一元一次不等式组的实际应用
一元一次不等式(组)在生活中的应用
一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。
以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。
我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。
制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。
在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。
健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。
在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。
公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。
总之,一元一次不等式(组)在我们的日常生活中有很多应用。
它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。
实际问题与一元一次不等式(组)
(2)什么情况下选择乙公司比较合算?
(3)什么情况下两公司的收费相同?
2、某学校有6名教师,234名学生集体外出活动,准备
租用45座大客车或30座小客车,若租用1辆大客车和2 辆小客车共需租车费1000元;若租用2辆大客车和1辆 小客车共需租车费1100元。
(1)求大小客车每辆的租车费各是多少元?
解:设饼干的标价为x元,则牛奶的标价为:(10-0.8-0.9x)元,由题意,得
{ x+10-0.8-0.9x>10, x<10,
解得, 8<x<10,
∵x为整数,∴x=9.
10-9×0.9-0.8=1.1(元)
答:饼干的标价为9元,牛奶的标价为1.1元。
当堂测试
用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入 ,铁钉所受的阻力也越来越大.当未进入木块的钉子长度 足够时,每次钉入木块的钉子长度是前一次的二分之一. 已知这个铁钉被敲击3次后全部进入木块(木块足够厚), 且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长 度为acm,则a的取值范围是______.
∵z为整数
∴z=4或5
方案一:当z=4时,需要花400×4+300×2=2200(元);
方案二:{当z=5时,需要花400×5+300×1=2300(元);
∴最省钱的方案为租大客车4辆,小客车2辆.
3、认真阅读对话,根据对话的内容试求出饼干和牛奶的标价 各是多少元? 小朋友:阿姨,我买一盒饼干和一袋牛奶(递上10元钱) 导购员:小朋友,本来你用10元钱买一盒饼干是有多余钱的, 但是要再买一袋牛奶就不够了!今天是儿童节,我给你买的 饼干打九折,两样东西请拿好!还找你8角钱。 温馨提示:一盒饼干的标价可是整数元哦!
中考数学复习:专题2-11 用一元一次不等式(组)解决生活中的实际问题
专题11 用一元一次不等式(组)解决生活中的实际问题【专题综述】一元一次不等式组是在学习了一元一次不等式组的概念和解法之后,进一步探索现实世界数量关系的重要内容,是继学习了一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后续学习二元一次方程等内容的重要基础,有着承前启后的作用。
用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4 、解不等式(组);5、根据题意,写出合理答案。
【方法解读】一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?【举一反三】(湖南省娄底市)某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打().A、6折B、7折C、8折D、9折二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?【举一反三】(江西省崇仁一中)在崇仁一中中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?【举一反三】某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格______元时,采用方案一更合算.四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
10道一元一次不等式应用题和答案过程
10道一元一次不等式应用题和答案过程1.某水产品市场管理部门计划建造2400平方米的大棚,内设有A种和B种店面各80间。
A种店面的平均面积为28平方米,月租费为400元;B种店面的平均面积为20平方米,月租费为360元。
全部店面的建造面积不低于大棚总面积的85%。
现在要确定A种店面的数量。
解:设A种店面为a间,B种店面为80-a间。
根据题意,28a+20(80-a)≥2400×85%,化简得8a≥440,即a≥55.因此,A种店面至少应有55间。
为使店面的月租费最高,设月租费为y元,根据题意可得y=75%a×400+90%(80-a)×360=300a+-24a=-24a。
因为a≥55,所以当a=55时,y取最大值,即月租费最高为元。
2.水产养殖户XXX计划进行大闸蟹与河虾的混合养殖。
每亩地水面租金为500元,每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗。
每公斤蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;每公斤虾苗的价格为15元,饲养费用为85元,当年可获得160元收益。
现在要求出每亩水面虾蟹混合养殖的年利润,并确定XXX应租多少亩水面,向银行贷款多少元,才能使年利润达到元。
解:每亩水面的成本包括水面年租金、苗种费用和饲养费用,即成本=500+75×4+15×20+525×4+85×20=4900元。
每亩水面的收益为1400×4+160×20=8800元。
因此,每亩水面的年利润为8800-4900=3900元。
设租a亩水面,贷款为4900a-元。
根据题意,收益为8800a,成本不超过元,即4900a≤,解得a≤10.2亩。
为使年利润达到元,可列出方程3900a+0.1(4900a-)=,解得a≈13.08亩,即XXX应租13亩水面,向银行贷款约为元。
某手机生产厂家决定对一款原售价为2000元的彩屏手机进行调价,按新单价的八折优惠出售。
一元一次不等式(组)的应用
专题20 一元一次不等式(组)的应用知识要点1.一元一次不等式(组)在实际生活中的应用,就是将实际问题转化为刻画不等关系的数学模型即不等式(组)这一数学问题,其基本步骤:(1)审:通过审题,分析已知数和未知数;(2)设:根据题意设未知数;(3)找:找出能够符合题意的不等关系;(4)列:根据不等关系列出不等式(组);(5)解:解不等式(组);(6)求:从不等式(组);(7)答:写出答案.2.注意常见的反映不等关系的关键词:如至多(或最多),不超过,不足,至少,不低于,不少于.3.利润问题中除了“利润=售价一进价(成本)=利润率×成本”外,还要注意打n 折是售价×0.1n 而不是售价×n .4.不等式(组)的解集一般是取值范围,但在实际问题中往往需要根据问题的实际意义求未知数的某特殊解,比如笔的支数、车的辆数、人数等应是整数解或非负整数解等,解答这类问题的关键是明确解的特征.典例精析例1 某种商品进价为800元,出售时标价为1200元,后来由于该商品积压,商品准备打折出售,但要保持利润不低于5%,则至少可以打多少折.【分析】关键词“不低于”的不等关系可用不等式表示,列出不等式解之即可.【解】设打x 折,依题意,得., 解得x ≥7.答:至少可以打7折.【点评】注意设未知数应“设打x 折”,不能“设至少打x 折”,同时注意打x 折应为0.1x 或.拓展与变式1 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保持利润不低于5%,那么商店最多降 元出售商品.拓展与变式2 某商品的标价比成本价高25%,根据市场需要,该商品需降价出售,为了不亏本,至多降价百分之几?【反思】“至多”“至少”都是不等关系,结合利润问题中的数量关系和不等关系列出12000.18008005%x ⨯-≥⨯110x不等式.例2 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?【分析】注意有15题计算分数,把答对题的分数和答错题的分数加起来,列出不等式求解,注意答对的题数应为正整数.【解】设这个学生答对x 道题,依题意得,解得.∵x 应取正整数,∴x 的最小值为12.答:这个学生至少答对12題,成绩才能在60分以上.【点评】注意根据不等式的解集结合实际情况取符合实际意义的解.拓展与变式3 为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作为奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,那么小明最多可以买多少个球拍?拓展与变式4 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元,已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台,1600元/台,2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求购买甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【反思】找好不等关系列出不等式,同时注意问题的解要符合问题的实际意义.例3 甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同. 甲商场规定:凡购买超过1 000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠? ()621560x x -->1114x >【分析】设顾客所购买电器的金额为x 元,分x >1000、500<x ≤100和0<x ≤500三种情况分别比较在甲、乙两商场购买时的实际金额数.【解】设顾客所购买电器的金额为x 元,由题意得当0<x ≤500时,可任意选择甲、乙两商场;当500<x ≤1000时,可选择乙商场;当x >1000时,设甲商场实收金额为,则元;乙商场实收金额为,则 元.①当<时,即1000+(x -1000)×0.9<500+(x -500)×0.95,0.9x +100<0.95x +25,即-0.05x <-75,解得x >1500.∴当x >1500时,可选择甲商场. ②当=时,即1000+(x -1000)×0.9=500+(x -500)×0.95,0.9x +100=0.9,即-0.05x =-75,解得x =1500.∴当x =1500时,可任意选择甲、乙两商场. ③当>时,即11000+(x -1000)×0.9>500+(x -500)×0.95,0.9x +100>0.95x +25,即-0.05x >-75,解得x <1500.∴当x <1500时,可选择乙商场. 综上所述,顾客对于商场的选择可参考如下:(1)当0<x ≤500或x =1500时,可任意选择甲、乙两商场;(2)当500<x <1500时,可选择乙商场;(3)当x >1500时,可选择甲商场.拓展与变式5 某大型超市为了促进商场的销售,推出了会员制度.共有两种会员卡,其中普通卡每年需交纳会员费100元,所购买商品均可享受9.5折优惠;贵宾卡每年需交纳会员费300元,所购买的商品均可享受9折优惠.小明家一年在该超市购买商品共消费5000元,应选择 卡合算.拓展与变式6 端午节是中华民族古老的传统节日.甲、乙两家超市在端午节当天对一种原来售价相同的粽子分别推出了不同的优惠方案.甲超市方案:购买该种粽子超过200元后,超出200元的部分按95%收费;乙超市方案:购买该种粽子超过300元后,超出300元的部分按90%收费.设某位顾客购买了x 元的该种粽子.(1)补充表格,填写在横线上:(2)列式计算说明,如果顾客在端午节当天购买该种粽子超过300元,那么到哪家超市花费更少?y 甲()()100010000.90.91000y x =+-⨯=+甲y 乙()()5005000.950.9525y x x =+-⨯=+乙y 甲y 乙y 甲y 乙y 甲y 乙【反思】方案选择问题需要分类讨论,需把各种情况进行比较,从而找出最优解.专题突破1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分才能得奖,那么要得奖至少应选对的题数为().A. 18B. 19C. 20D. 212.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔的数量为().A. 20支B. 14支C. 13支D. 10支3.某市举办以“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.若购买甲树的金额不少于购买乙树的金额,问:至少应购买甲树多少棵?4.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8人,则有一间宿舍不满也不空,问:宿舍间数和学生人数分别是多少?5.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种? 请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1 500元,那么应选择以上哪种购买方案?。
一元一次不等式组应用题及答案复习过程
一元一次不等式组应用题及答案精品文档一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答一.分配问题:1.把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
一元一次不等式组应用实例及答案
一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。
一元一次不等式组是用来解决不等式问题的数学工具。
它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。
应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。
实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。
现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。
根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。
实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。
已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。
同时,工厂每天总共生产的产品数量不得超过80个。
问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。
根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。
答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。
实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。
一元一次不等式的应用
一元一次不等式的应用一元一次不等式是数学中的基础内容,它在实际生活中有着广泛的应用。
本文将从几个不同的角度探讨一元一次不等式的应用,并且给出相应的例子来说明。
1. 经济学中的应用一元一次不等式在经济学中有着重要的应用。
假设某公司生产一种产品,每个单位的成本为C元,而售价为P元。
为了保证公司盈利,必须满足售价高于成本的条件,即P > C。
这个条件可以用一元一次不等式来表示:P - C > 0。
若我们已知成本为10元,可以通过解不等式P - 10 > 0,得到售价的最小值为10元。
2. 几何学中的应用一元一次不等式在几何学中也有着广泛的应用。
考虑一个简单的情境,如果一个长方形的长度为x,宽度为y,而周长必须小于20个单位长度。
我们可以得到不等式2x + 2y < 20。
这个不等式的解集表示了周长小于20的长方形的所有可能的长度和宽度组合。
3. 物理学中的应用一元一次不等式在物理学中也是常见的。
例如,假设一个物体的质量为m千克,加速度为a米/秒²,而所施加的力必须满足F > ma。
这个不等式表示物体所受的力必须大于等于质量乘以加速度的乘积。
如果已知质量为5千克,加速度为2米/秒²,我们可以用一元一次不等式F - 10 > 0来表示所施加的力必须大于10牛顿。
4. 生活中的实际应用一元一次不等式在生活中也有许多实际的应用。
例如,考虑一个不定期活动的打折促销,商品打折幅度为d%。
假设某物品原价为P元,我们希望知道打折后的价格必须小于等于或等于某个特定的值,即P - dP ≤ 500。
这个不等式表示了商品打折后的价格必须小于等于500元。
总结:通过以上几个例子,我们可以看到一元一次不等式在不同领域中的广泛应用。
经济学、几何学、物理学以及生活中的实际问题中都可以运用到一元一次不等式来进行分析和解决。
通过解不等式,我们可以得到满足特定条件的变量的取值范围,从而帮助我们做出合理的决策。
一元一次不等式的实际应用
一元一次不等式的实际应用一元一次不等式是初中数学中的重要内容,它是解决实际问题的基础。
在生活中,我们经常会遇到一些与一元一次不等式相关的问题,比如购物打折、工资收入等等。
下面,我们将从这些实际问题入手,探讨一元一次不等式的实际应用。
一、购物打折在购物时,商家常常会推出打折活动,比如“买一送一”、“满100元减20元”等等。
这些活动都可以用一元一次不等式来表示。
例如,某商场推出了“满200元减50元”的活动,那么我们可以用以下不等式来表示:x≥200,其中x表示购物金额。
这个不等式的意思是,只有当购物金额不小于200元时,才能享受减50元的优惠。
如果购物金额小于200元,就不能享受优惠。
二、工资收入在工作中,我们的收入往往与工作时间和工作量有关。
如果我们知道了每小时的工资和工作时间,就可以用一元一次不等式来计算收入。
例如,某人每小时的工资为10元,他一天工作8小时,那么他一天的收入可以用以下不等式来表示:y≥80,其中y表示一天的收入。
这个不等式的意思是,他一天的收入不会小于80元。
如果他加班或者工作时间更长,他的收入会更高。
三、运动健身运动健身是现代人追求健康生活的一种方式。
在运动时,我们需要控制自己的心率和呼吸频率,以达到最佳的锻炼效果。
这个过程可以用一元一次不等式来表示。
例如,某人的最大心率为220减去他的年龄,他希望在锻炼时保持心率在最大心率的70%到85%之间,那么他的心率应该满足以下不等式:126≤x≤153,其中x表示他的心率。
这个不等式的意思是,他的心率应该在126到153之间,才能达到最佳的锻炼效果。
四、旅游出行旅游出行是人们放松身心、开阔眼界的一种方式。
在旅游时,我们需要控制自己的预算,以避免超支。
这个过程也可以用一元一次不等式来表示。
例如,某人计划去旅游,他的预算为1000元,他希望在旅游中尽可能多地体验当地的美食和文化,那么他的花费应该满足以下不等式:x≤1000,其中x表示他的花费。
微专题六 一元一次不等式(组)的解法及其应用
B品牌运动服/件
30
累计采购款/元
10 200
(1)A,B两种品牌运动服的进货单价各是多少元?
解:(1)设 A,B 两种品牌运动服的进货单价分别为 x 元和 y 元.
根据题意,得
+ = ,
= ,
解得
= ,
+ = ,
∴A,B 两种品牌运动服的进货单价分别为 240 元和 180 元.
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
解:(2)①设购买儿童口罩 m 包,则购买成人口罩(5-m)包.
+ (-) ≥ ,
根据题意,得
解得 2≤m≤3.
+ (-) ≤ ,
∵m 为整数,∴m=2 或 m=3.∴共有两种购买方案:
-
解不等式 x-4<
,得 x<2,
则不等式组的解集为-3≤x<2,
∴不等式组的所有负整数解为-3,-2,-1.
一元一次不等式的应用
6.某商城的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行
销售.已知这两种服装过去两次的进货情况如表所示:
进货批次
第一次
A品牌运动服/件
故此商场至少需购进6件A种商品.
一元一次不等式组的应用
8.小明网购了一本课外书,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”.乙说:“至多
22元,”丙说:“至多20元,”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(
)
B
A.20<x<22
B.22<x<25
一元一次不等式组应用题及答案
一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
一.分配问题:1.把假设干颗花生分给假设干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但缺乏5颗。
问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将缺乏40只鸡放入假设干个笼中,假设每个笼里放4只,那么有一只鸡无笼可放;假设每个笼里放5只,那么有一笼无鸡可放,且最后一笼缺乏3只。
问有笼多少个?有鸡多少只?5. 用假设干辆载重量为8吨的汽车运一批货物,假设每辆汽车只装4吨,那么剩下20吨货物;假设每辆汽车装满8吨,那么最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住假设干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的平安地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原方案至少提前两天完成,那么以后平均每天至少要比原方案多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
一元一次不等式组的应用
一元一次不等式组的应用一元一次不等式组是数学中的重要知识点,也是我们日常生活中经常会遇到的问题。
它可以帮助我们解决许多实际问题,如生活中的购物、物品生产等方面。
下面我们就来具体了解一下一元一次不等式组的应用。
首先,让我们来看一个实际例子。
假设小明去商店买水果,他带了40元钱,他知道苹果和橙子的价格分别是每斤5元和每斤4元。
他想知道自己最多能买多少斤水果,以确保自己不会超出预算。
这个问题可以用一元一次不等式组来解决。
首先,我们设苹果的购买量为x斤,橙子的购买量为y斤。
根据题意,我们可以得到两个不等式:5x + 4y ≤ 40和x ≥ 0,y ≥ 0。
其中,5x + 4y ≤ 40表示所花费的钱不能超过40元,x ≥ 0和y ≥ 0表示水果的购买量必须是非负数。
接下来,我们来解决这个不等式组。
首先我们可以将不等式5x +4y ≤ 40转化为等式5x + 4y = 40。
根据一元一次方程的知识,我们可以求出一组解,即x = 8,y = 0。
这表示小明最多只能买8斤苹果而没有橙子,因为再多买的话就会超出预算了。
这个例子告诉我们,一元一次不等式组可以帮助我们在实际生活中解决预算等问题。
通过设定合理的不等式和约束条件,我们可以得出最理想的解决方案。
除了购物问题,一元一次不等式组还可以应用在许多其他方面。
比如,在物品生产方面,我们可以根据生产成本和销售价格来确定最适宜的生产量,以保证利润最大化。
在时间管理方面,我们可以根据工作时间和休息时间的约束条件,来平衡工作和生活的安排,以达到工作效率的最大化和身心健康的保持。
综上所述,一元一次不等式组是一个非常实用的数学工具,在我们的日常生活中应用广泛。
通过解决实际问题,它可以帮助我们做出理性的决策,提高生活质量和工作效率。
因此,掌握一元一次不等式组的应用是非常有指导意义和实际价值的。
希望大家能够认真学习并灵活运用这一知识点,为自己的生活和工作带来更多的便利和效益。
2019中考数学专题训练 一元一次不等式组的实际应用(含解析)
-一元一次不等式组的实际应用一、单选题1.六一儿童节到了要把一些苹果分给几个小朋友,如果每人分3个,则剩8个;如果每人分5个,那么最后一个小朋友就分不到3个,则共有多少个小朋友()A. 4B. 5C. 6D. 72.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,则共有学生人数为()A. 6人 B.5人 C.6人或5人 D.4人3.若不等式组的解集是x<2,则a的取值范围是( )A. a<2B. a≤2C. a≥2D. 无法确定4.如图是测量一颗玻璃球体积的过程:(1)将300ml的水倒进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A. 20cm3以上,30cm3以下 B. 3 0cm3以上,40cm3以下C. 40cm3以上,50cm3以下 D. 5 0cm3以上,60cm3以下5.已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的最大值为m,最小值为n,则m﹣n的值()A. 5B. 6C. 7D. 86.现有43本书,计划分给各学习小组,若每组8本有剩余,每组9本却不足,则学习小组共有()A. 4个B. 5个C. 6个D. 7个7.如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A. 20cm3以上,30cm3以223下 B. 30cm 3以上,40cm 3以下 C. 40cm 3以上,50cm 3以下 D. 50cm 3以上,60cm 3以下8.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( ) A. 3种 B. 4种 C. 5种 D. 6种9.已知关于x 的不等式组恰有3个整数解,则a 的取值范围是( )A.B.C.D.10.某种商品的价格第一年上升了10%.第二年下降了(m -5)%(m >5)后.仍不低于原价.则m 的值应为( ) A. 5<m≤B. 5≤m≤C. 5<m<D. 5≤m<11.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( ) A. 29人 B. 30人 C. 31人 D.4 4 32人12.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A. 7x+9≤8+9(x﹣1)B. 7x+9≥9(x﹣1)C.D.二、填空题13.把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为________.14.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是________ .(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值时0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.15.把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z个学生,依题意可列不等式组为________16.两根木棒长分别为5和7,要选择第三根木棒将其钉成三角形,•若第三根木棒的长选取偶数时,有________种选取情况.17.不等式组的解集为x<6m+3,则m的取值范围是________.18.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友能分到不足5个苹果.这一箱苹果的个数是________,小朋友的人数是________19.若不等式组有解,则a的取值范围是________20.一个三角形的三边长分别为xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,则x的取值范围是________21.某公司从超市购买了墨水笔和圆珠笔共15盒,所付金额超过570元,但不到580元.已知墨水笔的单价为每盒34.90元,圆珠笔的单价为每盒44.90元.设购买圆珠笔x盒,可列不等式组为________22.幼儿园把新购进的一批玩具分给小朋友,若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友能分到玩具,但不足4件,共有小朋友________人,这批玩具共有________ 件.三、解答题23.小明攒了60张10元和50元的纸币,这些纸币的总值不到2 000元,请问他最少拥有多少张10元纸币?24.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,求一共购买了多少支签字笔?25.某学校组织学生到外郊游,学生行进速度为每小时3千米,8点出发,10点时学校开始送中餐,如果送中餐的师傅在11:30与12:00之间赶上一直在行进的学生队伍,问送中餐的师傅的速度是多少千米/时?四、综合题26.为了抓住市文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A,B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?27.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是________.(2)如果[ ]=3,求满足条件的所有正整数x.56 6 答案解析部分一、单选题1.六一儿童节到了要把一些苹果分给几个小朋友,如果每人分3个,则剩8个;如果每人分5个,那么最后一个小朋友就分不到3个,则共有多少个小朋友()A. 4B. 5C. 6D. 7【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:设共有x个小朋友,则苹果有(3x+8)个,由题意得:0≤(3x+8)﹣5(x﹣1)<3,解得:5<x≤6,∵x为正整数,∴x=6.答:共有6个小朋友.故选C.【分析】首先设共有x个小朋友,则苹果有(3x+8)个,由关键语句“如果每人分5个,那么最后一个小朋友就分不到3个”可得不等式0≤(3x+8)﹣5(x﹣1)<3,解不等式,取整数解即可.2.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,则共有学生人数为()A. 6人 B.5人 C.6人或5人 D.4人【答案】A【考点】一元一次不等式组的应用【解析】【解答】解:设共有学生x人,0≤(3x+8)﹣5(x﹣1)<3,解得,5<x≤6.5,故共有学生6人,故选A.【分析】根据题意可以列出相应的不等式组,从而可以解答本题.3.若不等式组的解集是x<2,则a的取值范围是( )A. a<2B. a≤2C. a≥2D. 无法确定【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:由(1)得:x<2由(2)得:x<a∵不等式组的解集是x<2∴a≥2故应选:C.【分析】首先解出不等式组中的每一个不等式,然后由不等式组的解集是x<2,及同小取小得出a≥2 。
第21讲 一元一次不等式(组)的应用
第21讲 一元一次不等式(组)的应用教学目的1.进一步巩固一元一次不等式和一元一次不等式组的解法及它们的解集的意义,并会简单运用•2.会列不等式或不等式组解决一些典型的实际问题•典题精析【例1】当x 取何有理数时,代数式3221--x 的值不大于1? 【解法指导】从题目中找出不等关系来,并依此列出不等式,解此不等式即可求出本题所求“不大于”,即是小于或等于,类似的还有“不超过”、“不多于”、“顶多为”,另外,“不少于”、“不低于”、“至少为”等,即为“大于或等于”•解:依题意得12123x --≤ 去分母,得 3-2(x -2)≤6 去括号,得 3-2x +4≤6 合并同类项,得 -2x≤6-3-4 即 -2x≤-1 系数化为1,得 12x ≥ ∴ 当x 取值不小于12时,3221--x 的值不大于1• 变式练习01.如果2(1)3x --的值是非正数,则x 的取值范围是( ) A .x≤-1 B .x≥-1 C .x≥1 D .x≤102.当x 取何值时,代数式2x -5的值:⑴大于0? ⑵等于0? ⑶不大于-3?03.若代数式1132x x +--的值不小于16x -的值,求正整数x 的值• 【例2】(乐山)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午他又买了20斤,价格为每斤y 元•他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .x <y B .x >y C .x≤y D .x≥y【解法指导】若要比较两个有理数a 和b 的大小,有一种方法就是判断a -b 的值的正负:若a -b =0,则a =b ;若a -b <0,则a <b ,反之亦然•用这种方法比较两数大小,称之为作差比较法•本题实质就是比较30x +20y 与502x y +⋅的大小的问题,所谓“赔了钱”,就是进价3020502x y x y ++<⋅,也就是30205002x y x y ++-⋅<变形可得x >y ,故选B• 变式练习01.如果2213x x --比23-大,则x 的取值范围是( ) A .x >1 B .x <1 C .x≤1 D .x≠102.试比较两个代数式322x x x +-与31x -的大小•03.若代数式2321x x -+比231x x +-大,求x 的取值范围•【例3】某校餐厅计划购买12张餐桌和一批餐椅,从甲、乙两商场了解到统一餐桌每张均为200元,餐椅报价每把均为50元•甲商场称:每购买一张餐桌赠餐椅;乙商场称:所有的餐桌、餐椅均按报价的八五折销售,那么什么情况下到甲商场购买更优惠?什么情况下到乙商场购买更优惠?【解法指导】餐椅的购买数量是个变量,到哪个商场购买更优惠,取决于餐椅的数量多少•把餐椅数量设为x 把,到甲、乙两商场购买所需费用分别设为y 甲、y 乙,它们分别用含x 的式子表示,再比较y 甲、y 乙的大小即可,在求y 甲是,应注意x 减去12后,在乘以50,即y 甲=200×12+50(x -12);同理y 乙=(200×12+50x)×85%•解:设学校计划购买x 把餐椅,到甲、乙两商场购买所需费用分别为y 甲元、y 乙元•根据题意,得:y 甲=200×12+50(x -12),即y 甲=1800+50x ,y 乙=(200×12+50x)×85%,即8520402y x =+乙•①当y 甲<y 乙时,8518005020402x x +<+,解这个不等式,得x <32•即当购买的餐椅少于32把时,到甲商场购买更优惠•②当y 甲>y 乙时,8518005020402x x +>+, 解这个不等式,得x >32•即当购买的餐椅多于32把时,到乙商场购买更优惠 ③当y 甲=y 乙时,8518005020402x x +=+,解这个不等式,得x =32• 即当购买的餐椅等于32把时,到两家商场购买均可•变式练习01.某电信公司对电话缴费采取两种方式,一种是每月缴纳月租费15元,每通话1分钟0.20元;另一种是不交月租费,但每通话1分钟收话费0.30元•请问,用那种缴费方式比较合适?02.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元•经协商,甲旅行社表示可以给予每位游客七五折优惠;乙旅行社表示可以免去一位游客的旅游费用,其余游客八折优惠,该单位选择哪一家旅行社支付的旅游费用较少? 03.(潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱•供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂朱琳机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取,工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需要成本费2.4元•⑴若需要这种规格的纸箱x 个,请用含x 的代数式表示购买纸箱的费用y 1(元)和蔬菜加工厂自己加工制作纸箱的费用y 2(元);⑵假设你是决策者,你认为应该选择哪种方案?并说明理由•【例4】(潍坊)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化•绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32,则种植草皮的最小面积是多少? 【解法指导】应用题中,要充分挖掘题目中所蕴含的不等关系,一个也不能遗漏,否则就会出错•注意到题中表示不等关系的关键词语“不少于”,这是列不等式的依据•显然,本题中有三个不等式关系:①种植草皮与种植树木的面积都不少于10亩;②种植草皮面积不少于种植树木面积的32,根据这三个不等关系可以求出种植草皮的面积的范围解:设种植草皮的面积为x 亩,则种植树木的面积为(30-x)亩,则有1030103(30)2xxxx-⎧⎪⎪⎨⎪⎪-⎩≥≥≥,解得18≤x≤20•故x的最小值为18答:种植草皮的最小面积为18亩•变式练习01.2007年某厂制定某种产品的年度生产计划,现有如下数据供参考:⑴生产此产品的现有工人为400人;⑵每名工人的年工时约计2200小时;⑶预测2008年的销售量在10万箱到17万箱之间;⑷每箱需用工4小时,需用料10千克;⑸目前村料1000吨,2007年还需用料1400吨,到2007年底可补充原料2000吨•试根据以上数据确定2008年可能生产的产量,并根据产量确定工人人数•02.某公司在下一年度计划生产出一种新型环保冰箱,下面是公司各部门提出的数据信息;人事部:明年生产工人不多于80人,每人每年工作时间2400h计算;营销部:预测明年年销量至少为10000台;技术部:生产1台电冰箱平均用12个工时,每台机器需要安装5个某种主要部件;供应部:今年年终库存主要部件1000件,明年能采购到这种主要部件80000件•根据上述信息,下一年度生产新型冰箱数量应该在什么范围内?【例5】“六一”儿童节前夕,某消防官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物•如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班虽然分得有福娃,但不足4套•问:该小学有多少个班级?奥运福娃共有多少套?【解法指导】抓住题中的关键词“虽然分有福娃,但不足4套”来建立不等式组,这是本题的关键所在•解:设该小学有x个班,则奥运福娃共有(10x+5)套,根据题意,得10513(1)410513(1)x xx x+<-+⎧⎨+>-⎩①②解①得x>143,解②得x<6•因为x只能取正整数,所以x=5,此时10x+5=55答:该小学有5个班级,奥运福娃共有55套•变式练习01.幼儿园有玩具若干份,分给小朋友,如果每个小朋友分3件,难么还剩59件;如果每个小朋友分5件,那么最后一个小朋友还少几件,这个幼儿园有多少玩具?有多少个小朋友?02.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们•若每名学生送3本,则还余8本;若前面每名学生送5本,则最后一名学生得到的课外读物不足3本•设该校买了m本课外读物,有x名学生获奖,请你解答下列问题•⑴用含x的代数式表示m;⑵求出该校的获奖人数及所买的课外读物的本数•【例6】某工厂现有甲种原料360千克,乙种原料290千克,现计划用这两种原料生产A、B两种产品共50件,已知生产一件A产品需要甲种原料9千克,乙种原料3千克;生产一件B产品,需要甲种原料4千克,乙种原料10千克,则工厂安排A、B两种产品的生产件数,有哪几种方案?请你设计出来•【解法指导】此为典型的材料供应类设计方案的应用题,题中的不等关系不很明显,但经过认真分析,结合生活实际仍可挖掘出题中所蕴含的不等关系,即生产所使用的甲种原料总量不得超过360千克,乙原料总量不得超过290千克,据此可以列出两个一元一次不等式,从而组成一元一次不等式组•此类题的不等关系不十分显眼,发掘不等关系是解决此类题之关键所在•解:设安排生产A 种产品x 件,则生产B 种产品(50-x)件•根据题意,得36029094(50)310(50)x x x x +-⎧⎨+-⎩≤≤,解这个不等式组,得30≤x≤32• 因为x 需要取整数,所以x 可以取30、31、32,对应50-x 应取20、19、18•故可设计三种方案:A 种产品30件,B 种产品20件;A 种产品31件,B 种产品19件;A 种产品32件,B 种产品18件•变式练习01.近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称“蒜你狠”、“豆你玩”•以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克•市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格•经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克•为了既能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克)•问调进绿豆的吨数应在什么范围内为宜?02.(深圳)迎接亚运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺找些共50个摆放在迎宾大道两侧•已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆•⑴某校九年级⑴班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;⑵若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明⑴中哪种发案成本最低?最低成本是多少元?03.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.⑴该校初三年级共有多少人参加春游?⑵请你帮该校设计一种最省钱...的租车方案• 【例7】如果关于x 的不等式组0607x n x m -<-⎧⎨⎩≥的整数解仅为1,2,3,那么适合这个不等式组的整数对(m ,n)共有( )对A .49B .42C .36D .13【解法指导】本题属于“由不等式的解集中包含的整数解来确定字母系数的值”这类题,此类题首先根据不等式组的解集包含哪些整数来确定每个边界点的范围,据此求出符合条件的字母系数的值• 解:由此不等式组得到其解集是76x m n <≤ ∵此解集中仅含有整数1,2,3• ∴107m <≤,即70m <≤,且436n <≤ 即2418n <≤ 故m =1,2,3,4,5,6,7,n =19,20,21,22,23,24故符合此不等式组的整数对(m ,n)共有6×7=42对,即本题选B变式练习01.已知:关于x 的不等式组302x a b x -≥⎧⎪⎨<⎪⎩的整数杰有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(a ,b)共有多少个?巩固提高01.用不等式表示:⑴x与2的和小于5________________;⑵a与b的差是非负数_________________•02.若x<y,则x-y______y-2;5-x_______5-y;a2x_______a2y;-x3_____-y5;x(a2+1)______ y(a2+1)03.不等式组12305xx+>-⎧⎨⎩≤的解集是___________,其整数解是__________.04.关于x的不等式组320x ax->⎧⎨->⎩的整数解共有6个,则a的取值范围是.05.已知:三角形的两边为3和4,则第三边a的取值范围是_________________.06.若不等式(a-5)x>1的解集是x>1a-5,则a的取值范围是__________________.07.如果不等式组737x xx n+<-⎧⎨>⎩的解集是x>7,则n的取值范围是()A.n≥7B.n≤ C.n=7 D.n<708.若abcd>0,a+b+c+d>0,则a、b、c、d中负数的个数至少有()A.1个B.2个C.3个D.4个09.如果2(1)3x--是非正数,则x的取值范围是()A.x≤1B.x≥1C.x≥1 D.x≤110.已知:关于x的不等式组152x ax->-⎧⎨⎩≥无解,则a的取值范围是()A.a>3 B.a≥3C.0<a<3 D.a≤311.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超过200元后,超出部分按原价8.5折优惠,设顾客预计累计购物x元(x>300).⑴请用含x的代数式分别表示顾客在两家超市购物所需费用;⑵试比较顾客到哪家超市购物更优惠?说明你的理由.12.七⑵班共有50名学生,老师安排每人制作一件A型或B型的陶艺品,学校现有甲种制作材料36kg,乙种制作材料29kg,制作A、B两种型号的陶艺品用料情况如下表:⑴设制作B型陶艺品x件,求x的取值范围;⑵请你根据学校现有的材料分别写出七⑵班制作A型和B型陶艺品的件数•13.某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李•⑴设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助选择哪一种租车方案更节省费用•14.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元•已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台•⑴至少购进乙种电冰箱多少台?⑵若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?15.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆•经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李•⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省•培优升级检测01.如果不等式组809x bx a-<-⎧⎨⎩≥的整数解仅为1,2,3,那么适合这三个不等式组的整数a、b的有序数对(a,b)共有()对•A.17 B.64 C.72 D.8102.设a、b、c的平均数为M,a与b的平均数为N,N与C的平均数为P,若a>b>c,则M与P的大小关系是()A.M=P B.M>P C.M<P D.不确定的03.a1、a2、…、a2004都是正数,如果M=(a1+a2+…+a2003)(a2+a2+…+a2004),N=(a1+a2+…+a2004)( a-2+a2+…+a2003),那么M、N的大小关系是()A.M>N B.M=N C.MN D.不确定的04.设23ama+=+,12ana+=+,1apa=+,若a<-3,则()A.m<n<p B.n<p<m C.p<n<m D.p<m<n05.已知:a、b、c、d都是整数,且a<2b,b<3c,c<4d,d<50,那么a的最大值是()A.1157 B.1167 C.1191 D.119906.已知关于x的不等式组4132x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,那么a的取值范围是________________•07.正六边形轨道ABCDEF的周长为7.2米,甲、乙两只机器鼠分别冲A、C两点同时出发,均按A→B→C→D→E→F→A→…方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过_______秒钟时,甲、乙两只机器鼠第一次出现在同一条边上.08.为了保护环境,某企业决定购买10台污水处理设备•现有A、B两种型号的设备,其中每台的价格、月处理污水及年消耗费如下表.经计算,该企业购买设备的资金不高于105万元,请你设计,该企业购买方案有_______种.09.大、中、小三个正整数,大数与中数之和等于2003,中数减小数之差等于1000,那么这三个正整数的和为_____________.10.已知不等式ax+3≥0的正整数解为1,2,3,则a的取值范围是______•11.小慧上宝塔观光,他发现:若上了7阶楼梯时,剩下的楼阶梯数是已上的阶数的3倍多,若再多上15阶楼梯时,已上阶数是剩下的楼梯阶数的3倍多,那么,此宝塔的楼梯一共有多少阶•12.若正整数x<y<z,k为整数,且111kx y z++=,试求x、y、z的值•13.已知:a1+2a3≥3a2,a2+2a4≥3a3,a3+2a5≥3a4,…,a8+2a10≥3a9,a9+2a1≥3a10,a10+2a2≥3a1,且有a1+a2+a3+…+a10=100,求a1,a2,a3,…,a9,a10的值•。
不等式应用举例
A ).
A.[76,80]
B.[78,80]
C.(76,80)
D.[76,78]
4.如果一个天平的左边放两个苹果,右边放三个砝码,天平则向左边倾斜.假
设每个苹果重量都是x g,每个砝码都是200 g,以下各式正确的是(
A.x>300
B.x<300
C.x=300
D.200<x<400
A ).
二、填空题
D ).
B.x≤180
C.x=180
D.x≥180
2.设数轴上点A对应的实数是3、点P对应的实数是x,如果点P与点A的距离不
超过2,那么x满足的式子是(
A.x≤2
B.|x-3|≤2
B ).
C.|x-3|≥2
D.|x-2|≥3
3.如果一块木板的长度规格是(78±2)cm,那么该合格品的长度取值范围
是(
第二章 不等式
2.5 不等式应用举例
1.三种常用不等式的应用:
(1)一元一次不等式(组)的应用,如ax+b>0,ax+b≤c.
(2)一元二次不等式的应用,如ax2+bx+c>0,ax2+bx+c≤0.
(3)绝对值不等式的应用,如|ax+b|>c,|ax+b|≤c.
2.用不等式的数学模型解决实际问题的一般过程:
1.某地某日的平均气温是15℃,假设该日气温的上下浮动范围不超过4℃,试
列出气温x℃满足的表达式,并求出x的取值范围.
|x-15|≤4,{x|11≤x≤19}
2.如果一个正方形的面积不大于9,那么这个正方形的边长的取值范围是多少?
x2≤9,{x|0<x≤3}
解答题
1.某出租车公司规定,3公里之内,都是起步价10元,超过3公里的,超过部
一元一次方程及不等式解实际应用题
疫情期间某药店购进一批N95口罩,其中10只/包与20只/包的口罩共有500包,已知10只/包的N95口罩进价为30元/包,20只/包的N95口罩进价为55元/包.(1)若购进这两种规格的N95口罩共花了2万元,请分别求出购进10只/包与20只/包口罩的包数.(2)该药店计划将10只/包的口罩销售价定为45元/包,20只/包的口罩销售价定为85元/包,若购进的500包这两种规格的N95口罩全部售完,且至少盈利9000元,求购进的20只/包的口罩至少多少包?【答案】【小问1】购进10只/包N95口罩300只,购进20只/包N95口罩200只 【小问2】购进的20只/包的口罩至少100包【解析】【分析】(1)根据题意,设购进10只/包N95口罩x 只,则购进20只/包N95口罩()500x -只,从而由购进这两种规格的N95口罩共花了2万元列出方程()305550020000x x +-=求解即可得到答案;(2)根据题意,设购进20只/包N95口罩m 只,则购进10只/包N95口罩()500m -只,从而由购进的500包这两种规格的N95口罩全部售完,且至少盈利9000元,列出不等式()()()453050085559000m m --+-≥求解即可得到答案.【小问1详解】解:设购进10只/包N95口罩x 只,则购进20只/包N95口罩()500x -只,则()305550020000x x +-=,即257500x =,解得300x =,∴购进20只/包N95口罩500200x -=只,答:购进10只/包N95口罩300只,购进20只/包N95口罩200只;【小问2详解】解:设购进20只/包N95口罩m 只,则购进10只/包N95口罩()500m -只,则()()()453050085559000m m --+-≥,即151500m ≥,解得100m ≥,答:购进的20只/包的口罩至少100包.【点睛】本题考查一元一次方程及一元一次不等式解实际应用题,读懂题意,找准相应关系是解决问题的关键.。
一元一次不等式的实际问题
一元一次不等式的实际问题一元一次不等式是数学中常见的一种形式,可以用来描述现实生活中的很多实际问题。
在本文中,我们将探讨一元一次不等式的应用,介绍一些实际问题,并给出相应的解决方法。
1. 简单的一元一次不等式问题首先,我们来看一个简单的一元一次不等式问题。
假设某人的年收入为x万元,他的生活开销为y万元。
已知他的年收入在5万至10万元之间,生活开销不能超过年收入的30%。
我们可以用以下不等式来描述这个问题:5 ≤ x ≤ 10y ≤ 0.3x其中,第一个不等式表示年收入的范围,第二个不等式表示生活开销不能超过年收入的30%。
解决这个问题的方法是找到满足这两个不等式的解集。
根据第一个不等式,x的取值范围是[5, 10],根据第二个不等式,y的取值范围是[0, 0.3x]。
因此,满足两个不等式的解集可以表示为:5 ≤ x ≤ 100 ≤ y ≤ 0.3x这个解集表示了满足条件的年收入和生活开销的取值范围。
2. 一元一次不等式在实际问题中的应用一元一次不等式可以应用于很多实际问题中,例如经济学、物理学、工程学等领域。
下面我们来看一些具体的例子。
例子1:生产成本与产量的关系假设某个工厂的生产成本和产量之间存在如下关系:生产成本每增加一单位,产量将减少2单位。
已知当生产成本为1000万元时,产量为5000单位。
我们可以用以下不等式来描述这个问题:x ≥ 1000y ≤ 5000 - 2(x - 1000)其中,x表示生产成本(单位:万元),y表示产量(单位:单位)。
解决这个问题的方法是找到满足不等式的生产成本和产量的取值范围。
根据第一个不等式,生产成本的取值范围是[x ≥ 1000],根据第二个不等式,产量的取值范围是[y ≤ 5000 - 2(x - 1000)]。
因此,满足两个不等式的解集可以表示为:x ≥ 1000y ≤ 5000 - 2(x - 1000)这个解集表示了满足条件的生产成本和产量的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式组的实际
应用
Prepared on 22 November 2020
一元一次不等式组的实际应用
1、某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里元;方案二:起步价调至8元/3公里,而后每公里元.若某乘客乘坐出租车(路程多于3公里)时用方案一比较合算,则该乘客乘坐出租车的路程________5公里(填大于或小于)
2、李明家距离学校,现在李明需要用不超过18min的时间从家出发到达学校,已知他步行的速度为90m/min,跑步的速度为210m/min,则李明至少需要跑________分钟.
3、某火车站购进一种溶质质量分数为20%的消毒液,准备对候车室进行喷洒消毒,而从科学的角度知用含的消毒液喷洒效果最好,那么工作人员把这种溶质质量分数为20%消毒液稀释时,兑水的比例为1:100行不行________(填“行”或“不行”)
4、用若干辆载重量为8t的汽车运一批货物支援汶川地震灾区,若每辆汽车只装4t,则剩下20t货物;若每辆汽车装8t,则最后一辆汽车不满也不空,请问:有________辆汽车
5、现用甲、乙两种保温车将1800箱抗甲流疫苗运往灾区,每辆甲运输车最多可载200箱,每辆乙运输车最多可载150箱,并且安排车辆不超过10辆,那么甲运输车至少应安排_______辆.
6、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________人,最多有________人.
7、在植树活动中,老师把一批树苗分给各组同学去栽树,如果每组分3棵,还剩8棵;如果每组分5棵,那么最后一组可以分得树苗,但数量少于3棵,则植树的学生________组,这批树苗有________棵.
8、工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产
A、B两种产品共50件.已知生产一件A种产品需要甲种原料9千克,乙种原料3千克;生产一件B种产品需要甲种原料4千克,乙种原料10千克.则安排A、B两种产品的生产件数有________种方案.
9、宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为________种
10、某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买________本记事本
11、某商场为促销某种商品,将定价为5元/件的该商品按如下方式销售:若购买不超过5件商品,按原价销售;若一次性购买超过5件,按原价的八折进行销售.小明现有29元,则最多可购买该商品________件.
12、甲乙两队进行篮球对抗赛,比赛规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,得分不低于24分,甲队至少胜了________场.
13、某次数学测验中有18道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有3道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上
14、有一个两位数,其十位上的数字比个位上的数字小2,如果这个两位数大于20,则这个两位数的最小值是________.
15、若实数a>1,则实数M=a ,32+=
a N ,3
22+=a P 的满足(M-P)(P-N) ________0
16、大明眼镜店的某种近视镜,进价每副800元,零售价每副1200元.六一儿童节期间,该店经理对学生开展优惠活动,但利润仍不低于5%,那么学生购买价格最低打________折
17、如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的3
1.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是acm ,若铁钉总长度为6cm ,则a 的取值范围是________.
1、解析:由题意可知,方案一所花的前是少于方案二的,所以就可以列一个不等式,可设设该乘客乘坐出租车的路程是x 千米,根据题意得7+(x-
2)<8+(x-3),解得:x>6.因此x>5
2、解析:设李明跑步需要x 分钟,由题意可知,李明在18分钟之内所走的路程一定要大于等于家到学校的距离,否则就迟到了,所以可列不等式子为。
210x+90(18-x)≥2100,解得:x≥4,∴李明至少需要跑4 min .故答案为:4.
之,得99≤x ≤199.所以可行。
4、解析:设有x 辆车,则有(4x+20)吨货物.由题意,得0<(4x+20)-8(x-
1)<8,解得5<x<7.∵x 为正整数,∴x=6.即有6辆车.故答案为:6.
5、解析:设甲种保温车至少安排x 辆,200x+150(10-x)≥1800,x≥6故甲至少要6辆车.故答案是:6.
6、解析:设有x 名儿童,则有牛奶(5x+18)盒,则若每人分6盒,则最后一个
人分得的数量是(5x+18)-6(x-1).根据题意得:⎩⎨⎧<-≥-6
24324x x 解得:18<x≤21.则这个儿童福利院的儿童最少有19人,最多有21人.故答案是:19,21.
7、设植树的学生有x 组,根据题意得:⎩⎨⎧>--+<--+0
)1(5833)1(583x x x x 解得:5<x<1325<x<132,∵x 只能取整数,∴x=6,则这批树苗有6×
3+8=26(棵),答:植树的学生6组,这批树苗有26棵.故答案为:6,26.
8、解析解:(1)设生产x 件A 种产品,则生产B 产品(50-x)件,由题意得:⎩⎨⎧≤-+≤-+290
10)50(33604)50(9x x x x 解得:30≤x≤32,∵x 为整数,∴x=30,31,32,∴有3种生产方案:方案1,A 产品30件,B 产品20件;方案2,A 产品31件,B 产品19件;方案3,A 产品32件,B 产品18件.答案为:3
9、解:设生产甲产品x 件,则乙产品(20-x)件,根据题意得:
⎩
⎨⎧≤-+≤-+644)20(2522)20(3x x x x 解得:8≤x≤12,∵x 为整数,∴x=8,9,10,11,12,∴有5种生产方案
10、解:设最少要购买记事本x 本,根据题意得:6×2+(x-2)<6x ×,解的。