方差;(2)已知B队成绩的方差是1.4,问哪一队成绩较为整齐?22、已知:y= + + ,求﹣的值.23、已知:如图1,图2,在平面直角坐标系xOy中,A(0,4),B(0,2),点C在x轴的正半轴上,点D为OC的中点.(1)求证:BD∥AC;(2)如果OE⊥AC于点E,OE=2时,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.答案解析部分一、选择题1、【答案】A【考点】二次根式的性质与化简【解析】【解答】解:原式= =|﹣1|=1.故选A.【分析】直接把二次根式进行化简即可.2、【答案】D【考点】同类二次根式【解析】【解答】解:=3 ,A、=2 ,不能合并;B、=4 ,不能合并;C、与不能合并;D、=4 ,能合并,故选D【分析】原式各项化为最简二次根式,利用同类二次根式定义判断即可.3、【答案】C【考点】勾股定理【解析】【解答】解:A、若该三角形不是直接三角形,则等式a2+b2=c2不成立,故本选项错误;B、在直角三角形中,两直角边的平方和等于斜边的平方,故本选项错误;C、在Rt△ABC中,∠C=90°,a、b、c分别是∠A,∠B,∠C的对边,则a2+b2=c2,故本选项正确;D、在Rt△ABC中,∠B=90°,a、b、c分别是∠A,∠B,∠C的对边,则c2+a2=b2,故本选项错误;故选:C.【分析】根据勾股定理进行判断即可.4、【答案】B【考点】平行四边形的性质,菱形的判定,矩形的判定,正方形的判定【解析】【解答】解:A、当∠ABC=90°时,它是矩形,说法正确;B、当AC=BD时,它是正方形,说法错误;C、当AB=BC时,它是菱形,说法正确;D、当AC⊥BD时,它是菱形,说法正确;故选:B.【分析】根据有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形进行分析即可.5、【答案】C【考点】矩形的性质【解析】【解答】解:如图:设AB=4x,则AC=5x,由勾股定理得:BC=3x,矩形的面积=AB×BC=4x×3x=48,解得:x=:±2(舍去负值),∴x=2.∴矩形的对角线长是5×2=10(cm).故选:C.【分析】设AB=4x,则AC=5x,由勾股定理可知BC=3x,由勾股定理求出BC=3x,根据面积得出方程,即可得出对角线的长.6、【答案】B【考点】常量与变量【解析】【解答】解:由题意得:10=ab,则10是常量,a和b是变量;故选B.【分析】根据长方形面积公式得:10=ab,10不发生变化是常量,a、b发生变化是变量.7、【答案】C【考点】一次函数的图象【解析】【解答】解:∵一次函数y=﹣x+1中k=﹣1<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【分析】先根据一次函数y=﹣x+1中k=﹣1,b=1判断出函数图象经过的象限,进而可得出结论.8、【答案】A【考点】算术平均数【解析】【解答】解:求15个数的平均数时,错将其中一个数据15输入为45,即使总和增加了30;那么由此求出的这组数据的平均数与实际平均数的差是30÷15=2.故选:A.【分析】利用平均数的定义可得.将其中一个数据15输入为45,也就是数据的和多了30,其平均数就少了30除以15.二、<b >填空题</b>9、【答案】4x【考点】二次根式的乘除法【解析】【解答】解:原式==4x .故答案为:4x .【分析】先进行二次根式的乘法计算,再进行二次根式的化简求解即可.10、【答案】150【考点】勾股定理的逆定理【解析】【解答】解:∵一个三角形三边的长度之比为3:4:5,且周长为60cm,∴三角形三边为15cm,20cm,25cm,且三角形为直角三角形,∴三角形的面积为:×15cm×20cm=150cm2,故答案为:150.【分析】根据已知求出三角形的三边长,根据定勾股理的逆定理得出三角形是直角三角形,根据面积公式求出即可.11、【答案】12【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴△ABD是等边三角形,即AD=AB=BD=3,∴菱形ABCD的周长为:3×4=12.故答案为:12.【分析】由四边形ABCD是菱形,可得AD=AB=BC=CD,又由∠A=60°,则可证得△ABD是等边三角形,继而求得答案.12、【答案】>【考点】一次函数的图象【解析】【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.13、【答案】1.70m【考点】中位数、众数【解析】【解答】解:由表可知,跳高成绩为1.70m的运动员人数最多,故这些运动员跳高成绩的众数为:1.70m.故答案为:1.70m.【分析】根据众数的概念找出该组数据中出现次数最多的数据即可.14、【答案】3【考点】算术平均数,方差【解析】【解答】解:∵S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],为平均数,∴s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组数据的平均数是3;故答案为:3.【分析】由方差的公式:S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],可得平均数为,从而得出答案.三、<b >解答题</b>15、【答案】解:(+ )(﹣1)== .【考点】二次根式的混合运算【解析】【分析】根据多项式乘以多项式进行计算即可解答本题.16、【答案】解:由题意得:BC=12米,设AC=x米,则AB=(24﹣x)米,x2+122=(24﹣x)2,解得:x=9,答:旗杆在离底部9米的位置断裂.【考点】勾股定理的应用【解析】【分析】首先设AC=x米,则AB=(24﹣x)米,根据勾股定理可得方程x2+122=(24﹣x)2,再解方程即可.17、【答案】(1)解:点A的坐标为(0,2),点B的坐标为(1,0)(2)解:过点A(0,2)、B(1,0)作如图所示的直线,则该直线为y=kx+2的图象.【考点】一次函数的图象【解析】【分析】(1)根据一次函数y=kx+2的图象与y轴交于点A,与x轴的正半轴交于点B,OA=2OB,直接写出点A、B的坐标即可;(2)过点A(0,2)、B(1,0),作图即可.18、【答案】解:这个三角形的形是直角三角形,。

人教版数学八年级下册期末考试试题带答案

人教版数学八年级下册期末考试试题带答案

人教版数学八年级下册期末考试试卷一、选择题(本大题10小题,每小题3分,共30分),每小题只有一个正确答案。

1.下列各式是最简二次根式的是( )A.B.C.D.2.要使式子有意义,则x的取值范围是( )A.x>0B.x≥﹣3C.x≥3D.x≤33.数据2,4,3,4,5,3,4的众数是( )A.5B.4C.3D.24.一次函数y=﹣2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定成立的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12D.167.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为( )A.2B.3C.4D.28.由线段a,b,c组成的三角形不是直角三角形的是( )A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17D.a=13,b=14,c=159.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( )A.4B.16C.D.4或10.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能比较二、填空题(本大题6小题,每小题4分,共24分)。

11.求值:= .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 分.13.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 .14.如图,字母A所代表的正方形面积为 .15.函数y=kx与y=6﹣x的图象如图所示,则k= .16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:÷+×﹣.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.19.如图,在▱ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:﹣,其中x=1+2,y=1﹣2.21.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.22.国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?24.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC 沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.25.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑1.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.【分析】根据众数的定义:一组数据中出现次数最多的数据求解即可.【解答】解:这组数据的众数为:4.故选:B.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是掌握一组数据中出现次数最多的数据叫做众数.4.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.【分析】直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.【解答】解:∵四边形ABCD是菱形,∴AB∥DC,故选项A正确,不合题意;无法得出AC=BD,故选项B错误,符合题意;AC⊥BD,故选项C正确,不合题意;OA=OC,故选项D正确,不合题意;故选:B.【点评】此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.6.【分析】由折叠可得AE=A'E=2,∠EFB=∠EFB'=60°,根据平行线性质可得∠A'EF=120°,∠B'EF=60°,解直角三角形A'E'B'可得A'B'的长度,则可求矩形ABCD面积.【解答】解:∵折叠∴∠BFE=∠EFB'=60°,AB=A'B'∠A=∠A'=90°,AE=A'E=2∵ABCD是矩形∴AD∥BC∴∠DEF=∠EFB=60°∵A'E∥B'F∴∠A'EF+∠EFB'=180°∴∠A'EF=120°∴∠A'EB'=60°且∠A'=90°∴∠A'B'E=30°,且A'E=2∴B'E=4,A'B'=2=AB∵AE=2,DE=6∴AD=8∴S矩形ABCD=AB×AD=2×8=16故选:D.【点评】本题考查了折叠问题,等边三角形的性质,矩形的性质,关键灵活运用折叠的性质解决问题.7.【分析】先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:A.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.8.【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【解答】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题正确答案填写在答题卷相应的位置上11.【分析】根据二次根式的性质,求出算术平方根即可.【解答】解:原式=.故答案为:.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.13.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案为:64.【点评】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.15.【分析】首先根据一次函数y=6﹣x与y=kx图象的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=6﹣x与y=kx图象的交点横坐标为2,∴4=6﹣2,解得:y=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得k=2.故答案为:2【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.16.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BNBD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为10.【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:原式=+﹣2=4+﹣2=4﹣.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【分析】根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.【解答】解:在Rt△ABC中,∠ACB=90°根据勾股定理,得AB2=AC2+BC2=16,∴AB=4,又CD⊥AB∴AB•CD=AC•BC∴4CD=2×2即CD=【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.19.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】根据分式的减法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:﹣===x+y,当x=1+2,y=1﹣2时,原式=1+2+1﹣2=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(3,5)和(﹣4,﹣9)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,2)代入一次函数的解析式,求出m的值即可.【解答】解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.【点评】本题考查的是用待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.24.【分析】(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【解答】解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.25.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形【点评】本题考查了矩形的性质判定,等腰三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.。

【人教版】数学八年级下册《期末检测试题》含答案

【人教版】数学八年级下册《期末检测试题》含答案
三、作图题(本题满分4分)
17.用圆规和直尺作图,不写作法,保留作图痕迹
已知 及其边 上一点 .在 内部求作点 ,使点 到 两边的距离相等,且到点 , 的距离相等.
四、解答题(本题满分68分,共8道小题)
18.计算:
(1) ;
(2) ;
(3)先化简再求值 ,其中 , .
19.如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为 .小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
23.问题:将边长为 的正三角形的三条边分别 等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
3.下列事件中是必然事件是()
A. 明天太阳从西边升起
B. 篮球队员在罚球线投篮一次,未投中
C. 实心铁球投入水中会沉入水底
D. 抛出一枚硬币,落地后正面向上
【答案】C
【解析】
【分析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.
【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;
A、添加 可利用SAS定理判定 ,故此选项不合题意;
B、添加 可利用AAS定理判定 ,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加 不能判定 ,故此选项符合题意;

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。

()2. 任何两个无理数相加都是无理数。

()3. 两条平行线的斜率相等。

()4. 一次函数的图像是一条直线。

()5. 任意两个等腰三角形的面积相等。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。

3. 若x^2 5x + 6 = 0,则x的值为_______或_______。

4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。

5. 平行四边形的对边_______且_______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是正比例函数?请举例说明。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是 A .12 B .8 C .23D . 2.0 2.以下列各组数为边长,不能构成直角三角形的是A .5,12,13B .1,2,5C .1,3,2D .4,5,6 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 4.如图,两把完全一样的直尺叠放在一起,重合的部分 构成一个四边形,这个四边形一定是A .矩形B .菱形C .正方形D .无法判断5.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是 A .y x =- B .1y x =+ C .21y x =-+ D .1y x =-6.下表是两名运动员10次比赛的成绩,21s ,22s 分别表示甲、乙两名运动员测试成绩的方差,则有8分9分 10分 甲(频数) 4 2 4 乙(频数) 343A .2212s s >B .2212s s =C .2212s s <D .无法确定7.若a ,b ,c 满足0,0,a b c a b c ++=⎧⎨-+=⎩则关于x 的方程20(0)ax bx c a ++=≠的解是A .1,0B .-1,0C .1,-1D .无实数根8.如图,在ABC △中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,第10题图NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM =x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题9.函数1y x =-x 的取值范围是 . 10.如图,在平面直角坐标系xOy 中,点A (0,2),B (4,0), 点N 为线段AB 的中点,则点N 的坐标为 . 11.如图,在数轴上点A 表示的实数是 .12.如图,在平面直角坐标系xOy 中,直线1l ,2l 分别是函数11y k x b =+和22y k x b =+的图象,则可以估计关于x 的不等式1122k x b k x b +>+的解集为 .第11题图 第12题图 第13题图13.如图,点A ,B ,E 在同一条直线上,正方形ABCD ,BEFG 的边长分别为3,4,H 为线段DF 的中点,则BH = .14.命题“全等三角形的对应角相等”的逆命题是 .这个逆命题是 (填“真”或“假”)命题.ED CA15.若函数2 2 (2),2 (2)x x y x x ⎧+≤=⎨>⎩的函数值y =8,则自变量x 的值为 .16.阅读下面材料:小明想探究函数21y x =-的性质,他借助计算器求出了y 与x 的几组对应值,并在平面直角坐标系中画出了函数图象:x … -3 -2 -1 1 2 3 … y…2.831.731.732.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是 . 请写出函数21y x =-的一条性质: .三、解答题17.已知51a =+,求代数式227a a -+的值.18.解一元二次方程:23220x x +-=.19.如图,在□ABCD 中,AC ,BD 相交于点O ,点E 在AB 上,点F 在CD 上,EF 经过点O .求证:四边形BEDF 是平行四边形.20.如图,在平面直角坐标系xOy 中,直线l 的表达式为26y x =-,点A ,B 的坐标分别为(1,0),(0,2),直线AB 与直线l 相交于点P . (1)求直线AB 的表达式; (2)求点P 的坐标;(3)若直线l 上存在一点C ,使得△APC 的面积是△APO 的面积的2倍,直接写出点C 的坐标.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.如图,在□ABCD 中,∠ABC ,∠BCD 的平分线分别交AD 于点E ,F ,BE ,CF 相交于点G . (1)求证:BE ⊥CF ;(2)若AB =a ,CF =b ,写出求BE 的长的思路.23.甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 8789 79 54 88 92 90 87 68 76 94 84 76 69 83 92乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 9273 76 92 84 57 87 89 88 94 83 85 80 94 72 90(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,请为他们各写出一条可以使用的理由;甲校:.乙校:.(4)综合来看,可以推断出校学生的数学学业水平更好一些,理由为.24.如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.25.在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-2,0),B(0,2),C(-2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k 的取值范围.参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)三、解答题(本题共52分,17-22题每小题5分,23-24题每小题7分,25题8分)17.解:227a a -+2(1)6a =-+. ……………………………………………3分当1a =时,原式11=. ……………………………………………5分18.解:3a =,2b =,2c =-.224243(2)28b ac -=-⨯⨯-=.………………………………………3分∴212233b x a --±-===⨯. ……………………4分∴原方程的解为113x -+=,213x --=. ………5分19.证明:∵在□ABCD 中,AC ,BD 相交于点O , ∴DC ∥AB ,OD =OB .………………………………………2分∴∠FDO =∠EBO ,∠DFO =∠BEO . ∴△ODF ≌△OBE . ………………………………3分∴OF =OE .………………………………………………4分∴四边形BEDF 是平行四边形. ……………………5分20.解:(1)设直线AB 的表达式为y =kx +b .由点A ,B 的坐标分别为(1,0),(0,2),可知0,2.k b b +=⎧⎨=⎩解得2,2.k b =-⎧⎨=⎩所以直线AB 的表达式为y =-2x +2. …………………2分(2)由题意,得22,2 6.y x y x =-+⎧⎨=-⎩解得2,2.x y =⎧⎨=-⎩所以点P 的坐标为(2,-2). …………………3分(3)(3,0),(1,-4). ……………………………5分21.解:(1)由题意,得22(2)4(1)0m m ∆=--->. 解得12m >. ……………………………3分(2)答案不唯一.如: 取m =1,此时方程为220x x -=.解得 120,2x x ==. ……………………………5分22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD .…………………………………1分∴∠ABC +∠BCD =180°.∵BE ,CF 分别是∠ABC ,∠BCD 的平分线, ∴∠EBC =12∠ABC ,∠FCB =12∠BCD . ………………2分∴∠EBC +∠FCB =90°. ∴∠BGC =90°. 即BE ⊥CF .…………………………………3分(2)求解思路如下:a .如图,作EH ∥AB 交BC 于点H ,连接AH 交BE 于点P .b .由BE 平分∠ABC ,可证AB =AE ,进而可证四边形ABHE 是菱形,可知AH ,BE 互相垂直平分;c .由BE ⊥CF ,可证AH ∥CF ,进而可证四边形AHCF 是平行四边形,可求AP =2b; d .在Rt △ABP 中,由勾股定理可求BP ,进而可求BE 的长. …5分23.解:(1)补全条形统计图,如下图.……………2分(2)86;92. ………………4分 (3)答案不唯一,理由需包含数据提供的信息. ……6分 (4)答案不唯一,理由需支撑推断结论……………………7分 24.(1)补全的图形,如图所示.………………………………1分 (2)AG =DH .………………………2分证明:∵四边形ABCD 是菱形,∴AD CD CB ==,AB ∥DC ,ADC ABC ∠=∠.…………………3分 ∵点F 为点B 关于CE 的对称点, ∴CE 垂直平分BF .∴CB CF =,CBF CFB ∠=∠.…………………………………4分 ∴CD CF =. 又∵FH CG =, ∴DG CH =.∵180ABC CBF ∠+∠=︒,180DCF CFB ∠+∠=︒, ∴ADC DCF ∠=∠.∴△ADG ≌△DCH . ………………………5分 ∴AG DH =. (3)不存在.……………6分理由如下:由(2)可知,∠DAG =∠CDH ,∠G =∠GAB , ∴∠DPA =∠PDG +∠G =∠DAG +∠GAB =70°>60°.…………7分∴△ADP 不可能是等边三角形. 25.(1)①A ,B ;……………………………2分②当PM +PN =4时,可知点P 在直线l 1:2y x =+,直线l 2:2y x =-上. 所以直线l 的近距点为在这两条平行线上和在这两条平行线间的所有点. 如图1,EF 在OA 上方,当点E 在直线l 1上时,n 的值最大,为22-+. ……3分如图2,EF 在OA 下方,当点F 在直线l 2上时,n 的值最小,为2-. …4分当0n =时,EF 与AO 重合,矩形不存在.综上所述,n 的取值范围是222n -≤≤-+,且0n ≠.…………6分 (2)1212k --≤≤-.……………8分人教版八年级下学期期末考试数学试卷(二)说明:1.考试用时100分钟,满分为120分;图1图22.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B C .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cm B .220cm C .240cm D .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是. 12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:20---++.(2)(51)3(36)18.已知,如图在ΔABC中,AB=BC=AC=2cm,AD是边BC上的高.求AD的长.19.如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、解答题(二)(本大题3小题,每小题7分,共21分).20.一次函数y=2x-4的图像与x轴的交点为A,与y轴的交点为B.(1)A,B两点的坐标分别为A(,),B(,);(2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序; (2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?五、解答题(三)(本大题3小题,每小题9分,共27分).23.观察下列各式:312311=+;413412=+;514513=+;…… 请你猜想: (1=,=; (2)计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来.12kmCAB5km24.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①求证:四边形BFDG是菱形;②若AB=3,AD=4,求FG的长.25.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A 点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.人教版八年级下学期期末考试数学试卷(三)总分:120分考试时间:100分钟一、选择题(每题3分,共10题,30分)1. x的取值范围是A.3x2≥ B.3x2> C.2x3≥ D.2x3>2.下列二次根式中,最简二次根式是3.公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.在本学期数学期中考中,某小组8名同学的成绩如下: 90、103、105、105、105、115、140、140,则这组数据的众数为( ). A .105 B .90 C .140 D .50 5.下列几组数中,不能作为直角三角形三边长度的是A .1.5,2,2.5B . 3,4,5,C .5,12,13D .20,30,406.已知一组数据123n x x x x ,,,…,的方差是7,那么数据12x x -5,-5,3x 5-,…, n x 5-的方差为A.2 B.5 C.7 D.97. 如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<B.x<3C.x>D.x>38.名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:175设两队队员身高的平均数依次为x甲,x乙,身高的方差依次为2S甲,2S乙,则下列关系中完全正确的是A.x x=甲乙,22S S>乙甲B.x x=甲乙,22S S<乙甲C.x x>甲乙,22S S>乙甲D.x x<甲乙,22S S<乙甲9. 如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE 垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是A.2 B.2.2C.2.4 D.2.510、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30 从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示.根据图象得到下列结论,其中错误..的是A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.如图,Rt △ABC 中,∠BAC=90°,D ,E ,F 分别为AB ,BC ,AC 的中点,已知DF=3,则AE= .12.若点1(1,)A y 和点2(2,)B y 都在一次函数2+-=x y 的图象上,则y 1 y 2(选择“>”、“<”、“=”填空)13.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________ 14. 如图,菱形ABCD 周长为16,∠ADC =120°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是15.如图,在矩形ABCD,AB=3,BC=4,E 是BC 边上一点,连接AE ,把∠B 沿AE 折 叠,使B 点落在B ’处,当△CEB ’为直角三角形时,BE 的长为____________。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。

2. 如果x=2,那么x²等于______。

3. 如果a=4,b=2,那么a+b等于______。

4. 如果x=3,那么x²等于______。

三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。

2. 计算:3x²2y²=5,其中x=3,y=2。

3. 计算:2a²+3b²=6,其中a=4,b=2。

五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。

2. 证明:如果x²=y²,那么x=y。

六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。

2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。

七、简答题(每题10分,共20分)1. 简述方程的基本概念。

2. 简述不等式的基本概念。

八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。

新人教版八年级数学下册期末考试(含答案)

新人教版八年级数学下册期末考试(含答案)

新人教版八年级数学下册期末考试(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.187.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:3x -x=__________.4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、D6、C7、B8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、82、22()1y x =-+3、x (x+1)(x -1)4、2≤a+2b ≤5.5、186、20三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、-3.3、(1)略(2)1或24、(1)略;(2)45°;(3)略.5、(1)略(2)等腰三角形,理由略6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

最新人教版八年级下册数学《期末考试卷》(含答案解析)

最新人教版八年级下册数学《期末考试卷》(含答案解析)

最新人教版八年级下册数学《期末考试卷》(含答案解析)人教版八年级下册期末考试数学试卷一、选择题1.若a 是最简二次根式,则a 的值可能是() A. -2B. 2C.32D. 82. 下列四组线段中,可以构成直角三角形的是() A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 33.下列计算正确的是() A.235+= B. 2332-= C. (2)2=2D.39=34.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为() A. 4,5B. 5,4C. 4,4D. 5,55.能判定四边形ABCD 是平行四边形的是() A. AD //BC ,AB =CD B. ∠A =∠B ,∠C =∠D C. ∠A =∠C ,∠B =∠DD. AB =AD ,CB =CD6.已知()()122,,4,A y B y -是一次函数3y x =-+的图象上的两个点,则12,y y 的大小关系是() A. 12y y >C. 12y y =D. 不能确定7.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC 连接AE 交CD 于点F ,则∠AFC 等于()A .112.5°B. 120°C. 135°D. 145°8.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A. 5.5B. 5C. 6D. 6.59.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是()A .(6,8)B. (10,8)C. (10,6)D. (4,6)10.如图①,正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作,PQ BD PQ ∥与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,APQ V 的面积为()A. 24cmC. 262cmD. 242cm二、填空题11.26x -x 的取值范围是_______12.下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数x (秒) 51 50 51 50 方差2S (秒2) 3.53.514.515.5根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________. 13.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.14.如图,ABC ?的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .三、解答题16.计算:(1)()()1883131-++-(2)3231233÷17.如图,平行四边形ABCD 中,点E F 、分别在AB CD 、上,且,BE DF EF =与AC 相交于点P ,求证:PA PC =.18.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,85(2)使平行四边形有一锐角为45°,且面积为4.19.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.20.A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中12l l ,表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填12l l 或);甲的速度是__________km/h ;乙的速度是________km/h .(2)甲出发后多少时间两人恰好相距5km ?21.将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1)试判断四边形DHBG 为何种特殊的四边形,并说明理由;(2)若AB =8,AD =4,求四边形DHBG 的面积.22.为迎接:“国家卫生城市”复检,某市环卫局准备购买A ,B 两种型号的垃圾箱,通过市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需540元,购买2个A 型垃圾箱比购买3个B 型垃圾箱少用160元.(1)求每个A 型垃圾箱和B 型垃圾箱各多少元?(2)该市现需要购买A ,B 两种型号的垃圾箱共30个,其中买A 型垃圾箱不超过16个.①求购买垃圾箱的总花费w (元)与A 型垃圾箱x (个)之间的函数关系式;②当买A 型垃圾箱多少个时总费用最少,最少费用是多少? 23.如图,在平面直角坐标系中,直线l1:162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线l2:1 2y x=交于点A .(1)求出点A 的坐标(2)若D 是线段OA 上的点,且△COD 的面积为12,求直线CD 的解析式(3)在(2)的条件下,设P 是射线CD 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点P 的坐标;若不存在,请说明理由.答案与解析一、选择题1.a的值可能是()A. -2B. 2C. 32D. 8【答案】B【解析】【分析】直接利用最简二次根式的定义分析得出答案.∴a≥0,且a故选项中-2,32,8都不合题意,∴a的值可能是2.故选B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.2. 下列四组线段中,可以构成直角三角形的是()A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,3 【答案】B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.3.下列计算正确的是()A. =2-= C. )2=2 D. 3 【答案】C利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.【详解】解:A3∴选项A不正确;B、=∴选项B不正确;C、)2=2,∴选项C正确;D3,∴选项D不正确.故选C.【点睛】本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.4.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A. 4,5B. 5,4C. 4,4D. 5,5【答案】A【解析】【分析】根据众数及中位数定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.【点睛】本题考查(1)、众数;(2)、中位数.5.能判定四边形ABCD是平行四边形的是()A. AD//BC,AB=CDB. ∠A=∠B,∠C=∠DC. ∠A=∠C,∠B=∠DD. AB=AD,CB=CD【答案】C根据平行四边形的判定定理依次确定即可.【详解】A. AD//BC ,AB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;B. ∠A=∠B ,∠C=∠D ,不能判定四边形ABCD 是平行四边形,故不符合题意;C. ∠A=∠C ,∠B=∠D ,能判定四边形ABCD 是平行四边形,故符合题意; D. AB=AD ,CB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;故选:C.【点睛】此题考查平行四边形的判定定理,熟记定理内容即可正确解答.6.已知()()122,,4,A y B y -是一次函数3y x =-+的图象上的两个点,则12,y y 的大小关系是() A. 12y y > B. 12y y <C. 12y y =D. 不能确定【答案】A 【解析】【分析】由函数解析式3y x =-+可知0k <,则y 随x 的增大而减小,比较x 的大小即可确定y 的大小.【详解】3y x =-+中0k <,∴y 随x 的增大而减少,∵24-<,∴12y y >;故选:A .【点睛】本题考查了一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.7.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE=AC 连接AE 交CD 于点F ,则∠AFC 等于()A. 112.5°B. 120°C. 135°D. 145°【答案】A 【解析】根据正方形的性质及已知条件可求得∠E 的度数,从而根据外角的性质可求得∠AFC 的度数.【详解】∵四边形ABCD 是正方形,CE=CA ,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFC=90°+22.5°=112.5°. 故答案为A.【点睛】本题考查正方形的性质,解题的关键是掌握正方形的性质.8.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A. 5.5B. 5C. 6D. 6.5【答案】A 【解析】【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果.【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形,∴∠B=90°,AE=12AC ,∴222251213AB BC +=+=,∴AE=6.5,∵点A 表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E 表示的数是5.5,即对角线AC 、BD 的交点表示的数是5.5;故选A .【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.9.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是()A. (6,8)B. (10,8)C. (10,6)D. (4,6)【答案】B 【解析】【分析】首先根据菱形的性质求出AB 的长度,再利用勾股定理求出DO 的长度,进而得到点C 的坐标.【详解】∵菱形ABCD 的顶点A 、B 的坐标分别为(-6,0)、(4,0),点D 在y 轴上,∴AB=AO+OB=6+4=10,∴AD=AB=CD=10,∴22221068DO AD AO -=-=,∴点C 的坐标是:(10,8).故选:B .【点睛】本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO 的长度. 10.如图①,正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作,PQ BD PQ ∥与边AD (或边CD )交于点,Q PQ 的长度(cm)y 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,APQ V 的面积为()A. 24cmB. 26cmC. 262cmD. 242cm【答案】B 【解析】【分析】由图②知,运动2秒时,42y PQ ==,距离最长,再根据运动速度乘以时间求得路程,可得点P 的位置,根据线段的和差,可得CP 的长,最后由APQ ABP ADQ CPQ ABCD S S S S S =---V V V V 正方形即可求得答案.【详解】由图②知,运动2秒时,42y =,y 的值最大,此时,点P 与点B 重合,则42PQ BD ==,∵四边形ABCD 为正方形,则222AB AD BD +=,∴4AB AD ==,由题可得:点P 运动3秒时,则P 点运动了32?=6cm ,此时,点P 在BC 上,如图:∴862CP =-=cm ,∴点P 为BC 的中点,∵PQ ∥BD ,∴点Q 为DC 的中点,∴APQ ABP ADQ CPQ ABCD S S S S S =---V V V V 正方形21114424222222=-??-??-??6=.故选:B.【点睛】本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,y=二、填空题11.x的取值范围是_______【答案】3x…【解析】【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:Q有意义,260x∴-…,解得:3x….故答案为3x….【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.12.下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.【答案】队员2【解析】【分析】根据方差的意义结合平均数可作出判断.【详解】因为队员1和2的方差最小,队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故答案为:队员2.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.【答案】y =2x ﹣2.【解析】【详解】解:根据一次函数的平移,上加下减,可知一次函数的表达式为y =2x-2.14.如图,ABC ?的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为点Q ,ACB ∠的平分线垂直于AD ,垂足为点P ,若10BC =,则PQ 的长为______.【答案】3 【解析】【分析】首先判断△BAE 、△CAD 是等腰三角形,从而得出BA=BE ,CA=CD ,由△ABC 的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ .【详解】由题知BQ 为AE 的垂直平分线,AB BE ∴=,由题意知CP 为AD 的垂直平分线,AC CD ∴=. 26ABC C ?=Q ,且10BC =,16AB AC ∴+=.16AB AC BE CD ∴+=+=.16BD DE DE CE ∴+++=.6DE ∴=.又点P ,Q 分别为AD ,AE 的中点,116322PQ DE ∴==?=.【点睛】本题考查等腰三角形判定与性质,解题关键在于利用中位线定理求出PQ.15.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,则EB=EB′,AB=AB ′=3,可计算出CB′=2,设BE=x ,则EB′=x ,CE=4-x ,然后在Rt △CEB′中运用勾股定理可计算出x .②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=3,BC=4,∴2243 ,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得3x 2=,∴BE=32;②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为32或3.故答案为:32或3.三、解答题16.计算:(1)11+(2÷【答案】(12+;(2)【解析】【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=2÷3==82【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.17.如图,平行四边形ABCD 中,点E F 、分别在AB CD 、上,且,BE DF EF =与AC 相交于点P ,求证:PA PC =.【答案】见解析【解析】【分析】连接AF ,CE ,由四边形ABCD 是平行四边形,可得AB ∥CD ,AB=CD ,又由BE=DF ,证得AE=CF ,即可证得四边形AECF 是平行四边形,从而证得结论.【详解】连接AF ,CE ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD ,∵BE=DF ,∴AB-BE=CD-DF ,∴AE=CF ,∴四边形AECF 是平行四边形,∴PA=PC .【点睛】本题考查了平行四边形的性质与判定.注意准确作出辅助线,证得四边形AECF 是平行四边形是解此题的关键.18.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,8,5;(2)使平行四边形有一锐角为45°,且面积为4.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)本题中8实际上是长为2宽为2的正方形的对角线长,5实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.【详解】(1)△ABC所求;(2)四边形ABCD为所求.【点睛】关键是确定三角形的边长,然后根据边长画出所求的三角形.19.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.【答案】(1)40;(2)30,50;(3)50500元【解析】【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50; (3)2063012501080810046121084+?+?+?+?++++×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元. 故答案为(1)40;(2)30,50;(3)50500元.【点睛】本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中12l l ,表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填12l l 或);甲的速度是__________km/h ;乙的速度是________km/h .(2)甲出发后多少时间两人恰好相距5km ?【答案】(1)2l ; 30; 20;(2)甲出发后1.3h 或者1.5h 时,甲乙相距5km .【解析】【详解】解:(1)乙离开A 地的距离越来越远,图像是2l ;甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;(2)由图可求出13060y x =-+,22010y x =- 由125y y -=得1.3x h =;由215y y -=得 1.5x h = 答:甲出发后1.3h 或者1.5h 时,甲乙相距5km .考点:一次函数的应用21.将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1)试判断四边形DHBG 为何种特殊的四边形,并说明理由;(2)若AB =8,AD =4,求四边形DHBG 的面积.【答案】(1)四边形DHBG 是菱形,理由见解析;(2)20.【解析】【分析】(1)由四边形ABCD 、FBED 是完全相同的矩形,可得出△DAB ≌△DEB (SAS ),进而可得出∠ABD=∠EBD ,根据矩形的性质可得AB ∥CD 、DF ∥BE ,即四边形DHBG 是平行四边形,再根据平行线的性质结合∠ABD=∠EBD ,即可得出∠HDB=∠HBD ,由等角对等边可得出DH=BH ,由此即可证出?DHBG 是菱形;(2)设DH=BH=x ,则AH=8-x ,在Rt △ADH 中,利用勾股定理即可得出关于x 的一元一次方程,解之即可得出x 的值,再根据菱形的面积公式即可求出菱形DHBG 的面积.【详解】解:()1四边形DHBG 是菱形.理由如下:。

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案人教版八年级下册数学期末考试试卷一、单选题1.下列运算正确的是()A。

3+4=7B。

12÷3=4C。

(-2)²=4D。

14÷21=362.使得式子x/(4-x)有意义的x的取值范围是()A。

x≥4B。

x>4C。

x≤4D。

x<43.由线段a,b,c可以组成直角三角形的是()A。

a=5,b=8,c=7B。

a=2,b=3,c=4C。

a=24,b=7,c=25D。

a=5,b=5,c=64.下列结论中,矩形具有而菱形不一定具有的性质是()A。

内角和为360°B。

对角线互相平分C。

对角线相等D。

对角线互相垂直5.某校规定学生的学期数学成绩满分为100分,其中研究性研究成绩占40%,期末卷面成绩占60%,XXX的两项成绩(百分制)依次是80分,则XXX这学期的数学成绩是()A。

80分B。

82分C。

84分D。

86分6.对于一次函数y=(3k+6)x-k,y随x的增大而减小,则k 的取值范围是()A。

k<0B。

k<-2C。

k>-2D。

-2<k<07.直线y=2x-7不经过()A。

第一象限B。

第二象限C。

第三象限D。

第四象限8.已知直角三角形的两直角边长分别为3和4,则斜边上的高为()A。

5B。

3C。

1.2D。

2.49.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛。

如果小明知道了自己的比赛成绩,要判断能否进入决赛,XXX需要知道这11名同学成绩的()A。

平均数B。

中位数C。

众数D。

方差10.如图,当y1>y2时,x的取值范围是()A。

x>1B。

x>2C。

x<1D。

x<211.∠B=50°,CD⊥XXX于点D,∠BCD和∠BDC的角平分线相交于点E,如图,在△ABC中,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A。

新人教版八年级数学下册期末考试及答案【完美版】

新人教版八年级数学下册期末考试及答案【完美版】

新人教版八年级数学下册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.187.若a=7+2、b=2﹣7,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b +的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.分解因式:3x -x=__________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.(1)求证:BG DE =;(2)若E 为AD 中点,2FH =,求菱形ABCD 的周长.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、A6、C7、D8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、x (x+1)(x -1)4、a+c5、:略6、40°三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2.3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略;(2)8.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

2023年人教版八年级数学下册期末考试题及答案【完整版】

2023年人教版八年级数学下册期末考试题及答案【完整版】

2023年人教版八年级数学下册期末考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020 D .12020-2.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是() A .5-313 B .3 C .313-5 D .-35.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是()A .7B .-1C .7或-1D .-5或36.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2)21a b+=(,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.69.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.下列图形中,由AB∥CD,能得到∠1=∠2的是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是_____.2.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是__________.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是______元.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中23x .3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、B5、A6、C7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、a ≤2.3、720°.4、8.5、26、15.3三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、13x +,.3、(1)略;(2)4或4+.4、(1)略;(2)45°;(3)略.5、(1)y=x+1;(2)C (0,1);(3)16、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。

(2021年整理)新人教版八年级数学下册期末测试题及答案(5套)

(2021年整理)新人教版八年级数学下册期末测试题及答案(5套)

(完整)新人教版八年级数学下册期末测试题及答案(5套)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)新人教版八年级数学下册期末测试题及答案(5套))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)新人教版八年级数学下册期末测试题及答案(5套)的全部内容。

八年级数学下册期末试题1一、选择题(每空 2 分,共14 分)1、若为实数,且,则的值为()A.1 B .C.2 D.2、有一个三角形两边长为 4 和 5,要使三角形为直角三角形,则第三边长为()A、3 B 、C、3 或D、3 或3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25 B .,, C.3,4,5D .4, ,4、如下图,在中,分别是边的中点,已知,则的长为()A.3 B .4 C.5 D.65、已知点(—2 ,y1),( -1 ,y2),( 1,y3)都在直线y=-3x+b 上,则y1,y2,y3的值的大小关系是()A.y1〉y2〉y3 B .y1<y2<y3 C.y3〉y1>y2D.y3〈y1<y26、一次函数与的图像如下图,则下列结论:①k〈0;②〉0;③当<3 时,中,正确的个数是()A .0 B .1 C .2D.37、某班第一小组7 名同学的毕业升学体育测试成绩(满分30 分) 依次为: 25,23,25,23,27,30,25 ,这组数据的中位数和众数分别是()A.23,25 B.23,23 C.25,23 D.25,25二、填空题(每空 2 分,共 20 分)2000 000 = . 8、函数中,自变 x 的取值范, 是_________9 、计算:(+1)(﹣1)10、若的三边a、b、c 满足0,则△ ABC的面积为 ____.11、请写出定理:“等腰三角形的两个底角相等"的逆定理:.12、如图,在□ABCD中,对角线AC,BD相交于O,AC+BD=16,BC=6,则△ AOD的周长为 _________ 。

【人教版】数学八年级下学期《期末检测题》附答案

【人教版】数学八年级下学期《期末检测题》附答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷共25题.全卷满分120分.考试用时120分钟.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.282.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,183.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.67.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<28.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1349.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.12.若代数式有意义,则x的取值范围是13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.28【答案】D【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=,能与合并,a的值可以是,本选项不符合题意;B、==2,能与合并,a的值可以是8,本选项不符合题意;C、==3,能与合并,a的值可以是18,本选项不符合题意;D、==2,不能与合并,a的值不可以是28,本选项符合题意;故选:D.【知识点】最简二次根式、同类二次根式、二次根式有意义的条件2.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,18【答案】B【分析】利用勾股数定义进行分析即可.【解答】解:A、0.3,0.4,0.5不是正整数,不是勾股数,故此选项不合题意;B、62+82=102,都是正整数,是勾股数,故此选项符合题意;C、,,不是正整数,不是勾股数,故此选项不合题意;D、102+152≠182,不是勾股数,故此选项不合题意;故选:B.【知识点】勾股数3.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【答案】A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【解答】解:a=2019×2021﹣2019×2020=(2020﹣1)(2020+1)﹣(2020﹣1)×2020=20202﹣1﹣20202+2020=2019;∵20222﹣4×2021=(2021+1)2﹣4×2021=20212+2×2021+1﹣4×2021=20212﹣2×2021+1=(2021﹣1)2=20202,∴b=2020;∵>,∴c>b>a.故选:A.【知识点】实数大小比较、二次根式的乘除法、二次根式的性质与化简4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【答案】D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.【知识点】勾股定理的应用5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定【答案】C【分析】根据正方形的对角线平分一组对角可得∠ADB=45°,再根据菱形的四条边都相等可得BD=DF,根据等边对等角可得∠DBF=∠DFB,然后根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可得解.【解答】解:在正方形ABCD中,∠ADB=∠ADC=×90°=45°,在菱形BDFE中,BD=DF,所以,∠DBF=∠AFB,在△BDF中,∠ADB=∠DBF+∠AFB=2∠AFB=45°,解得∠AFB=22.5°.故选:C.【知识点】正方形的性质、菱形的性质6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.6【答案】C【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:∵四边形ABCD是菱形,周长为20,∴AD=20,在DC上截取DG=FD=AD﹣AF=5﹣3=2,连接EG,EG与BD交于点P′,连接P′F,此时P′E+P′F的值最小,最小值=EG的长,∵AE=DG=2,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=5.故选:C.【知识点】菱形的性质、轴对称-最短路线问题7.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<2【答案】C【分析】根据图象和B的坐标得出即可.【解答】解:∵直线y=kx+b和y轴的交点是B(0,2),∴不等式kx+b>2的解集是x>0,故选:C.【知识点】一次函数的性质、一次函数与一元一次不等式8.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,134【答案】B【分析】先将这组数据重新排列,再根据众数和中位数的概念求解即可.【解答】解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.【知识点】中位数、众数9.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【解答】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车原来的速度为:15÷30=0.5km/min,后来的速度为:0.5×=(km/min),当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④错误,故选:C.【知识点】一次函数的应用10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18【答案】A【分析】由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,再通过解直角三角形,求出△CBD高,进而求解.【解答】解:由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,过点B作BH⊥DC于点H,设CH=x,则DH=8﹣x,则BH2=BC2﹣CH2=BD2﹣DH2,即:BH2=42﹣(8﹣x)2=62﹣x2,解得:BH=,则a=y=S△ABP=DC×HB=×8×=3,故选:A.【知识点】动点问题的函数图象二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.【答案】39【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.【知识点】中位数12.若代数式有意义,则x的取值范围是【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【解答】解:若代数式有意义,必有解得﹣3≤x<且x≠﹣2.【知识点】二次根式有意义的条件13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.【答案】6【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故答案为:6.【知识点】平行线之间的距离、角平分线的性质14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.【答案】【第1空】4.8【第2空】5或2.2【分析】(1)当PC⊥AB时,PC的值最小,利用面积法求解即可;(2)过C作CQ⊥BC于Q,同(1)得CQ=4.8,由勾股定理求出AQ=3.6,PQ=1.4,当P在线段BQ上时,AP=AQ+PQ=5;当P在线段AQ上时,AP=AQ﹣PQ=2.2.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,由垂线段最短得:当PC⊥AB时,PC的值最小,此时,△ABC的面积=•AB•PC=•AC•BC,∴AB•PC=AC•BC,∴PC===4.8,故答案为:4.8;(2)过C作CQ⊥BC于Q,如图所示:同(1)得:CQ=4.8,由勾股定理得:AQ===3.6,PQ===1.4,当P在线段BQ上时,AP=AQ+PQ=3.6+1.4=5;当P在线段AQ上时,AP=AQ﹣PQ=3.6﹣1.4=2.2;综上所述,AP的长为5或2.2,故答案为:5或2.2.【知识点】勾股定理、垂线段最短15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.【分析】根据一次函数图象过定点A(2,3),即可得到OA=为最大距离.【解答】解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.【知识点】一次函数的性质、一次函数的图象16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.【答案】(4,160)【分析】根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).【知识点】一次函数的应用17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.【分析】根据直线y=x+4先确定OA和OB的长,证明四边形PHOC是矩形,得PH=OC=BC=2,再证明四边形PBCH是平行四边形,则BP=CH,在BP+PH+HQ中,PH=2是定值,所以只要CH+HQ 的值最小就可以,当C、H、Q在同一直线上时,CH+HQ的值最小,利用平行四边形的性质求出即可.【解答】解:如图,连接CH,∵直线y=x+4分别交x轴,y轴于A,B两点,∴OB=4,OA=3,∵C是OB的中点,∴BC=OC=2,∵∠PHO=∠COH=∠DCO=90°,∴四边形PHOC是矩形,∴PH=OC=BC=2,∵PH∥BC,∴四边形PBCH是平行四边形,∴BP=CH,∴BP+PH+HQ=CH+HQ+2,要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4),又∵点C(0,2),根据勾股定理可得CQ==6,此时,BP+PH+HQ=CH+HQ+PH=CQ+2=6+2,即BP+PH+HQ的最小值为6+2;故答案为:6+2.【知识点】一次函数综合题三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.【分析】根据根式的乘法和完全平方公式化成最简二次根式,再合并即可.【解答】解:×﹣(+1)2=﹣[()2+2+1]=﹣3﹣2﹣1=2﹣3﹣2﹣1=﹣4.【知识点】二次根式的混合运算19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.【分析】(1)根据平方差公式、二次根式的乘法法则计算;(2)根据二次根式的加法法则求出a+b,根据完全平方公式把原式变形,把a+b、ab的值代入计算即可.【解答】解:(1)ab=(+2)(﹣2)=()2﹣22=5﹣4=1;(2)∵a=+2,b=﹣2,∴a+b=(+2)+(﹣2)=2,∴a2+b2﹣ab=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(2)2﹣3×1=17.【知识点】二次根式的化简求值、分母有理化20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.【分析】(1)直接把已知x,y的值代入解方程组得出答案;(2)利用(1)中所求把x的值代入求出答案.【解答】解:(1)∵函数y=kx+,当x=1时,y=7;当x=2时,y=8,∴,解得:,故y与x之间的函数关系式为:y=3x+;(2)当x=4时,y=3×4+=13.【知识点】函数值21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连结BD,取BD的中点H,连结HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=AB,EH∥CN,EH=CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连结BD,取BD的中点H,连结HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=AB,EH∥CN,EH=CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.【知识点】三角形中位线定理22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.【分析】(1)直接根据两点间的距离公式可求出AD及AB的长即可;(2)连接BD,根据勾股定理的逆定理进行判断即可;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,根据三角形的面积公式求出BE的长即可.【解答】解:(1)∵A(0,4),B(2,0),C(5,1),D(2,5).∴AD==;AB===2.故答案为:,2;(2)∠BAD是直角.理由:连接BD,∵B(2,0),D(2,5),∴BD=5﹣0=5.∵由(1)知AD=,AB=2,∴AD2=5,AB2=20,BD2=25,∴AD2+AB2=BD2,∴∠BAD是直角;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,∵C(5,1),D(2,5),∴CD==5,∵B(2,0),D(2,5).∴BD⊥x轴,BG=5﹣2=3,CG=1,∴S△BCD=S梯形DBGC﹣S△BCG,即×5BE=(1+5)×3﹣×1×3,解得BE=3.答:点B到直线CD的距离为3.【知识点】勾股定理、勾股定理的逆定理、坐标与图形性质24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.【分析】(1)先证明四边形BDCE是平行四边形,得出CE=BD,证出BD=CD,由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BDCE是菱形;(2)连接DE,由菱形的性质得出BC⊥DE,BD=BE,OB=OC,由线段垂直平分线的性质得出BE=DE,证出BE=DE=BD,由等边三角形和菱形的性质得出∠EBC=∠EBD=30°,求出OE=EB=3,由勾股定理求出OB,即可得出结果.【解答】(1)证明:∵CE∥AB,BE∥CD,∴四边形BDCE是平行四边形,∴CE=BD,∵CE=AD,∴BD=AD,又∵∠ACB=90°,∴CD=AB=BD,∴四边形BDCE是菱形;(2)解:连接DE,如图所示:由(1)得:四边形BDCE是菱形,∴BC⊥DE,BD=BE,OB=OC,∵EF⊥BD,点F是BD的中点,∴BE=DE,∴BE=DE=BD,∴∠DBE=60°,∠EBC=∠EBD=30°,∴OE=EB=3,∴OB===3,∴BC=2OB=6.【知识点】菱形的判定25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)由勾股定理求出BO即可;(2)由待定系数法求出直线BF的解析式即可;(3)分情况讨论:①当OM、OE都为菱形的边时,OM=OE=4,得出M的坐标为(4,0)或(﹣4,0);②当OM为菱形的对角线,OE为边时,同②得(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,由勾股定理求出OM即可.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣8,﹣6),∴∠OAB=∠OCB=90°,OA=BC=8,AB=CO=6,∴BO===10;(2)由折叠的性质得:BE=AB=6,DE=DA,∠DEB=∠DAB=90°,∴∠DEO=90°,OE=BO﹣BE=10﹣6=4.设OD=a,则DA=DE=8﹣a,在Rt△EOD中,DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(﹣5,0),设直线BF的解析式为y=kx+b,把B(﹣8,﹣6),D(﹣5,0)代入得:,解得:,∴直线BF的解析式为y=2x+10;(3)存在,理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OE为菱形的边,OM为菱形的对角线时,如图1所示:设直线OB解析式为:y=kx,由点B(﹣8,﹣6)在图象上可知:﹣6=﹣8k,∴k=,则直线OB解析式为y=x,设点E(x,x),在Rt△EOG中,OG2+GE2=OE2,即:x2+(x)2=16,解得:x=±,∵点E在第三象限,∴x=﹣,∴点M(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,作EP⊥OA于P,如图2所示:由②得:E(﹣,﹣),则OP=,EP=,在Rt△PEM中,由勾股定理得:(﹣OM)2+()2=EM2,∵OM=EM,∴(﹣OM)2+()2=OM2,解得:OM=,∴点M的坐标为(﹣,0);综上所述,在x轴上存在点M,使得M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).【知识点】一次函数综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分)1.与12是同类二次根式的是( ) A.4B.8C.18D. 272.下面计算正确的是( ) A. 3+3=33B.273=3÷C.2?3=5D.()22=2--3.一个矩形的两条对角线的夹角为 60°,且对角线的长度为 8cm ,则较短边的长度为( ) A. 8cmB. 6cmC. 4cmD. 2cm4.下列图形中是中心对称图形,但不是轴对称图形的是( )A. B. C. D.5.下列方程中是关于x 的一元二次方程的是( )A. 2210x x+= B. 20ax bx c ++= C. 223 2 53x x x --= D. 1 2()()1x x -+=6.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A. 正方形B. 矩形C. 菱形D. 梯形7.关于x 的方程2 4 0x x a -+=有两实数根,则实数a 的取值范围是( ) A. 4a ≤B. 4a <C. 4a >D. 4a ≥8.Rt △ABC 中,AB=AC ,点D BC 中点.∠MDN=90°,∠MDN 绕点D 旋转,DM 、DN 分别与边AB 、AC 交于E 、F 两点.下列结论 ①(BE+CF)=22BC ,②AEF ABC 1S S 4∆∆≤,③AEDF S =四形边AD·EF ,④AD≥EF ,⑤AD 与EF 可能互相平分,其中正确结论的个数是【 】A. 1个B. 2个C. 3个D. 4个二、填空题:(每题3分,共24分)9.二次根式x3-中,x的取值范围是.10.化简:50=___________.11.关于x的方程220x mx m-+=的一个根为1,则m的值为.12.若方程x2+kx+9=0有两个相等的实数根,则k=_____.13.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是_____.14.如图,直线443y x=-+与x轴、y轴分别交于A B、两点,把AOBV绕点A顺时针旋转90︒后得到''△AO B,则点B'的坐标为____.15.如图,正方形ABCD中,点E在DC边上,2,1DE EC==,把线段AE绕点A旋转,使点E落在直线..BC 上的F点,则F C、两点间的距离为___________.16.如图,在直角坐标系中,正方形111A B C O、222133321n n n n A B C C A B C C A B C C-⋯、、、的顶点123nA A A A、、、…、均在直线y kx b=+上,顶点123...nC C C C、、、、在x轴上,若点1B的坐标为()1,1,点2B的坐标为()3,2,那么点4A的坐标为____,点nA的坐标为__________.三、解答题:(17~20,23题每题5分,21,22每题6分,24题7分,25题8分,共52分,如无特别说明,解答题中的填空均直接写答案....................) 17.解方程:2450x x --=. 18.计算:()186121221+----19.已知:31a =+,求222013a a -+得值.20.求证:a 取任何实数时,关于x 的方程()213210ax a x a --+-=总有实数根.21.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AC ⊥AB ,AB =20,且AC ∶BD =2∶3.(1)求AC 的长; (2)求△AOD 的面积.22.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在已备足可以砌50m 长的墙的材料,恰好用完,试求AB 的长,使矩形花园的面积为2300m .23.5个同样大小的正方形纸片摆放成“十”字型,按图1所示的方法分割后可拼接成一个新的正方形.按照此种做法解决下列问题:(1)5个同样大小的矩形纸片摆放成图2形式,请将其分割并拼接成一个平行四边形.要求:在图2中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图3,在面积为1平行四边形ABCD 中,点E F G H 、、、分别是边AB BC CD DA 、、、的中点,分别连结AF BG CH DE 、、、得到一个新的平四边形MNPQ .则平行四边形MNPQ 的面积为___________(在图3中画图说明).24.如图,四边形ABCD 是正方形,ABE △是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN CM 、.(1)证明:ABM EBN △≌△;(2)当M 点在何处时,AM BM CM ++的值最小,并说明理由;(3)当AM BM CM ++的最小值为31+时,则正方形的边长为___________.25.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A FB A →→→停止,点O 自CDE C →→→停止.在运动过程中,①已知点P的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当AC P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________. ②若点P Q、运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.附加题(每题4分,共20分)26.若2,,4m ()()2226m m --___________.27.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.28.设0m n >>,若()22m n mn-=,则22m n mn-=____________. 29.关于x 的方程()28810x k x k -++-=有两个整数根,则整数k=____________.30.如图,在ABC V 中,90,30ACB ABC ∠=︒∠=︒,将ABC V 绕顶点C 顺时针旋转,旋转角为()0180θθ︒<<︒,得到A B C '''V .设AC 中点为E ,A B ''中点为P ,2AC =,连接EP ,当θ=____________︒时,EP 长度最大,最大值为____________.答案与解析一、选择题:(每题3分,共24分)1.是同类二次根式的是()B. C. D.A.【答案】D【解析】【分析】化成最简二次根式后含有相同的因式的二次根式即是同类二次根式,根据定义依次化简即可判断.==2不是同类二次根式;=不是同类二次根式;不是同类二次根式;=是同类二次根式;故选:D.【点睛】此题考查同类二次根式的定义,正确理解同类二次根式的特点并正确化简每个二次根式是解题的关键.2.下面计算正确的是()A. B. C. D. 2-【答案】B【解析】【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A A选项错误;B. ===3,故B选项正确;C. ==C选项错误;D.2Q,故D选项错误;==故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.3.一个矩形的两条对角线的夹角为60°,且对角线的长度为8cm,则较短边的长度为()A. 8cmB. 6cmC. 4cmD. 2cm【答案】C【解析】【分析】根据矩形的性质得到△AOB是等边三角形,即可得到答案.【详解】如图,由题意知:∠AOB= 60°,AC=BD=8cm,∵四边形ABCD是矩形,∴AO=12AC=12BD=OB=4cm,∴△AOB是等边三角形,∴AB=OA=4cm,故选:C. 【点睛】此题考查矩形的性质,等边三角形的判定及性质,正确掌握矩形的性质是解题的关键.4.下列图形中是中心对称图形,但不是轴对称图形的是()A. B. C. D. 【答案】D【解析】【分析】将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】A、是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C 、是轴对称图形,不是中心对称图形;D 、不是轴对称图形,是中心对称图形, 故选:D.【点睛】此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键. 5.下列方程中是关于x 的一元二次方程的是( )A. 2210x x += B. 20ax bx c ++= C. 223 2 53x x x --= D. 1 2()()1x x -+=【答案】D 【解析】 【分析】只含有一个未知数,并且未知数的项的最高次数是2,且等号两边都是整式的方程是一元二次方程,根据定义依次判断即可得到答案.【详解】A 、2210x x +=等式左边不是整式,故不是一元二次方程; B 、20ax bx c ++=中a=0时不是一元二次方程,故不符合题意;C 、223 2 53x x x --=整理后的方程是2x+5=0,不符合定义故不是一元二次方程;D 、 1 2()()1x x -+=整理后的方程是230x x +-=,符合定义是一元二次方程, 故选:D.【点睛】此题考查一元二次方程的定义,正确理解此类方程的特点是解题的关键. 6.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A. 正方形 B. 矩形C. 菱形D. 梯形【答案】B 【解析】【详解】解:∵E 、F 、G 、H 分别为各边的中点,∴EF ∥AC ,GH ∥AC ,EH ∥BD ,FG ∥BD ,(三角形的中位线平行于第三边) ∴四边形EFGH 是平行四边形,(两组对边分别平行的四边形是平行四边形) ∵AC ⊥BD ,EF ∥AC ,EH ∥BD , ∴∠EMO=∠ENO=90°, ∴四边形EMON 是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°, ∴四边形EFGH 是矩形(有一个角是直角的平行四边形是矩形).7.关于x 的方程2 4 0x x a -+=有两实数根,则实数a 的取值范围是( ) A. 4a ≤ B. 4a <C. 4a >D. 4a ≥【答案】A 【解析】 【分析】根据方程有实数根列不等式即可求出答案. 【详解】∵方程2 4 0x x a -+=有两实数根, ∴∆0≥, 即16-4a 0≥, ∴4a ≤, 故选:A.【点睛】此题考查一元二次方程的判别式,根据一元二次方程的根的情况求出未知数的值,正确掌握根的三种情况是解题的关键.8.Rt △ABC 中,AB=AC ,点D 为BC 中点.∠MDN=90°,∠MDN 绕点D 旋转,DM 、DN 分别与边AB 、AC 交于E 、F 两点.下列结论 ①(BE+CF)=2BC ,②AEF ABC 1S S 4∆∆≤,③AEDF S =四形边AD·EF ,④AD≥EF ,⑤AD 与EF 可能互相平分,其中正确结论的个数是【 】A. 1个B. 2个C. 3个D. 4个【答案】C 【解析】【详解】解:∵Rt △ABC 中,AB=AC ,点D 为BC 中点.∠MDN=90°,∴AD =DC ,∠EAD=∠C=45°,∠EDA=∠MDN -∠ADN =90°-∠ADN=∠FDC . ∴△EDA ≌△FDC (ASA ). ∴AE=CF .∴BE+CF= BE+ AE=AB .在Rt △ABC 中,根据勾股定理,得AB=22BC . ∴(BE+CF)=2BC . ∴结论①正确.设AB=AC=a ,AE=b ,则AF=BE= a -b . ∴()()22AEF ABC 1111111S S AE AF AB AC=b a b a =a 2b 04242288∆∆-=⋅⋅-⋅⋅⋅----≤. ∴AEF ABC 1S S 4∆∆≤. ∴结论②正确.如图,过点E 作EI ⊥AD 于点I ,过点F 作FG ⊥AD 于点G ,过点F 作FH ⊥BC 于点H ,ADEF 相交于点O .∵四边形GDHF 是矩形,△AEI 和△AGF 是等腰直角三角形, ∴EO≥EI (EF ⊥AD 时取等于)=FH=GD , OF≥GH (EF ⊥AD 时取等于)=AG . ∴EF=EO +OF≥GD +AG=AD . ∴结论④错误. ∵△EDA ≌△FDC , ∴22ADC AEDF 11S S AD DC AD AD AD EF 22∆==⋅⋅=≤≤⋅四边形. ∴结论③错误.又当EF 是Rt △ABC 中位线时,根据三角形中位线定理知AD 与EF 互相平分. ∴结论⑤正确.综上所述,结论①②⑤正确.故选C .二、填空题:(每题3分,共24分)9.x 的取值范围是 . 【答案】x 3≥. 【解析】x 30x 3-≥⇒≥. 10.=___________.【答案】【解析】 【分析】被开方数因式分解后将能开方的数开方即可化简二次根式.==故答案为:【点睛】此题考查二次根式的化简,正确掌握最简二次根式的特点并正确将被开方数因式分解是解题的关键.11.关于x 的方程220x mx m -+=的一个根为1,则m 的值为 . 【答案】1 【解析】试题分析:把x=1代入方程220x mx m -+=得:1-2m+m=0,解得m=1. 考点:一元二次方程的根.12.若方程x 2+kx +9=0有两个相等的实数根,则k =_____. 【答案】±6 【解析】试题分析:∵方程x 2+kx+9=0有两个相等的实数根,∴△=0,即k 2﹣4•1•9=0,解得k=±6. 故答案为±6. 考点:根的判别式.13.如图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是_____.【答案】50° 【解析】 【分析】已知旋转角为80°,即∠DOB =80°,欲求∠α的度数,必须先求出∠AOB 的度数,利用三角形内角和定理求解即可.【详解】解:由旋转的性质知:∠A =∠C =110°,∠D =∠B =40°; 根据三角形内角和定理知:∠AOB =180°﹣110°﹣40°=30°; 已知旋转角∠DOB =80°,则∠α=∠DOB ﹣∠AOB =50°. 故答案50°.【点睛】此题主要考查的是旋转的性质,同时还涉及到三角形内角和定理的运用,难度不大. 14.如图,直线443y x =-+与x 轴、y 轴分别交于A B 、两点,把AOB V 绕点A 顺时针旋转90︒后得到''△AO B ,则点B '的坐标为____.【答案】(7,3) 【解析】 【分析】先求出点A 、B 的坐标得到OA 、OB 的长度,过点B '作B 'C ⊥x 轴于C ,再据旋转的性质得到四边形AO B C ''是矩形,求出AC 、B 'C 即可得到答案. 【详解】令443y x =-+中y=0得x=3,令x=0得y=4, ∴A(3,0),B(0,4), ∴OA=3,OB=4,由旋转得90OAO '∠=o ,O B ''=OB=4,AO ' =OA=3, 如图:过点B '作B 'C ⊥x 轴于C ,则四边形AO B C ''是矩形, ∴AC=O B ''=4,B 'C=AO '=3,∠OC B '=90°,∴OC=OA+AC=3+4=7, ∴点B '的坐标是(7,3) 故答案为:(7,3).【点睛】此题考查一次函数与坐标轴的交点坐标,矩形的判定及性质,旋转的性质,利用矩形求对应的线段的长是解题的关键.15.如图,正方形ABCD 中,点E 在DC 边上,2,1DE EC ==,把线段AE 绕点A 旋转,使点E 落在直线..BC 上的F 点,则F C 、两点间的距离为___________.【答案】1或5 【解析】 【分析】分两种情况:点F 线段BC 上时或在CB 的延长线上时,根据正方形的性质及旋转的性质证明△ABF ≌△ADE 得到BF=DE ,即可求出答案. 【详解】∵四边形ABCD 是正方形,∴∠A=∠B=90°,AB=AD=BC=CD=DE+CE=2+1=3, 由旋转得AF=AE, ∴△ABF ≌△ADE , ∴BF=DE=2,如图:当点F 线段BC 上时,CF=BC-BF=3-2=1, 当点F 在CB 延长线上时,CF=BC+BF=3+2=5, 故答案为:1或5.【点睛】此题考查正方形的性质,全等三角形的判定及性质,旋转的性质,正确理解题意分情况解题是关键.16.如图,在直角坐标系中,正方形111A B C O 、222133321n n n n A B C C A B C C A B C C -⋯、、、的顶点123n A A A A 、、、…、均在直线y kx b =+上,顶点123...n C C C C 、、、、在x 轴上,若点1B 的坐标为()1,1,点2B 的坐标为()3,2,那么点4A 的坐标为____,点n A 的坐标为__________.【答案】 (1). ()7,8 (2). ()1121,2n n ---【解析】 【分析】先求出点1A 、2A 的坐标,代入求出解析式,根据1A 1B =1,2B (3,2)依次求出点点1A 、2A 、3A 、4A 的纵坐标及横坐标,得到规律即可得到答案. 【详解】∵1B (1,1),2B (3,2),∴正方形111A B C O 的边长是1,正方形2221A B C C 的边长是2, ∴1A (0,1),2A (1,2),将点1A 、2A 的坐标代入y kx b =+得12b k b =⎧⎨+=⎩,解得11=⎧⎨=⎩k b ,∴直线解析式是y=x+1, ∵1A 1B =1,2B (3,2),∴1A 的纵坐标是012=,横坐标是0021=-, ∴2A 的纵坐标是1112+=,横坐标是1121=-, ∴3A 的纵坐标是2222+=,横坐标是21221+=-,∴4A 的纵坐标是34482+==,横坐标是3124721++==-, 由此得到n A 的纵坐标是12n -,横坐标是121n --, 故答案为:(7,8),(121n --,12n -).【点睛】此题考查一次函数的定义,函数图象,直角坐标系中点的坐标规律,能根据图象求出点的坐标并总结规律用于解题是关键.三、解答题:(17~20,23题每题5分,21,22每题6分,24题7分,25题8分,共52分,如无特别说明,解答题中的填空均直接写答案....................) 17.解方程:2450x x --=. 【答案】15=x ,21x =- 【解析】 【分析】先利用配方法,把左边配成完全平方,然后直接开方解方程即可. 【详解】解:配方得:2449x x -+=, 即()229x -=, 开方得:23x -=±,解得:15=x ,21x =-.【点睛】本题考查解一元二次方程,熟练掌握一元二次方程的几种基本解法是关键. 18.)1+-【答案】0 【解析】 【分析】先将各项分别化简,再合并同类二次根式即可.【详解】解:原式110=+=.【点睛】此题考查二次根式的混合运算,正确化简各二次根式是解题的关键. 19.已知:1a =+,求222013a a -+得值.【答案】2015 【解析】 【分析】先根据完全平方公式将多项式变形,再将a 的值代入计算即可.【详解】原式=2(1)2012a -+,∵1a =,∴原式)2112012320122015=-+=+=.【点睛】此题考查多项式的化简求值,二次根式的乘方计算,将多项式正确变形使计算更加简便. 20.求证:a 取任何实数时,关于x 的方程()213210ax a x a --+-=总有实数根.【答案】见解析 【解析】 【分析】由a 是二次项的系数,分a=0及0a ≠两种情况分别确定方程的根的情况即可得到结论. 【详解】当0a =时,方程为10x --=,1x =-; 当0a ≠,方程()213210axa x a --+-=为一元二次方程,()()()222134212110a a a a a a =---=-+=-≥△,原方程有实数根.综上所述,a 取任何值时,原方程都有实数根.【点睛】此题考查方程的根的情况,正确理解题意分情况解答是解题的关键.21.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AC ⊥AB ,AB =20,且AC ∶BD =2∶3.(1)求AC 的长; (2)求△AOD 的面积. 【答案】(1) 8;(2) 45 【解析】【详解】解:(1)如图,在▱ABCD 中,OA=OC=12AC ,OB=OD=12BD . ∵AC :BD=2:3, ∴AO :BO=2:3,故设AO=2x ,BO=3x ,则在直角△ABO 中,由勾股定理得到:OB 2﹣OA 2=AB 2,即9x 2﹣4x 2=20, 解得,x=2或x=﹣2(舍去), 则2x=4,即AO=4, ∴AC=2OA=8; (2)如图,S △AOB =12AB•AO=12×20×4=45. ∵OB=OD ,∴S △AOD =S △AOB =45.22.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在已备足可以砌50m 长的墙的材料,恰好用完,试求AB 的长,使矩形花园的面积为2300m .【答案】AB 的长为15米 【解析】 【分析】设AB=xm ,列方程解答即可.【详解】解:设AB=xm ,则BC=(50-2x )m , 根据题意可得,()502300x x -=,解得:1210,15x x ==,当10x =时,5010103025BC =--=>, 故110x =(不合题意舍去), 答:AB 的长为15米.【点睛】此题考查一元二次方程的实际应用,正确理解题意是列方程的关键.23.5个同样大小的正方形纸片摆放成“十”字型,按图1所示的方法分割后可拼接成一个新的正方形.按照此种做法解决下列问题:(1)5个同样大小的矩形纸片摆放成图2形式,请将其分割并拼接成一个平行四边形.要求:在图2中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图3,在面积为1的平行四边形ABCD 中,点E F G H 、、、分别是边AB BC CD DA 、、、的中点,分别连结AF BG CH DE 、、、得到一个新的平四边形MNPQ .则平行四边形MNPQ 的面积为___________(在图3中画图说明).【答案】(1)见解析;(2)15;说明见解析, 【解析】 【分析】(1)参考5个同样大小的正方形纸片摆放成“十”字型,按图1所示的方法分割后可拼接成一个新的正方形的方法去解.(2)采用逆向思维的方式画出"复原"图并结合这个图形即可快捷的求出所求. 【详解】(1)如图2所示:拼接成的四边形是平行四边形;(2)正确画出图形(如图3)故平行四边形MNPQ 的面积为:15. 【点睛】本题第二问较难,主要不知采用逆向思维的方式得到所求的图形进而求出所求图形的面积,把它返回到5个相同的平行四边形的状态,那么其中一个的面积为原图形的15,那么平行四边形MNPQ 的面积就是11155⨯=. 24.如图,四边形ABCD 是正方形,ABE △是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN CM 、.(1)证明:ABM EBN △≌△;(2)当M 点在何处时,AM BM CM ++的值最小,并说明理由;(3)当AM BM CM ++的最小值为31+时,则正方形的边长为___________.【答案】(1)见解析;(2)当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小,理由见解析;(32. 【解析】 【分析】(1) 由题意得MB=NB ,∠ABN=15°, 所以∠EBN=45°, 容易证出△AMB ≌△ENB ;(2)根据"两点之间线段最短”,当M 点位于BD 与CE 的交点处时,AM+BM+CM 的值最小,即等于EC 的长;(3)过E 点作EF ⊥BC 交CB 的延长线于F ,由题意求出∠EBF=30°, 设正方形的边长为x ,在Rt △EFC 中,2. 【详解】解:(1)∵ABE △是等边三角形, ∴,60BA BE ABE =∠=︒, ∵60MBN ∠=︒,∴MBN ABN ABE ABN ∠-∠=∠-∠,即BMA NBE ∠=∠. 又∵MB NB =,∴()AMB ENB SAS △≌△;(2)如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小. 理由如下: 连接NN ,由(1)知,AMB ENB △≌△, ∴AM EN =.∵60,MBN MB NB ∠=︒=, ∴BMN △是等边三角形, ∴BM MN =.∴AM BM CM EN MN CM ++=++根据“两点之间线段最短”,得EN MN CM EC ++=最短. 当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小,即等于EC 的长.(32.过E 点作EF BC ⊥交CB 的延长线于F , ∴906030EBF ∠=︒-︒=︒. 设正方形的边长为x ,则3BF x ,EF x =.在Rt EFC V 中, ∵222EF FC EC +=,∴)2223312x x x ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎝⎭,解得,2x =. 2.【点睛】此题是四边形的综合题,考查里正方形的性质,等边三角形的性质,全等三角形的判定及性质,勾股定理,最短路径问题,解题中注意综合各知识点.25.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当AC P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.【答案】(1)见解析;(2)①43t =;②12a b += 【解析】【分析】 (1)先证明四边形AFCE 为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;(2)①分情况讨论可知,当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可; ②分三种情况讨论可知a 与b 满足的数量关系式. 【详解】(1)证明:∵四边形ABCD 是矩形,∴AD BC ∥∴,CAD ACB AEF CEF ∠=∠∠=∠,∵EF 垂直平分AC ,垂足为O ,∴OA OC =,∴AOE COF △≌△,∴OE OF =,∴四边形AFCE 为平行四边形,又∵EF OF ⊥∴四边形AFCE 为菱形,(2)①43t =秒. 显然当P 点在AF 上时,Q 点在CD 上,此时A C P Q 、、、四点不可能构成平行四边形;同理P 点在AB上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形.∴以AC P Q 、、、四点为顶点的四边形是平行四边形时,PC QA = ∴点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,∴5,4124PC t QA CD AD t t ==+-=-,∴5124t t =-,解得43t = ∴以AC P Q 、、、四点为顶点的四边形是平行四边形时,43t =秒. ②a 与b 满足的数量关系式是12a b +=,由题意得,以AC P Q 、、、四点为顶点的四边形是平行四边形时, 点P Q 、在互相平行的对应边上,分三种情况:i )如图1,当P 点在AF 上、Q 点在CE 上时,AP CP =,即12a b =-,得12a b +=.ii )如图2,当P 点在B 上、Q 点在DE 上时,AQ CP =,即12b a -=,得12a b +=.iii )如图3,当P 点在AB 上、Q 点在CD 上时,AQ CP =,即12a b -=,得12a b +=.综上所述,a 与b 满足的数量关系式是()120a b ab +=≠.【点睛】此题考查线段垂直平分线的性质,菱形的判定及性质,勾股定理,全等三角形的判定及性质,平行四边形的判定及性质,解题中注意分类讨论的思想.附加题(每题4分,共20分)26.若2,,4m 为三角形三边,化简()()2226m m -+-=___________.【答案】4【解析】【分析】根据三角形的三边关系得到m 的取值范围,根据取值范围化简二次根式即可得到答案.【详解】∵2,m ,4是三角形三边,∴2<m<6,∴m-2>0,m-6<0,∴原式=26m m -+-=m-2-(m-6)=4,故答案为:4.【点睛】此题考查三角形的三边关系,绝对值的性质,化简二次根式,根据三角形的三边关系确定绝对值里的数的正负是解题的关键.27.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.【答案】17【解析】【分析】画出图形,设菱形的边长为x ,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm ,在Rt △ABC 中,由勾股定理:x 2=(8-x )2+22,解得:x=174, ∴4x=17,即菱形的最大周长为17cm .故答案是:17.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.28.设0m n >>,若()22m n mn -=,则22m n mn-=____________. 【答案】3【解析】【分析】根据已知条件求出()22m n mn -=,()26m n mn +=,得到m-n 与m+n ,即可求出答案. 【详解】∵()22m n mn-=, ∴()22m n mn -=,∴()26m n mn +=,∵m> n>0, ∴2m n mn -=6m n mn += ∴22()()2623m n m n m n mn mn mn mn mn-+-=== 故答案为:3【点睛】此题考查利用算术平方根的性质化简,平反差公式的运用,熟记公式是解题的关键.29.关于x 的方程()28810x k x k -++-=有两个整数根,则整数k =____________.【答案】8【解析】【分析】先计算判别式得到∆=2(8)4k -+,根据方程有两个整数根确定∆必为完全平方数,由此得到整数k 的值.【详解】由题意得∆=22(8)4(81)(8)4k k k +--=-+,∵方程()28810x k x k -++-=有两个整数根,∴∆必为完全平方数,而k 是整数,∴k-8=0,∴k=8,故答案为:8.【点睛】此题考查一元二次方程的根的判别式,完全平方公式,正确理解题意是解题的关键.30.如图,在ABC V 中,90,30ACB ABC ∠=︒∠=︒,将ABC V 绕顶点C 顺时针旋转,旋转角为()0180θθ︒<<︒,得到A B C '''V .设AC 中点为E ,A B ''中点为P ,2AC =,连接EP ,当θ=____________︒时,EP 长度最大,最大值为____________.【答案】 (1). 120 (2). 3【解析】【分析】连接CP ,当点E 、C 、P 三点共线时,EP 最长,根据图形求出此时的旋转角及EP 的长.【详解】∵90,30ACB ABC ∠=︒∠=︒,2AC =,∴AB=4,∠A=60°,由旋转得A '∠=∠A=60°,A B ''=AB=4,∵A B ''中点为P ,∴12PC PA A B '''===2, ∴△A PC '是等边三角形,∴∠A CP '=60°,如图,连接CP ,当ABC V 旋转到点E 、C 、P 三点共线时,EP 最长,此时120A CA θ''=∠=o , ∵点E 是AC 的中点,2AC =,∴CE=1,∴EP=CE+PC=3,故答案为: 120,3.【点睛】此题考查直角三角形的性质,等边三角形的判定及性质,旋转的性质,解题中首先确定解题思路,根据旋转得到EP 的最大值即是CE+PC 在进行求值,确定思路是解题的关键.。

相关文档
最新文档