酰胺和胺的人名反应

合集下载

药物合成反应重要人名反应整理

药物合成反应重要人名反应整理

1.Hunsdriecke反应:羧酸银盐和溴或碘反应,脱去二氧化碳,生成比原反应物少一个碳原子的卤代烃。

2.Sandmeyer反应:用氯化亚铜或溴化亚铜在相应的氢卤酸存在下,将芳香重氮盐转化成卤代芳烃。

3.Gattermann反应:将上面改为铜粉和氢卤酸。

4.Shiemann反应:将芳香重氮盐转化成不溶性的重氮氟硼酸盐或氟磷酸盐,或芳胺直接用亚硝酸纳和氟硼酸进行重氮化,此重氮盐再经热分解(有时在氟化钠或铜盐存在下加热),就可以制得较好收率的氟代芳烃。

5.Williamson合成:醇在碱(钠,氢氧化钠,氢氧化钾)存在下与卤代烃反应生成醚。

6.Gabriel合成:将氨先制备成邻苯二甲酰亚胺,利用氮上氢的酸性,先与氢氧化钾生成钾盐,然后与卤代烃作用,得N-烃基邻苯二甲酰亚胺,肼解或酸水解即可得纯伯胺。

7.Delepine反应:用卤代烃与环六亚甲基四胺(乌洛托品)反应得季铵盐,然后水解可得伯胺。

8.Leuckart反应:用甲酸及其铵盐可以对醛酮进行还原烃化,得各类胺。

9.Ullmann反应:卤代芳烃与芳香伯胺在铜或碘化铜及碳酸钾存在并加热的条件下可得二苯胺及其同系物。

10.Friedel-Crafts反应:在三氯化铝催化下,卤代烃及酰卤与芳香族化合物反应,再环上引入烃基及酰基。

11.Meerwein芳基化反应:芳基自由基可与烯反应,引致烯键的碳原子上。

12.Gomberg-Bachmann反应:芳香自由基与过量存在的另一芳香族化合物发生取代反应,得到联苯。

方向自由基的来源主要有三种:最常用重氮离子的分解;其次为N-亚硝基乙酰苯胺类及芳酰过氧化物的分解13.Hoesch反应:腈类化合物与氯化氢在Lewis酸催化剂ZnCl2的存在下与具有烃基或烷氧基的芳烃进行反应可生成相应的酮亚胺,在经水解则得具有羟基或烷氧基的芳香酮。

14.Gattermann反应:将具有羟基或烷氧基的芳烃在三氯化铝或氯化锌催化下与氰化氢及氯化氢作用生成相应芳香醛的反应。

08-酰胺和胺的人名反应解析

08-酰胺和胺的人名反应解析

1、没有立体位阻(sterically unhindered)的伯和仲烷基卤化物得到 最好的结果,尤其以烷基碘化物具有最好的反应活性(I > Br > Cl),接着是烯丙基的、苄基的以及炔丙基的卤化物; 2、烷基磺酸酯(mesylates, tosylates)经常比烷基卤化物得到更好的 9 收率,而且它们更容易获得;
11
Gabriel伯胺合成法
三、Gabriel伯胺合成法的局限性 最起始的Gabriel伯胺合成法有以下一些问题: 1、当邻苯二甲酰亚胺钾盐和烷基卤化物在无溶剂时,要在高温 (120-240 oC)下才能进行反应,因而热敏感的底物不行; 2、水解反应通常用强酸(如H2SO4, HBr, HI)在高温下进行,因此 带有酸敏感官能团的底物也不行;
8
Gabriel伯胺合成法
二、Gabriel伯胺合成法的特点
烷基化反应可以在有溶剂或无溶剂下进行。最好的溶剂是 DMF ( 有利于 SN2 反应 ) ,但是 DMSO 、 HMPA 、氯苯、乙腈、乙二 醇也可以用作反应的溶剂。
在制备N-烷基邻苯二甲酰亚胺的过程中,下面的烷基化试剂能够 得到好的反应收率:
14
Gabriel伯胺合成法
六、应用(Application)
15
Mannich反应
Mannich Reaction
16
Mannich反应
一、背景(Background) 1903年,B. Tollens和von Marle报道了苯乙酮(acetophenone)在 甲 醛 和 氯 化 铵 作 用 下 生 成 了 一 个 叔 胺 。 直 到 1917 年 , C. Mannich观察到在同样的条件下安替比林 (antipyrine)也分离出 一个叔胺,同时意识到这个反应的通用性。 一个CH- 活化的化合物 (通常是醛或酮 )与伯胺或仲胺 (或氨 )以 及没有烯醇化能力的醛(或酮)缩合生成胺烷基化的衍生物的过 程就称为Mannich reaction。 更广泛的是指,共振稳定的碳亲核试剂对亚胺盐和亚胺的加 成。反应的产物是一个-胺基羰基化合物,经常称作为 17 Mannich碱。

人名反应(类型整理)

人名反应(类型整理)

人名反应1氧化:1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4.Criegee臭氧化:烯烃臭氧化后水解成醛酮5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化13.Sarett氧化:CrO3·Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇16.Wacker氧化:Pd催化剂下,烯烃氧化成酮还原:1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN 试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基成烯反应:1.Boord反应:β-卤代烷氧基与Zn作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7.Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting反应9.Ramberg-Backlund烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃人名反应2偶联反应:Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物Castro-Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺Glaser偶联:Cu催化终端炔烃的氧化自偶联Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F -或者OH-之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联Ullmann反应:芳基碘代物在Cu存在下的自偶联反应Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸缩合反应:Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合:酯在碱催化下缩合为β-酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi处理生成终端炔烃Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)Dieckmann缩合:分子内的Claisen缩合Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素Perkin反应:芳香醛和乙酐反应合成肉桂酸Prins反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

胺和酰胺的知识点总结

胺和酰胺的知识点总结

胺和酰胺的知识点总结一、胺。

1. 定义与结构。

- 胺可以看作是氨(NH_3)分子中的氢原子被烃基取代后的产物。

- 根据胺分子中氮原子上所连接的烃基数目不同,可分为伯胺(R - NH_2,氮原子上连接1个烃基)、仲胺(R_2NH,氮原子上连接2个烃基)和叔胺(R_3N,氮原子上连接3个烃基)。

当氮原子上连接4个烃基时形成季铵盐(R_4N^+X^-)或季铵碱(R_4N^+OH^-)。

2. 命名。

- 简单胺的命名:以胺为母体,在烃基名称后面加上“胺”字。

例如,CH_3NH_2称为甲胺;(CH_3)_2NH称为二甲胺;(CH_3)_3N称为三甲胺。

- 当烃基相同时,用二、三表示烃基的数目;当烃基不同时,将简单的烃基写在前面,复杂的烃基写在后面。

例如,CH_3CH_2NHCH_3称为甲乙胺。

- 对于芳香胺,若- NH_2直接连在苯环上,命名时在“胺”字前面加上芳基的名称。

例如,C_6H_5NH_2称为苯胺。

3. 物理性质。

- 低级胺(如甲胺、二甲胺、三甲胺等)为气体,丙胺以上为液体,高级胺为固体。

- 胺具有特殊的气味,低级胺有类似于氨的气味,有的还有鱼腥味。

- 胺分子间能形成氢键,但由于氮的电负性比氧小,所以胺形成的氢键比醇弱,其沸点比相对分子质量相近的醇低,但比相对分子质量相近的烃高。

4. 化学性质。

- 碱性。

- 胺分子中氮原子上有孤对电子,能接受质子,所以胺具有碱性。

- 胺的碱性强弱顺序为:脂肪族仲胺>脂肪族伯胺>脂肪族叔胺>氨>芳香胺。

脂肪族胺的碱性比氨强,是因为脂肪烃基为推电子基,使氮原子上的电子云密度增大,更容易接受质子;而芳香胺的碱性比氨弱,是因为苯环的吸电子作用,使氮原子上的电子云密度降低。

- 与酸反应。

- 胺能与酸反应生成盐。

例如,甲胺与盐酸反应生成甲胺盐酸盐:CH_3NH_2+HCl→CH_3NH_3^+Cl^-。

胺盐为离子化合物,一般为白色固体,易溶于水而不溶于有机溶剂。

人名反应(类型整理)

人名反应(类型整理)

人名反应1氧化:1.Baeyer-Villiger氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化:醇在NCS/DMF作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4氧化成羰基化合物4.Criegee臭氧化:烯烃臭氧化后水解成醛酮5.Dakin反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin过碘酸酯氧化:仲醇由过碘酸酯氧化成酮7.Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8.Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO氧化醇,形成醛酮10.Oppenauer氧化:烷氧基催化的仲醇氧化成醛酮11.Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12.Rubottom氧化:烯醇硅烷经过m-CPBA和K2CO3处理后α-羟基化13.Sarett氧化:CrO3·Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada氧化:烷基氟硅烷被KF,H2O2,KHCO3氧化成醇16.Wacker氧化:Pd催化剂下,烯烃氧化成酮还原:1..Barton-McCombie去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN 试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN在冰醋酸当中还原吲哚双键可以解决8.Gribble二芳基酮还原:用NaBH4在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9.Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley还原:用Al(OPr’)3/Pr’OH体系将酮还原为醇12.Midland还原:用B-3-α-蒎烯-9-BBN对酮进行不对称还原13.Noyori不对称氢化:羰基在Ru(II)BINAP络合物催化下发生不对称氢化还原14.Rosenmund还原:用BaSO4/毒化Pd催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基成烯反应:1.Boord反应:β-卤代烷氧基与Zn作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting反应简单的多7.Julia-Lythgoe成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α-硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting反应9.Ramberg-Backlund烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃人名反应2偶联反应:Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物Castro-Stephens偶联:芳基炔合成,同Cadiot-Chodkiewicz偶联Eglinton反应:终端炔烃在化学计量(常常过量)Cu(Oac)2促进下发生的氧化偶联反应Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺Glaser偶联:Cu催化终端炔烃的氧化自偶联Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物Heck反应:Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应杂芳基Heck反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck反应Hiyama交叉偶联反应:Pb催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F -或者OH-之类的活化剂Pd(Ph3P)4,TBAF催化剂存在下发生的交叉偶联反应Kumada交叉偶联(Kharasch交叉偶联):Ni和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd催化发生交叉偶联生成酮McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4产生的Ti(0)处理得到双键,反应是一个单电子过程Negishi交叉偶联:Pd催化的有机Zn和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应Sonogashira反应:Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应Stille偶联:Pd催化的有机Sn和有机卤,三氟磺酸酯之间的交叉偶联反应Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联Suzuki偶联:Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联Ullmann反应:芳基碘代物在Cu存在下的自偶联反应Wurtz反应:烷基卤经Na或Mg金属处理后形成碳碳单键Ymada偶联试剂:用二乙基氰基磷酸酯(EtO)2PO-CN活化羧酸缩合反应:Aldol缩合:羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和α-卤代酯和Zn反应得到β-酮酯Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应:羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合:酯在碱催化下缩合为β-酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi处理生成终端炔烃Darzen缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)Dieckmann缩合:分子内的Claisen缩合Evans aldol反应:用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi-Thorpe缩合(2-吡啶酮合成):氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮Henry硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch加成反应:过渡金属催化的CXCl3对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael加成:亲核碳原子对α,β-不饱和体系的共扼加成Mukaiyama醇醛缩合:Lewis酸催化下的醛和硅基烯醇醚之间的Aldol缩合Nozaki-Hiyama-KIshi反应:Cr-Ni双金属催化下的烯基卤对于醛的氧化还原加成Pechmann缩合(香豆素合成):Lewis酸促进的酸和β-酮酯缩合成为香豆素Perkin反应:芳香醛和乙酐反应合成肉桂酸Prins反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应Reimer-Tiemann反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser对Witting反应的修正:不稳定的叶立德和醛发生的Witting反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃Stetter反应(Michael-Stetter反应):从醛和α,β-不饱和酮可以得到1,4-二羰基衍生物。

人名反应(类型整理)

人名反应(类型整理)

人名反应1氧化:1.Baeyer-Villiger 氧化:酮过酸氧化成酯迁移规则:叔>仲>环己基>苄>伯>甲基>氢2.Corey-Kim 氧化: 醇在NCS/DMF 作用后,碱处理氧化成醛酮3.Criegee邻二醇裂解:邻二醇由Pb(OAc)4 氧化成羰基化合物4.Criegee臭氧化: 烯烃臭氧化后水解成醛酮5.Dakin 反应:对羟基苯甲醛由碱性H2O2氧化成对二酚6.Dess-Martin 过碘酸酯氧化: 仲醇由过碘酸酯氧化成酮7. Fleming氧化:硅烷经过酸化,过酸盐氧化,水解以后形成醇8. Hooker氧化:2-羟基-3烷基-1,4-醌被KMnO4 氧化导致侧链烷基失去一个亚甲基,同时羟基和烷基位置互变9.Moffatt 氧化(Pfitzner-Moffatt)氧化:用DCC和DMSO 氧化醇,形成醛酮10.Oppenauer氧化: 烷氧基催化的仲醇氧化成醛酮11. Riley氧化:活泼亚甲基(羰基α位等)被SeO2氧化成酮12. Rubottom氧化:烯醇硅烷经过m-CPBA 和K2CO3处理后α-羟基化13.Sarett 氧化: CrO3·Py络合物氧化醇成醛酮14.Swern氧化:用(COCl)2,DMSO为试剂合Et3N 淬灭的方法将醇氧化成羰基化合物15.Tamao-Kumada 氧化:烷基氟硅烷被KF,H2O2,KHCO3 氧化成醇16.Wacker 氧化: Pd催化剂下,烯烃氧化成酮还原:1..Barton-McCombie 去氧反应:从相关的硫羰基体中间用n-Bu3SnH,AIBN 试剂经过自由基开裂发生醇的去氧作用2.Birch 还原:苯环由Na 单质合液胺条件下形成环内二烯烃(带供电子基团的苯环:双键连接取代基;带吸电子基团的苯环,取代基在烯丙位。

)3.Brown硼氢化:烯烃和硼烷加成产生的有机硼烷经过碱性H2O2氧化得到醇4.Cannizzaro 歧化:碱在芳香醛,甲醛或者其他无α-氢的脂肪氢之间发生氧化还原反应给出醇和酸5.Clemmensen还原:用锌汞齐和氯化氢将醛酮还原为亚甲基化合物6.Corey-Bakshi-Shibata(CBS)还原:酮在手性恶唑硼烷催化下的立体选择性还原7.Gribble 吲哚还原:用NaBH4直接还原会导致N-烷基化,NaBH3CN 在冰醋酸当中还原吲哚双键可以解决8.Gribble 二芳基酮还原:用NaBH4 在三氟乙酸中还原二芳基酮和二芳基甲醇为二芳基甲烷,也可以应用于二杂芳环酮和醇的还原9. Luche还原:烯酮在NaBH4-CeCl3下发生1,2-还原形成烯丙位取代烯醇10.McFadyen-Stevens还原:酰基苯磺酰肼用碱处理成醛11.Meerwein-Ponndorf-Verley 还原:用Al(OPr')3/Pr 'O体H 系将酮还原为醇12.Midland 还原:用B-3-α-蒎烯-9-BBN 对酮进行不对称还原13. Noyori 不对称氢化:羰基在Ru(II)BINAP 络合物催化下发生不对称氢化还原14. Rosenmund还原:用BaSO4/毒化Pd 催化剂将酰氯氢化成醛,如催化剂未被毒化,会氢化为醇15.Wolff-Kishner-黄鸣龙还原:用碱性肼将羰基还原为亚甲基成烯反应:1.Boord反应:β-卤代烷氧基与Zn 作用生成烯烃2.Chugaev消除:黄原酸酯热消除成烯3.Cope消除:胺的氧化物热消除成烯烃4.Corey-Winter olefin 烯烃合成:邻二醇经1,1-硫代羰基二咪唑和三甲氧基膦处理转化为相应的烯5.Doering-LaFlamme 丙二烯合成:烯烃用溴仿以及烷氧化物处理以后生成同碳二溴环丙烷再反应生成丙二烯6.Horner-Wadsworth-Emmons 反应:从醛合磷酸酯生成烯烃.副产物为水溶性磷酸盐,故以后处理较相应的Witting 反应简单的多7.Julia-Lythgoe 成烯反应:从砜合醛生成(E)-烯烃8.Peterson成烯反应:从α - 硅基碳负离子合羰基化合物生成烯烃.也成为含硅的Witting 反应9.Ramberg-Backlund 烯烃合成:Α-卤代砜用碱处理生成烯烃10.Witting 反应:羰基用膦叶立德变成烯烃11.Zaitsev消除:E2消除带来更多取代的烯烃人名反应2偶联反应:Cadiot-Chodkiewicz偶联:从炔基卤和炔基酮合成双炔衍生物Castro-Stephens偶联: 芳基炔合成,同Cadiot-Chodkiewicz 偶联Eglinton 反应:终端炔烃在化学计量 (常常过量) Cu(Oac)2促进下发生的氧化偶联反应Eschenmoser偶联:从硫酰胺和烷基卤生成烯胺Glaser偶联: Cu 催化终端炔烃的氧化自偶联Gomberg-Bachmann偶联:碱促进下芳基重氮盐和一个芳烃之间经自由基偶联生成二芳基化合物Heck 反应: Pb催化的有机卤代物或者三氟磺酸酯和烯烃之间的偶联反应杂芳基Heck 反应:发生在杂芳基受体上的Pd(Ph3P)4,Ph3P,CuI,Cs2CO3催化下的分子内或者分子间Heck 反应Hiyama 交叉偶联反应:Pb 催化有机硅和有机卤代物或者三氟磺酸酯等在诸如F -或者OH-之类的活化剂Pd(Ph3P)4,TBAF 催化剂存在下发生的交叉偶联反应Kumada 交叉偶联( Kharasch交叉偶联) :Ni 和Pd催化下,格氏试剂和一个有机卤代物或者三氟磺酸酯之间的交叉偶联Liebeskind-Srogl偶联:硫酸酯和有机硼酸之间经过Pd 催化发生交叉偶联生成酮McMurry 偶联:羰基用低价Ti,如TiCl3/LiAlH4 产生的Ti(0) 处理得到双键,反应是一个单电子过程Negishi交叉偶联: Pd催化的有机Zn 和有机卤代物,三氟磺酸酯等之间发生的交叉偶联反应Sonogashira反应: Pd/Cu催化的有机卤和端基炔烃之间的交叉偶联反应Stille 偶联: Pd催化的有机Sn 和有机卤,三氟磺酸酯之间的交叉偶联反应Stille-Kelly偶联:双Sn试剂进行Pd催化下二芳基卤代物的分子交叉偶联Suzuki 偶联: Pd催化下的有机硼烷和有机卤,三氟磺酸酯在碱存在下发生的交叉偶联Ullmann 反应:芳基碘代物在Cu 存在下的自偶联反应Wurtz 反应:烷基卤经Na或Mg 金属处理后形成碳碳单键Ymada 偶联试剂: 用二乙基氰基磷酸酯(EtO)2PO-CN 活化羧酸缩合反应:Aldol 缩合: 羰基和一个烯醇负离子或一个烯醇的缩合Blaise反应:腈和α-卤代酯和Zn 反应得到β-酮酯Benzoin 缩合:芳香醛经CN-催化为安息香(二芳基乙醇酮)Buchner-Curtius-Schlotterbeck反应: 羰基化合物和脂肪族重氮化物反应给出同系化的酮Claisen缩合: 酯在碱催化下缩合为β-酮酯Corey-Fuchs反应:醛发生一碳同系化生成二溴烯烃,然后用BuLi 处理生成终端炔烃Darzen 缩水甘油酸酯缩合:碱催化下从α-卤代酯和羰基化合物生成α,β-环氧酯(缩水甘油醛)Dieckmann 缩合:分子内的Claisen缩合Evans aldol反应: 用Evans手性鳌合剂,即酰基恶唑酮进行不对称醇醛缩合Guareschi-Thorpe 缩合(2-吡啶酮合成): 氰基乙酸乙酯和乙酰乙酸在氨存在下生成2-吡啶酮Henry 硝醇反应:醛和有硝基烷烃在碱作用下去质子化产生氮酸酯Kharasch 加成反应:过渡金属催化的CXCl3 对于烯烃的自由基加成Knoevenagel缩合:羰基化合物和活泼亚甲基化合物在胺的催化下缩合Mannnich 缩合(羰基胺甲基化):胺,甲醛,和一个带有酸性亚甲基成分的化合物之间的三组分反应发生胺甲基化Michael 加成:亲核碳原子对α,β-不饱和体系的共扼加成Mukaiyama 醇醛缩合:Lewis 酸催化下的醛和硅基烯醇醚之间的Aldol 缩合Nozaki-Hiyama-KIshi 反应:Cr-Ni 双金属催化下的烯基卤对于醛的氧化还原加成Pechmann 缩合(香豆素合成):Lewis 酸促进的酸和β-酮酯缩合成为香豆素Perkin 反应:芳香醛和乙酐反应合成肉桂酸Prins 反应:烯烃酸性条件下对于甲醛的加成反应Reformatsky反应:有机Zn试剂(从α-卤代酯来)对羰基的亲核加成反应Reimer-Tiemann 反应:从碱性介质当中从酚和氯仿合成邻甲酰基苯酚Schlosser 对Witting 反应的修正:不稳定的叶立德和醛发生的Witting 反应生成Z-烯烃,而改进的Schlosser反应可以得到E-烯烃Stetter 反应(Michael-Stetter 反应):从醛和α ,β-不饱和酮可以得到1,4-二羰基衍生物。

常见人名反应及其机理

常见人名反应及其机理

常见人名反应及其机理1.Arbuzov 反应卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。

除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。

当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。

本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:一般认为是按S N2 进行的分子内重排反应:2.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。

重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。

3.Baeyer-Villiger 反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。

因此,这是一个重排反应具有光学活性的3-苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:4. Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变。

5.Bouveault-Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。

α,β-不饱和羧酸酯还原得相应的饱和醇。

芳香酸酯也可进行本反应,但收率较低。

本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。

08-酰胺和胺的人名反应

08-酰胺和胺的人名反应

3
Beckmann重排反应
二、Beckmann重排反应的特点 1 、 反 应 在 强 制 性 的 条 件 下 进 行 ( 高 温 >130 oC , 大 量 的 强 Bronsted酸),不是催化反应。
2、常用的Bronsted酸有:H2SO4, HCl/Ac2O/AcOH等。因此,对 酸敏感的底物不适合这个工艺。
Gabriel伯胺合成法
二、Gabriel伯胺合成法的特点(续) 3、-卤代酮、酯、腈以及-卤代酮酸酯(比如,溴代丙二酸二乙 酯);
4、O-烷基异脲;
5、烷氧基和烷硫基膦盐;
6 、在 Mitsunobu 反应条件下 (DEAD/Ph3P/phthalimide) 的伯醇和仲 醇;
10
Gabriel伯胺合成法
二、Gabriel伯胺合成法的特点(续) 7、带有好几个拉电子基的芳基卤代物(通过SNAr反应制备伯芳香 胺); 8、在Cu(I)作催化剂下的芳基卤代物; 9、环氧化合物(epoxide)和丫啶化合物(aziridines)可以用来制备氨 基醇和二胺; 10 、 ,- 不 饱 和化合 物 可以通 过 邻苯二 甲 酰亚胺 负 离子进 行 Michael加成反应。
26
Hofmann重排反应
二、Hofmann重排反应的特点 1 、次卤酸试剂要新鲜制备,即把氯气或溴素加到 NaOH 或 KOH的水溶液中;
2、在传统的碱性反应条件中,酰胺不能带有碱敏感的官能团, 但是酸敏感的官能团(比如缩醛)不受影响;
3、不能分离得到异氰酸酯中间体,因为在反应条件下马上水 解(溶剂解)得到相应的少一个C的胺,中间经过不稳定的氨基 甲酸;
三、Mannich反应的改进 最初三组分的Mannich反应有好几种改进。 使用预先制备的亚胺盐是最重要的改进,因为这样使反应更快、 区域选择性更高,甚至能在温和条件下进行立体选择性的反 应。

有机化学人名反应

有机化学人名反应

取代反应:1,加特曼反应:加特曼(Gattermann L)发现:用催化量的金属铜代替氯化亚铜或溴化亚铜作催化剂,也可使重氮盐与盐酸或氢溴酸反应制得芳香氯化物或溴化物。

这样进行的反应叫做加特曼反应。

2,加特曼-科赫反应:苯、一氧化碳和氯化氢反应生成苯甲醛,此反应称为加特曼-科赫反应。

3,傅-克反应:芳香化合物芳环上的氢被烷基取代的反应称为傅-克烷基化反应;芳香化合物芳环上的氢被酰基取代的反应称为傅-克酰基化反应;统称傅-克反应。

4,布赫尔反应:萘酚在亚硫酸氢钠存在下与氨作用,转变成相应萘胺的反应称为布赫尔反应。

5,齐齐巴宾反应:吡啶与氨基钠反应,生成α-氨基吡啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低。

这个反应称为齐齐巴宾(Chichibabin)反应。

6,刚穆伯—巴赫曼反应:芳香重氮盐中的芳基在碱性条件下与其它芳香族化合物偶联成联苯或联苯衍生物的反应称为刚穆伯(Gomberg)—巴赫曼(Bachmann)反应。

7,柯尔伯—施密特反应:干燥的酚钠或酚钾与二氧化碳在加温加压下生成羟基苯甲酸的反应称为柯尔伯—施密特(Kolbe-Schmitt)反应。

8,威廉森合成法:在无水条件下,醇钠和卤代烷作用生成醚的反应称为威廉森(Williamson A W)合成法。

9,席曼反应:芳香重氮盐和氟硼酸反应,生成溶解度较小的氟硼酸盐,后者加热分解产生氟苯,这称为席曼(Schiemann)反应。

10,桑德迈耳反应:1884年,桑德迈耳(Sandmeyer T)发现:在氯化亚铜或溴化亚铜的催化下,重氮盐在氢卤酸溶液中加热,重氮基可分别被氯或溴原子取代,生成芳香氯化物或溴化物。

这一反应称为桑德迈耳反应。

11,普塑尔反应:一些重氮盐在碱性条件下或稀酸的条件下可以发生分子内的偶联反应。

这个反应是普塑尔(Pschorr R)在寻找合成菲环的新方法中首先发现的,故称为普塑尔反应。

12,瑞穆尔—悌曼反应:酚与氯仿在碱性溶液中加热生成邻位及对位羟基醛的反应称为瑞穆尔—悌曼(Reimer —Tiemann)反应。

常见人名反应及机理

常见人名反应及机理

1. Aldol Condensation:羟醛缩合是一种有机反应:烯醇或烯醇负离子和羰基化合物反应形成β-羟基醛或者β-羟基酮,然后发生脱水得到共轭烯酮。

反应第一步为羟醛反应,第二部反应为脱水反应。

酸催化碱催化图例使用OCH3 做碱2.Baeyer –Villiger Oxidation酮在过氧化物如过氧化氢、过氧化羧酸等氧化下,在羰基和一个邻近烃基之间引入一个氧原子,得到相应的酯的化学反应。

醛可以进行同样的反应,氧化的产物是相应的羧酸。

2.Baylis –Hillman Reactionαβ-不饱和化合物与亲电试剂(醛、酮)在合适的催化剂作用下,生成烯烃α-位加成产物的反应。

催化剂一般采用DABCO(14-二氮双环222辛烷的缩写形式,俗称:三亚乙基二胺),生成物为烯丙基醇1。

贝里斯-希尔曼反应经历叔胺与活化烯烃的Michael 加成反应启动的加成-消除反应历程4. Beckmann Rearrangement是一个由酸催化的重排反应,反应物肟在酸的催化作用下重排为酰胺。

若起始物为环肟,产物则为内酰胺。

α-二酮、α-酮酸、α-叔烃基酮反式、α-二烷基氨基酮、α-羟基酮和β-酮醚生成的肟在路易,又斯酸或质子酸的作用下断裂为腈及相应的官能团化合物。

这个反应称为―异常贝克曼重排‖称非正常贝克曼重排;二级贝克曼重排;贝克曼断裂反应等。

5. Benzoin Condensation 安息香缩合反应,又称苯偶姻缩合,是一个有机反应,是氰离子催化下两分子芳香醛进行缩合生成一个偶姻分子的反应。

由于生成物是安息香(Ph-CO-CHOH-Ph)的衍生物,故名??. Birch Reduction钠和醇在液氨中将芳香环还原成14-环己二烯的有机还原反应。

Birch 还原的重要性在于:尽管剩下的双键(非芳香性)更为活泼,该反应却能停留在环己双烯上,而不继续还原。

反应中的钠也可以用锂或钾取代,使用的醇通常是甲醇或叔丁醇。

《药物合成反应(闻韧主编第三版)》人名反应整理(新)

《药物合成反应(闻韧主编第三版)》人名反应整理(新)

《药物合成反应(闻韧主编第三版)》人名反应整理一、卤化反应1、Hunsdriecke反应(汉斯狄克反应):羧酸银盐和溴或碘反应,脱去二氧化碳,生成比原反应物少一个碳原子的卤代烃。

☆☆☆☆☆2、Sandmeyer反应(桑德迈尔反应):用氯化亚铜或溴化亚铜在相应的氢卤酸存在下,将芳香重氮盐转化成卤代芳烃。

☆☆3、Gattermann反应(加特曼反应):将Sandmeyer反应条件改为铜粉和氢卤酸。

☆☆4、Schiemann反应(席曼反应):将芳香重氮盐转化成不溶性的重氮氟硼酸盐或氟磷酸盐,或直接将芳胺用亚硝酸钠和氟硼酸进行重氮化,此重氮盐再经热分解(有时在氟化钠或铜盐存在下加热),就可以制得较好收率的氟代芳烃。

☆二、烃化反应5、Willamson合成(威廉姆森合成):醇在碱(钠、氢氧化钠、氢氧化钾等)存在下与卤代烃反应生成醚的反应。

☆☆☆☆6、Gabriel合成(盖布瑞尔合成):将氨先制备成邻苯二甲酰亚胺,利用氮上氢的酸性,先与氢氧化钾形成钾盐,然后与卤代烃作用,得N-烃基邻苯二甲酰亚胺,再经过肼解或酸水解即可得纯伯胺。

☆☆☆☆☆7、Delepine反应(德勒频反应):用卤代烃与环六亚甲基四胺(乌洛托品Methenamine)反应得季铵盐,然后水解即可得伯胺。

8、Leuckart-Wallach反应(鲁卡特-瓦拉赫反应):用甲酸及其铵盐可对醛酮进行还原烃化,得各类胺。

☆9、Ullmann反应(沃尔曼反应):卤代芳烃与芳香伯胺在铜或碘化铜及碳酸钾存在并加热的条件下可得二苯胺及其同系物。

三、酰化反应10、Friedel-Crafts反应(傅列德尔-克拉夫茨反应,也称傅-克酰基化反应):羧酸及羧酸衍生物在质子酸或Lewis酸的催化下,对芳烃进行亲电取代生成芳酮的反应。

☆☆☆☆☆11、Hoesch反应(赫施反应):腈类化合物与氯化氢在Lewis酸催化剂ZnCl2等的存在下与烃基或烷氧基取代的芳烃进行反应可生成相应的酮亚胺,再经水解则得到羟基或烷氧基取代的芳香酮。

常见人名反应及机理

常见人名反应及机理

常见人名反应及机理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UTBeckmann重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。

迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:Birch还原反应机理Cannizzaro反应反应机理Claisen酯缩合含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。

如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。

二元羧酸酯的分子内酯缩合见反应机理乙酸乙酯的α-氢酸性很弱(,而乙醇钠又是一个相对较弱的碱(乙醇的pKa~),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。

但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。

所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。

Claisen_Schmidt反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。

对酸不稳定而对碱稳定的化合物可用还原。

Cope重排1,5-二烯类化合物受热时发生类似于O-烯丙基重排为C-烯丙基的重排反应()反应称为Cope 重排。

这个反应30多年来引起人们的广泛注意。

1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。

Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。

有机人名反应VilsmeierHaack甲酰化反应

有机人名反应VilsmeierHaack甲酰化反应

Vilsmeier-Haack reaction
Now
• The application of Vilsmeier-Haack reaction in the synthesis of the agrochemicals such as fenpyroximate,imazaquin,furametpyr was reviewed
Vilsmeier-Haack reaction
Vilsmeier-Haack reaction
References
1 Vilsmeier,A.and Haack,A.Ber.1937,60,119. 2 Campaigne,E.and Archer W. L. Organic Syntheses, Coll.1963,Vol.4,p.331.1953,Vol.33,p.27. 3 Youssefyeh,R.D.Tetrahedron Lett.1964,5,2161. 4 Minkin,V.I.;Dorofeenko,G.N.Russian Chem. Commun.1960,599.(综述) 5 Arnold,Z.;Zemlicka,mun.1959,24,2385. 6 Stéphanie Hesse and Gilbert Kirsch Tetrahedron Lett.2002,43,1213.
Vilsmeier-Haack reaction
• 维尔斯迈尔-哈克反应(Vilsmeier-Haack reaction)是指芳香化合物与二取代甲酰胺在三 氯氧磷作用下,反应生成芳环上甲酰化产物[1]。 该反应只reaction
Vilsmeier-Haack reaction
Vilsmeier-Haack reaction

有机化学中的胺与胺的反应

有机化学中的胺与胺的反应

有机化学中的胺与胺的反应胺是一类含有氨基基团(NH2)的有机化合物。

胺的反应在有机化学领域中具有重要的地位,它们参与了许多有机合成和生物化学过程。

本文将介绍胺的结构、性质以及与其他化合物之间的反应。

一、胺的结构和性质胺分为三类:一级胺、二级胺和三级胺。

一级胺中,一个碳原子与一个氢原子以及一个氨基原子连接在一起,如甲胺(CH3NH2)。

二级胺中,一个碳原子与两个氢原子以及一个氨基原子连接在一起,如二甲胺(CH3NHCH3)。

三级胺中,一个碳原子与三个氢原子以及一个氨基原子连接在一起,如三甲胺(CH3N(CH3)2)。

胺具有碱性,因为氨基基团具有孤对电子对,可以与酸反应形成盐,并产生水分子。

此外,由于胺分子中的非键电子对,胺还可以形成氢键,使得胺具有高沸点和高溶解度。

二、胺的反应1. 胺的氧化反应一级胺可以被氧气氧化生成亚硝胺,然后进一步氧化形成亚硝酰胺。

例如,甲胺经过氧化反应得到甲醛,然后再氧化生成甲酸。

CH3NH2 + O2 → CH2O + H2OCH2O + O2 → HCOOH2. 胺的醛缩反应在酸性条件下,胺与醛(或酮)可以发生缩合反应,生成亚胺。

这种反应通常被称为胺的醛缩反应或亚胺生成反应。

3. 胺的磷酸酯化反应一级胺可以与磷酸酯发生酯化反应生成胺酯。

这种反应常用于合成酯类化合物。

4. 胺的酰化反应胺可以与酰化试剂反应生成酰胺。

这种反应常用于有机合成中的胺保护基团去除反应。

5. 胺的互变异构反应在碱性条件下,一级胺可以与酮或醛发生互变异构反应,生成席夫碱。

6. 胺的亲电取代反应胺中的氨基基团通过亲电取代反应可以参与酰基转移、芳香性亲电取代和醇的酯化等反应。

总结:以上介绍了有机化学中胺与其他化合物的反应。

胺作为有机化学中重要的功能团,通过氧化、醛缩、酯化、酰化、互变异构和亲电取代等反应,参与了许多有机合成和生物化学过程。

深入理解胺的反应机制对于有机化学的学习和应用具有重要意义。

酰胺缩合反应机理

酰胺缩合反应机理

酰胺缩合反应机理
酰胺缩合反应是一种有机化学反应,其机理如下:
1.首先,一分子酸(如羧酸)和一分子胺反应形成酰胺中间体。

此步反
应一般伴有酸催化。

反应式如下:
RCO2H+R'NH2→RCONHR'+H2O。

2.酰胺中间体进一步缩合,生成涉及酰胺水合物的二酰胺。

反应式如下:
RCONHR'+H2O→RCONHCONHR'+H2O。

3.在酸性催化下,二酰胺可以发生脱水反应,生成亚胺。

反应式如下:
RCONHCONHR'+H+→RCON=NR'+H2O。

整个反应过程可以用下列反应式表示:
RCO2H+R'NH2→RCONHR'+H2O。

RCONHR'+H2O→RCONHCONHR'+H2O。

RCONHCONHR'+H+→RCON=NR'+H2O。

由于酰胺缩合反应具有反应条件温和、适用范围广等优点,在有机化
学合成中得到了广泛应用。

化学反应的酰胺反应

化学反应的酰胺反应

化学反应的酰胺反应化学反应是物质之间发生变化的过程,其中酰胺反应是一种重要的有机合成反应。

酰胺是由酸酐(酸酐是由酸起反应的中间体)和胺发生缩合反应生成的一类化合物。

本文将介绍酰胺反应的基本原理、应用以及相关实例。

1. 基本原理酰胺反应是通过酸酐和胺之间的缩合反应生成酰胺。

酸酐中的一个羰基与胺中的氨基发生缩合,生成酰胺并释放出一个分子的水。

该反应通常在酸性或碱性条件下进行。

酰胺反应的机制通常涉及两步:首先是酸酐和胺之间的酰胺化反应,形成酰胺中间体,该步骤一般由酸性或碱性催化反应。

其次,通过消除水分子的方式,酰胺中间体进行脱水作用,生成最终的酰胺产物。

2. 应用领域酰胺反应在有机合成领域具有广泛的应用。

它可以用于合成多种生物活性物质、药物和功能材料。

以下是几个典型的应用领域:2.1 药物合成酰胺反应在药物合成中发挥着重要的作用。

许多抗生素、抗肿瘤药物、镇痛药物和抗抑郁药物等都是通过酰胺反应合成得到的。

例如,β-内酰胺类抗生素通过酰胺反应合成,广泛用于临床治疗。

2.2 功能材料酰胺反应还可用于合成各种功能材料。

例如,聚酰胺是一类重要的高分子材料,广泛应用于合成纤维、薄膜、涂层等领域。

聚酰胺的制备通常涉及酰胺反应。

2.3 化妆品酰胺反应在化妆品领域也有应用。

例如,合成一些抗皱化妆品时,酰胺反应被用于合成多肽,从而增强肌肤胶原蛋白的活性,减少皱纹。

此外,酰胺反应也可用于合成其他类型的护肤品。

3. 相关实例酰胺反应有许多具体的实例,其中一些被广泛应用于工业生产和学术研究。

3.1 常见酰胺反应最常见的酰胺反应是通过酸酐和胺之间的缩合反应合成酰胺。

例如,丙酰酸酐和丙胺通过酰胺反应可生成丙酰胺。

此外,还有酯酰胺反应、醚酰胺反应等其他类型的酰胺反应。

3.2 聚酰胺合成聚合酰胺是一类具有高分子量的聚合物,通常由酰胺反应合成。

聚合酰胺具有良好的耐热性和耐腐蚀性,可用于制备高性能材料。

3.3 胺化胺化是酰胺反应的逆反应,即将酰胺转化为相应的酸酐和胺。

amide 和 amine化学式

amide 和 amine化学式

amide 和amine化学式
酰胺(amide)和胺(amine)是有机化合物中常见的两类功能团。

它们的化学式如下:
1. 酰胺(amide):酰胺是由一个羰基碳与一个氮原子形成共价键的有机化合物。

通常表示为RCONR',其中R和R'可以是不同的有机基团。

例如,乙酰胺(acetamide)的化学式为CH3CONH2。

2. 胺(amine):胺是由一个或多个氨基(-NH2)取代烃基而成的有机化合物。

胺可以分为三个主要类型:一级胺、二级胺和三级胺,取决于有几个烷基取代了氨基。

一级胺的通用化学式是R-NH2,二级胺的通用化学式是R-NH-R',三级胺的通用化学式是R-N(R')2。

其中R和R'可以是不同的有机基团。

例如,甲胺(methylamine)的化学式为CH3NH2,乙胺(ethylamine)的化学式为C2H5NH2。

大学有机化学胺与酰胺

大学有机化学胺与酰胺
脂肪伯胺
芳香伯胺
重氮盐 氯化重氮苯
反应胺
反应式
脂肪1O胺
NaNO2,HCl
RNH2 0~5OC
+
RN
N Cl-
-N2 R+
得醇、烯、卤代 烃等混合物
脂肪2O胺
NaNO2,HCl
R2NH
R2N N O
SnCl2,HCl
R2N H
脂肪3O胺 R3N+HNO2 [R3NH]+NO2-
现象
放出气体
出现黄色 油状物或 固体,加 酸,油状 物消失 发生成盐 反应,无 特殊现象
工业上生产尿素
1、水解反应
尿素在酸、碱或尿素酶的作用下易水解成氨。
—— 氮肥
2、与亚硝酸作用
N2定量,可测尿素含量。
3、成盐
尿素分子中有两个氨基,其中一个氨基可与强 酸成盐,故呈弱碱性。
可用于从尿中分离脲
2、胺的命名
❖简单的胺:用“胺”作官能团,把它所含烃基 的名称和数目写在前面,按简单到复杂先后列出, 后面加上“胺”字。
CH3 N
CH2CH3
甲(基)乙(基)环丙胺
❖复杂的胺:作为烃类的衍生物来命名
❖季铵化合物:作为铵的衍生物来命名
氢氧化四甲铵
溴化四乙铵
❖胺盐: CH3NH2. H Cl
(C6H5NH2)2. H2SO4
仲胺
叔胺
季铵盐
季铵盐为强酸强盐。卤化季铵盐的水溶液用 氧化银处理时则生成季铵碱。
R4N+Cl + Ag2O H 2O R4N+OH + AgCl
季铵碱为强碱,其碱性与氢氧化钠或氢氧化钾相 当。加热时则分解成叔胺和烯烃:
氢氧化四乙铵
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、Gabriel伯胺合成法的特点(续) 7、带有好几个拉电子基的芳基卤代物(通过SNAr反应制备伯芳香
胺); 8、在Cu(I)作催化剂下的芳基卤代物; 9、环氧化合物(epoxide)和丫啶化合物(aziridines)可以用来制备氨
基醇和二胺;
10、,-不饱和化合物可以通过邻苯二甲酰亚胺负离子进行 Michael加成反应。
Gabriel伯胺合成法
三、Gabriel伯胺合成法的局限性 最起始的Gabriel伯胺合成法有以下一些问题: 1、当邻苯二甲酰亚胺钾盐和烷基卤化物在无溶剂时,要在高温
(120-240 oC)下才能进行反应,因而热敏感的底物不行; 2、水解反应通常用强酸(如H2SO4, HBr, HI)在高温下进行,因此
胺代丙二酸二乙酯继续烷基化,然后水解、脱羧得到氨基酸 。
Gabriel伯胺合成法
五、机理(Mechanism) Gabriel伯胺合成法的第一步是烷基卤化物对邻苯二甲酰亚胺钾 盐进行的烷基化反应,反应过程经历SN2反应。第二步是N-烷基 邻苯二甲酰亚胺的肼解,经过肼对邻苯二甲酰亚胺的一个羰基 进行亲核进攻。接着发生以下几步反应:开环、质子转移,然 后是一个分子内的SNAc反应另一个质子转移,四面体中间体断 键后得到设想的伯胺并产生一个副产物。
早在1884年就报道了用简单烷基卤化物和邻苯二甲酰亚胺进 行烷基化反应,但是直到1887年S. Gabriel才把这个过程发展 成一个两步反应合成伯胺的工艺。
Gabriel伯胺合成法
二、Gabriel伯胺合成法的特点
烷基化反应可以在有溶剂或无溶剂下进行。最好的溶剂是DMF ( 有利于SN2反应),但是DMSO、HMPA、氯苯、乙腈、乙二醇 也可以用作反应的溶剂。
在过去的一个世纪里,最早的Gabriel伯胺合成法还有一些改进:
1、新的Gabriel试剂(代替邻苯二甲酰亚胺作为N的来源),目的 是为了获得更温和的去保护条件;
2、加入催化量的冠醚(crown ether)使得烷基化反应几乎定量; 3、用NaBH4/异丙醇体系 代替水解; 4、一个相关的工艺是Gabriel-丙二酸酯合成,就是邻苯二甲酰亚
Gabriel伯胺合成法
二、Gabriel伯胺合成法的特点(续) 3、-卤代酮、酯、腈以及-卤代酮酸酯(比如,溴代丙二酸二乙
酯); 4、O-烷基异脲; 5、烷氧基和烷硫基膦盐; 6、在Mitsunobu反应条件下(DEAD/Ph3P/phthalimide)的伯醇和仲
醇;
Gabriel伯胺合成法
Beckmann重排反应
二、Beckmann重排反应的特点
1、反应在强制性的条件下进行(高温>130 Bronsted酸),不是催化反应。
oC,大量的强
2、常用的Bronsted酸有:H2SO4, HCl/Ac2O/AcOH等。因此,对 酸敏感的底物不适合这个工艺。
3、重排反应的立体化学是可以预测的。和N原子上的离去基团 成反位(anti) 的基团R发生迁移。如果肟在反应条件下发生异 构化,可能得到两种可能的酰胺的混合物。
酰胺和胺的人名反应
Beckmann重排反应
Beckmann重排反应
Beckmann重排反应
一、背景(Background)
在酸性介质中醛肟(aldoximes)和酮肟转化成相应的酰胺的反应就 称为Beckmann rearrangement。 在工业生产-己内酰胺(caprolactam)中就显示了这个反应的特别 的重要性。己内酰胺是生产合成纤维尼龙-6的聚合单体 (monomer)。
带有酸敏感官能团的底物也不行; 3、强碱水解也是可以的,但是带有碱敏感官能团的底物就受到
限制。
Gabriel伯胺合成法
四、Gabriel伯胺合成法的改进
1926年,H. R. Ing和R. H. F. Manske做了改进,在回流的乙醇中 用水合肼断裂N-烷基邻苯二甲酰亚胺,这样就使得反应在温 和和中性的条件下进行。这个过程称为(Ing-Manske过程)。
四、应用
Beckmann重排反应
Gabriel伯胺合成法
Gabriel伯胺合成法源自Gabriel伯胺合成法一、背景(Background)
从相应的烷基卤化物经过温和的两步反应合成伯胺,其中邻 苯二甲酰亚胺钾(potassium phthalimide)先烷基化,得到的N-烷 基邻苯二甲酰亚胺接着水解。这样的方法从烷基卤化物合成 伯胺的方法就称为Gabriel伯胺合成法。
4、H原子绝不会发生迁移,因此,Beckmann重排反应不能用来 合成N-没有取代的酰胺。
Beckmann重排反应
三、机理(mechanism)
机理的第一步是在亲电试剂作用下,X官能团转换成离去基团 。离去基团的离去的同时伴随着与离去基团成反位的R-基团 的[1,2]-迁移。形成的碳正离子与亲核试剂(水分子或离去基团 )反应经过互变异构(tautomerization)之后得到酰胺。
一个CH-活化的化合物(通常是醛或酮)与伯胺或仲胺(或氨)以 及没有烯醇化能力的醛(或酮)缩合生成胺烷基化的衍生物的过 程就称为Mannich reaction。
Gabriel伯胺合成法
六、应用(Application)
Mannich反应
Mannich Reaction
Mannich反应
一、背景(Background)
1903年,B. Tollens和von Marle报道了苯乙酮(acetophenone)在 甲醛和氯化铵作用下生成了一个叔胺。直到1917年,C. Mannich观察到在同样的条件下安替比林(antipyrine)也分离出 一个叔胺,同时意识到这个反应的通用性。
在制备N-烷基邻苯二甲酰亚胺的过程中,下面的烷基化试剂能够 得到好的反应收率:
1、没有立体位阻(sterically unhindered)的伯和仲烷基卤化物得到 最好的结果,尤其以烷基碘化物具有最好的反应活性(I > Br > Cl),接着是烯丙基的、苄基的以及炔丙基的卤化物;
2、烷基磺酸酯(mesylates, tosylates)经常比烷基卤化物得到更好的 收率,而且它们更容易获得;
相关文档
最新文档