系统仿真实验报告

合集下载

机电一体化系统仿真实验报告

机电一体化系统仿真实验报告

机电一体化系统仿真实验报告一、实验目标本实验的目标是通过仿真模拟机电一体化系统,验证系统的工作原理和性能参数,探究机电一体化系统在不同工况下的响应特性。

二、实验原理机电一体化系统是由机械部分和电气部分组成的,其中机械部分包括传动装置、力传感器和负载,电气部分包括控制器和电机。

在机电一体化系统中,电机通过控制器产生驱动信号,控制负载的转动。

力传感器用于测量负载的转动产生的力,并反馈给控制器。

三、实验步骤1.搭建仿真模型:根据实验要求,选择合适的仿真软件,搭建机电一体化系统的仿真模型。

通过连接电机、控制器、传动装置、力传感器和负载,构建完整的系统。

2.设置参数:根据实验设定的工况,设置系统的参数。

包括电机的转速、传动装置的传动比、负载的转动惯量和滑动摩擦系数等。

3.运行仿真:对系统进行仿真运行,记录电机的转速、负载的转动惯量、力传感器的输出力以及电机的功率消耗等参数。

4.分析结果:根据仿真结果,分析系统在不同工况下的响应特性。

可以通过绘制曲线图或制作动画来观察系统的运动轨迹和力的变化情况。

五、实验结果与讨论根据实验设置的参数,在不同转速和负载惯量下进行了多组仿真实验,并记录了系统的各项参数。

1.转速与力的关系:随着电机转速的增加,负载的输出力也随之增加,但是增幅逐渐减小。

当转速达到一定值后,输出力和转速的关系呈现饱和状态。

2.负载惯量与转速的关系:在给定转速范围内,随着负载惯量的增加,电机的转速逐渐降低。

这是因为负载惯量增加会增加系统的惯性,降低了电机的响应速度。

3.功率消耗的变化:随着转速和负载惯量的增加,电机的功率消耗呈现增加的趋势。

这是因为转速和负载惯量的增加会增加电机的负载,使其需要输出更大的功率来维持转速。

四、实验总结通过此次实验,我们深入了解了机电一体化系统的工作原理和性能特点。

在不同工况下,电机的转速、负载的力输出、功率消耗等参数都有相应的变化。

通过仿真实验,我们可以准确地预测系统在不同工况下的性能表现,为设计和优化机电一体化系统提供了依据。

系统建模与仿真实验报告

系统建模与仿真实验报告

实验1 Witness仿真软件认识一、实验目的熟悉Witness 的启动;熟悉Witness2006用户界面;熟悉Witness 建模元素;熟悉Witness 建模与仿真过程。

二、实验内容1、运行witness软件,了解软件界面及组成;2、以一个简单流水线实例进行操作。

小部件(widget)要经过称重、冲洗、加工和检测等操作。

执行完每一步操作后小部件通过充当运输工具和缓存器的传送带(conveyer)传送至下一个操作单元。

小部件在经过最后一道工序“检测”以后,脱离本模型系统。

三、实验步骤仿真实例操作:模型元素说明:widget 为加工的小部件名称;weigh、wash、produce、inspect 为四种加工机器,每种机器只有一台;C1、C2、C3 为三条输送链;ship 是系统提供的特殊区域,表示本仿真系统之外的某个地方;操作步骤:1:将所需元素布置在界面:2:更改各元素名称:如;3:编辑各个元素的输入输出规则:4: 运行一周(5 天*8 小时*60 分钟=2400 分钟),得到统计结果。

5:仿真结果及分析:Widget:各机器工作状态统计表:分析:第一台机器效率最高位100%,第二台机器效率次之为79%,第三台和第四台机器效率低下,且空闲时间较多,可考虑加快传送带C2、C3的传送速度以及提高第二台机器的工作效率,以此来提高第三台和第四台机器的工作效率。

6:实验小结:通过本次实验,我对Witness的操作界面及基本操作有了一个初步的掌握,同学会了对于一个简单的流水线生产线进行建模仿真,总体而言,实验非常成功。

实验2 单品种流水线生产计划设计一、实验目的1.理解系统元素route的用法。

2.了解优化器optimization的用法。

3.了解单品种流水线生产计划的设计。

4.找出高生产效率、低临时库存的方案。

二、实验内容某一个车间有5台不同机器,加工一种产品。

该种产品都要求完成7道工序,而每道工序必须在指定的机器上按照事先规定好的工艺顺序进行。

通信系统仿真实验报告

通信系统仿真实验报告

通信系统仿真实验报告摘要:本篇文章主要介绍了针对通信系统的仿真实验,通过建立系统模型和仿真场景,对系统性能进行分析和评估,得出了一些有意义的结果并进行了详细讨论。

一、引言通信系统是指用于信息传输的各种系统,例如电话、电报、电视、互联网等。

通信系统的性能和可靠性是非常重要的,为了测试和评估系统的性能,需进行一系列的试验和仿真。

本实验主要针对某通信系统的部分功能进行了仿真和性能评估。

二、实验设计本实验中,我们以MATLAB软件为基础,使用Simulink工具箱建立了一个通信系统模型。

该模型包含了一个信源(source)、调制器(modulator)、信道、解调器(demodulator)和接收器(receiver)。

在模型中,信号流经无线信道,受到了衰落等影响。

在实验过程中,我们不断调整系统模型的参数,例如信道的衰落因子以及接收机的灵敏度等。

同时,我们还模拟了不同的噪声干扰场景和信道状况,以测试系统的鲁棒性和容错性。

三、实验结果通过实验以及仿真,我们得出了一些有意义的成果。

首先,我们发现在噪声干扰场景中,系统性能并没有明显下降,这说明了系统具有很好的鲁棒性。

其次,我们还测试了系统在不同的信道条件下的性能,例如信道的衰落和干扰情况。

测试结果表明,系统的性能明显下降,而信道干扰和衰落程度越大,系统则表现得越不稳定。

最后,我们还评估了系统的传输速率和误码率等性能指标。

通过对多组测试数据的分析和对比,我们得出了一些有价值的结论,并进行了讨论。

四、总结通过本次实验,我们充分理解了通信系统的相关知识,并掌握了MATLAB软件和Simulink工具箱的使用方法,可以进行多种仿真。

同时,我们还得出了一些有意义的结论和数据,并对其进行了分析和讨论。

这对于提高通信系统性能以及设计更加鲁棒的系统具有一定的参考价值。

系统仿真实验报告范文

系统仿真实验报告范文

系统仿真实验报告范文四川大学课程实验报告课程名称:系统仿真综合实验学生姓名:学生学号:专业:实验目的系统仿真是运用仿真软件(如imio)创造模型来构建或模拟现实世界的虚拟实验室,它能过帮助你探寻你所关注的系统在给定的条件下的行为或状态,它还能帮助你在几乎没有风险的情况下观察各种改进和备选方案的效果。

尤其是对一些难以建立物理模型和数学模型的复杂的随机问题,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。

实验地点及环境四川大学工商管理学院的学院大楼综合实验室,运用PC机及imio系统仿真软件,在老师的指导下完成此次系统仿真实验。

实验步骤㈠、建立模型1.ModelⅠ首先加入一个ource、三个erver、一个ink、一个ModeEntity,并用path连接。

将ource更名为arrive,ink更名为depart,ModelEntity更名为cutomer。

设置运行时间8小时。

在Animation中添加StatuLabel到arrive,E某preion为arrive.OutputBuffer.Content。

同样为erver和dapart添加StatuLabel,E某preion分别为Server1.InputBuffer.Content、Server2.InputBuffer.Content、Server3.InputBuffer.Content、depart.InputBuffer.NumberEntered,来记录每个位置的排队人数和通过人数。

为每个erver添加一个Te某tScale为1的Statupie,来显示和观察服务台的利用率变化。

保存命名为ModelⅠ。

2.ModelII首先加入一个ource、三个erver、一个ink、一个ModelEntity,并用path连接。

将ource更名为arrive,ink更名为depart,ModelEntity更名为cutomer。

在Animation中添加StatuLabel到arrive,E某preion为arrive.OutputBuffer.Content。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。

本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。

二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。

通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。

三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。

2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。

3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。

4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。

四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。

通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。

仿真结果显示,系统经过调整参数后,得到了较好的控制效果。

输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。

通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。

五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。

了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。

这对于我们今后的工程设计和研究具有重要的意义。

六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。

2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。

系统建模与仿真实验报告

系统建模与仿真实验报告

系统建模与仿真实验报告系统建模与仿真实验报告1. 引言系统建模与仿真是一种重要的工程方法,可以帮助工程师们更好地理解和预测系统的行为。

本实验旨在通过系统建模与仿真的方法,对某个实际系统进行分析和优化。

2. 实验背景本实验选择了一个电梯系统作为研究对象。

电梯系统是现代建筑中必不可少的设备,其运行效率和安全性对于整个建筑物的使用体验至关重要。

通过系统建模与仿真,我们可以探索电梯系统的运行规律,并提出优化方案。

3. 系统建模为了对电梯系统进行建模,我们首先需要确定系统的各个组成部分及其相互关系。

电梯系统通常由电梯、楼层按钮、控制器等组成。

我们可以将电梯系统抽象为一个状态机模型,其中电梯的状态包括运行、停止、开门、关门等,楼层按钮的状态则表示是否有人按下。

4. 仿真实验在建立了电梯系统的模型之后,我们可以通过仿真实验来模拟系统的运行过程。

通过设定不同的参数和初始条件,我们可以观察到系统在不同情况下的行为。

例如,我们可以模拟电梯在高峰期和低峰期的运行情况,并比较它们的效率差异。

5. 仿真结果分析通过对仿真实验结果的分析,我们可以得出一些有价值的结论。

例如,我们可以观察到电梯在高峰期的运行效率较低,这可能是由于大量乘客同时使用电梯导致的。

为了提高电梯系统的运行效率,我们可以考虑增加电梯的数量或者改变乘客的行为规则。

6. 优化方案基于对仿真结果的分析,我们可以提出一些优化方案来改进电梯系统的性能。

例如,我们可以建议在高峰期增加电梯的数量,以减少乘客等待时间。

另外,我们还可以建议在电梯内设置更多的信息显示,以便乘客更好地了解电梯的运行状态。

7. 结论通过本次实验,我们深入了解了系统建模与仿真的方法,并应用于电梯系统的分析和优化。

系统建模与仿真是一种非常有用的工程方法,可以帮助我们更好地理解和改进各种复杂系统。

在未来的工作中,我们可以进一步研究和优化电梯系统,并将系统建模与仿真应用于更多的实际问题中。

8. 致谢在本次实验中,我们受益于老师和同学们的帮助与支持,在此表示诚挚的感谢。

仿真软件操作实验报告(3篇)

仿真软件操作实验报告(3篇)

第1篇实验名称:仿真软件操作实验实验目的:1. 熟悉仿真软件的基本操作和界面布局。

2. 掌握仿真软件的基本功能,如建模、仿真、分析等。

3. 学会使用仿真软件解决实际问题。

实验时间:2023年X月X日实验地点:计算机实验室实验器材:1. 仿真软件:XXX2. 计算机一台3. 实验指导书实验内容:一、仿真软件基本操作1. 打开软件,熟悉界面布局。

2. 学习软件菜单栏、工具栏、状态栏等各个部分的功能。

3. 掌握文件操作,如新建、打开、保存、关闭等。

4. 熟悉软件的基本参数设置。

二、建模操作1. 学习如何创建仿真模型,包括实体、连接器、传感器等。

2. 掌握模型的修改、删除、复制等操作。

3. 学会使用软件提供的建模工具,如拉伸、旋转、镜像等。

三、仿真操作1. 设置仿真参数,如时间、步长、迭代次数等。

2. 学习如何进行仿真,包括启动、暂停、继续、终止等操作。

3. 观察仿真结果,包括数据、曲线、图表等。

四、分析操作1. 学习如何对仿真结果进行分析,包括数据统计、曲线拟合、图表绘制等。

2. 掌握仿真软件提供的分析工具,如方差分析、回归分析等。

3. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。

实验步骤:1. 打开仿真软件,创建一个新项目。

2. 在建模界面,根据实验需求创建仿真模型。

3. 设置仿真参数,启动仿真。

4. 观察仿真结果,进行数据分析。

5. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。

6. 完成实验报告。

实验结果与分析:1. 通过本次实验,掌握了仿真软件的基本操作,包括建模、仿真、分析等。

2. 在建模过程中,学会了创建实体、连接器、传感器等,并能够进行模型的修改、删除、复制等操作。

3. 在仿真过程中,成功设置了仿真参数,启动了仿真,并观察到了仿真结果。

4. 在分析过程中,运用了仿真软件提供的分析工具,对仿真结果进行了数据分析,并与实际数据或理论进行了对比,验证了仿真模型的准确性。

基于simulink的系统仿真实验报告(含电路、自控、数电实例)

基于simulink的系统仿真实验报告(含电路、自控、数电实例)

《系统仿真实验》实验报告目录一《电路》仿真实例 (3)2.1 简单电路问题 (3)2.1.1 Simulink中仿真 (3)2.1.2 Multisim中仿真 (4)2.2 三相电路相关问题 (5)二《自动控制原理》仿真实例 (7)1.1 Matlab绘图 (7)三《数字电路》仿真实例 (8)3.1 555定时器验证 (8)3.2 设计乘法器 (9)四实验总结 (11)一《电路》仿真实例2.1 简单电路问题课后题【2-11】如图所示电路,R0=R1=R3=4Ω,R2=2Ω,R4=R5=10Ω,直流电压源电压分别为10V、4V、6V,直流电流源电流大小为1A,求R5所在的支路的电流I。

(Page49)解:simulink和multisim都是功能很强大的仿真软件,下面就以这个简单的习题为例用这个两个软件分别仿真,进一步说明前者和后者的区别。

2.1.1 Simulink中仿真注意事项:由于simulink中并没有直接提供DC current source,只有AC current source,开始的时候我只是简单的把频率调到了0以为这就是直流电流源了,但是并没有得到正确的仿真结果。

后来问杨老师,在老师的帮助下发现AC current source的窗口Help中明确的说明了交流变直流的方法:A zero frequency and a 90 degree phase specify a DC current source.然后我把相角改成90度后终于得到了正确的仿真结果,Display显示I=0.125A,与课本上答案一致。

2.1.2 Multisim中仿真结果:I=125mA=0.125A(因为电流表探针电压电流比是1V/mA)。

2.2 三相电路相关问题【例】三相电路实际连接图如下所示,是通过功率表和电流的读数,验证课本上的相关结论。

解:Multisim中电路图连接如下所示:解:观察各支路的功率和功率因素,验证了以下几点结论:(1)只有纯阻性支路的功率因素为1;(2)纯感性或纯容性支路的功率因素为0,有功功率也为0;(3)混合支路的(容阻、感阻、容感阻)功率因素在0到1之间。

物流系统仿真实验报告

物流系统仿真实验报告

一、实验目的1. 熟悉和掌握物流系统仿真的基本原理和方法。

2. 利用仿真软件Flexsim建立物流系统模型,分析系统的运行状态和性能。

3. 通过仿真实验,优化物流系统的布局和流程,提高物流效率。

二、实验内容本次实验采用Flexsim软件,对某企业物流系统进行仿真分析。

主要内容包括:1. 系统建模:根据实际企业物流系统,建立Flexsim模型,包括仓库、货架、输送线、设备、人员等元素。

2. 参数设置:对模型中的各个参数进行设置,如货架容量、输送线速度、设备故障率等。

3. 仿真运行:启动仿真实验,观察系统运行状态,记录关键指标数据。

4. 结果分析:对仿真结果进行分析,评估系统性能,找出系统瓶颈。

三、实验过程1. 系统建模:- 根据企业物流系统实际情况,绘制系统布局图。

- 在Flexsim软件中,创建相应元素,如仓库、货架、输送线、设备、人员等。

- 设置元素属性,如货架容量、输送线速度、设备故障率等。

2. 参数设置:- 根据实际企业数据,设置模型参数,如货架容量、输送线速度、设备故障率等。

- 考虑系统运行过程中的随机性,设置随机数生成器。

3. 仿真运行:- 设置仿真时间、运行次数等参数。

- 启动仿真实验,观察系统运行状态,记录关键指标数据。

4. 结果分析:- 分析系统关键指标,如系统吞吐量、平均等待时间、设备利用率等。

- 找出系统瓶颈,如货架容量不足、输送线速度慢等。

- 针对系统瓶颈,提出优化方案,如增加货架、提高输送线速度等。

四、实验结果与分析1. 系统关键指标:- 系统吞吐量:每小时处理订单数。

- 平均等待时间:订单在系统中等待的平均时间。

- 设备利用率:设备实际工作时间与理论工作时间的比值。

2. 系统瓶颈:- 通过仿真实验,发现系统瓶颈为货架容量不足,导致订单在系统中等待时间较长。

3. 优化方案:- 增加货架数量,提高货架容量。

- 调整输送线速度,提高系统吞吐量。

五、结论1. 通过本次实验,掌握了物流系统仿真的基本原理和方法。

电力系统分析仿真实验报告

电力系统分析仿真实验报告

电力系统分析仿真实验报告一、实验目的通过电力系统仿真,分析电力系统的稳定性和可靠性,对电力系统进行故障分析。

二、实验器材和条件1.电力系统仿真软件2.电力系统仿真实验模型3.稳定性和可靠性测试数据三、实验原理电力系统的稳定性是指系统在受到扰动或故障的情况下,能够迅速恢复到新的稳定工作点的能力。

电力系统的可靠性是指系统在正常运行和故障恢复状态下,能够保持稳定供电的能力。

四、实验步骤1.稳态分析:通过电力系统仿真软件,建立电力系统的稳态模型,并进行负荷流、电压稳定度和功率因数分析,以评估系统的稳态性能。

2.扰动分析:在稳态模型基础上,通过改变电力系统的节点负载和故障情况,引入扰动,并观察系统在扰动下的响应过程。

3.稳定性分析:根据扰动分析结果,通过故障恢复实验,研究系统的稳定性能,包括暂态稳定性和稳定控制方法。

4.可靠性分析:通过故障恢复实验和设备可用性分析来评估系统的可靠性,了解系统在发生故障时的可靠供电能力。

五、实验结果与分析1.稳态分析结果显示,电力系统的负荷流较大,但在正常运行范围内,电压稳定度和功率因数也较好。

2.扰动分析结果显示,在节点负载突然减少或故障发生时,系统的电压和频率会出现短时波动,但能够迅速恢复到新的稳态工作点。

3.稳定性分析结果显示,在故障发生后,系统能够通过自动稳定控制方法,有效恢复到正常工作状态,并保持稳定供电。

4.可靠性分析结果显示,系统在发生故障时仍能保持稳定供电,设备的可用性较高,但仍有少量设备故障需要及时维修或更换。

六、实验结论通过电力系统仿真实验,分析了电力系统的稳定性和可靠性。

实验结果表明,电力系统具有较好的稳态和暂态稳定性能,在故障发生后能够迅速恢复到正常工作状态,保持稳定供电。

但仍需加强设备维护和更换,提高电力系统的可靠性。

七、实验总结通过本次电力系统分析仿真实验,加深了对电力系统稳定性和可靠性的理解,掌握了利用电力系统仿真软件进行系统分析和故障恢复的方法。

控制系统仿真实验报告书

控制系统仿真实验报告书

一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。

二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。

首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。

2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。

3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。

4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。

调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。

五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。

仿真实验报告

仿真实验报告

系统工程仿真实验报告实验一:基于VENSIM的系统动力学仿真一、实验目的VENSIM是一个建模工具,可以建立动态系统的概念化的,文档化的仿真、分析和优化模型。

PLE(个人学习版)是VENSIM的缩减版,主要用来简单化学习动态系统,提供了一种简单富有弹性的方法从常规的循环或储存过程和流程图建立模型。

本实验就是运用VENSIM进行系统动力学仿真,进一步加深对系统动力学仿真的理解。

二、实验软件VENSIM PLE三、原理1、在VENSIM中建立系统动力学流图;2、写出相应的DYNAMO方程;3、仿真出系统中水准变量随时间的响应趋势;四、实验内容及要求某城市国营和集体服务网点的规模可用SD来研究。

现给出描述该问题的DYNAMO方程及其变量说明。

L S·K=S·J+DT*NS·JKN S=90R NS·KL=SD·K*P·K/(LENGTH-TIME·K)A SD·K=SE-SP·KC SE=2A SP·K=SR·K/P·KA SR·K=SX+S·KC SX=60L P·K=P·J+DT*NP·JKN P=100R NP·KL=I*P·KC I=0.02其中:LENGTH为仿真终止时间、TIME为当前仿真时刻,均为仿真控制变量;S为个体服务网点数(个)、NS为年新增个体服务网点数(个/年)、SD为实际千人均服务网点与期望差(个/千人)、SE为期望的千人均网点数、SP为的千人均网点数(个/千人)、SX为非个体服务网点数(个)、SR为该城市实际拥有的服务网点数(个)、P为城市人口数(千人)、NP为年新增人口数(千人/年)、I为人口的年自然增长率。

要求:在VENSIM中建立相应的系统动力学流图和DYNAMO方程,进行仿真。

五、实验结果1、请将VENSIM 中建立的系统动力学流图拷贝如下:2、画出系统中水准变量随时间的响应趋势。

电力系统分析仿真实验报告

电力系统分析仿真实验报告

电力系统分析仿真实验报告一、实验目的本实验的目的是通过电力系统分析仿真来研究电力系统的稳态和暂态运行特性,并通过实验结果分析电力系统中存在的问题和改进方案。

二、实验原理1.电力系统稳态分析电力系统稳态分析是指在电力系统稳定运行条件下,对电力系统进行负荷流量和节点电压的计算和分析。

稳态分析的目的是确定电力系统的潮流分布、负荷特性和节点电压,从而评估系统的稳定性和能量传输效率。

2.电力系统暂态分析电力系统暂态分析是指在电力系统出现故障或突发负荷变化时,对系统暂时的电压、电流和功率进行计算和分析。

暂态分析的目的是研究系统在故障或负荷突变时的动态响应和稳定性,以便采取相应措施保障系统的安全稳定运行。

三、实验过程1.电力系统稳态分析实验(1)建立电力系统模型:根据实际情况,建立包含发电机、变电站、输电线路和负荷的电力系统模型。

(2)潮流计算:通过潮流计算方法,对电力系统的负荷流量、节点电压和功率分布进行计算。

(3)结果分析:分析潮流计算结果,评估系统的稳定性和能量传输效率,检查是否存在过负荷或电压偏差等问题。

2.电力系统暂态分析实验(1)建立电力系统模型:在稳态模型的基础上,引入系统故障或负荷突变事件,如短路故障、突发负荷增加等。

(2)暂态计算:通过暂态计算方法,对系统的电压、电流和功率在故障或负荷突变时的动态变化进行计算。

(3)结果分析:分析暂态计算结果,评估系统在故障或负荷突变时的动态响应和稳定性,检查是否存在电压暂降或过载等问题。

四、实验结果与分析1.电力系统稳态分析结果分析:根据潮流计算结果,评估系统的稳定性和能量传输效率,检查系统是否存在过负荷或电压偏差等问题。

如果存在问题,可以通过调整发电机发电功率、变压器变比或线路容量来改善系统运行状况。

2.电力系统暂态分析结果分析:根据暂态计算结果,评估系统在故障或负荷突变时的动态响应和稳定性,检查是否存在电压暂降或过载等问题。

如果存在问题,可以通过引入自动重启装置、电力调度系统等措施来提高系统的恢复能力和稳定性。

物流系统仿真——实验报告

物流系统仿真——实验报告

物流系统仿真——实验报告实验报告:物流系统仿真一、实验目的本实验的目的是通过对物流系统的仿真,探究不同因素对物流运输效率的影响,以及如何优化物流系统,提高运输效率。

二、实验原理物流系统是指通过协调物流资源,实现从供应商到消费者的物流运输过程。

在物流系统中,货物从供应商处出发,经过多个运输节点,最终到达消费者手中。

物流运输效率是衡量物流系统优劣的关键指标之一、通过仿真实验,我们可以模拟各种情况下物流系统中的运输过程,分析各个因素对运输效率的影响。

三、实验步骤1.设定实验参数:包括供应商数量、运输节点数量、货物数量、货物到达时间间隔等。

2.构建物流系统模型:根据设定的参数,构建物流系统模型,包括供应商节点、运输节点和消费者节点。

3.设置运输规则:根据实际情况,设置货物的运输规则,如货物可以通过哪些运输节点进行运输、每个节点的运输能力等。

4.进行仿真实验:根据设定的参数和运输规则,进行多次仿真实验,观察不同因素对运输效率的影响。

5.分析实验结果:对仿真实验结果进行统计和分析,得出结论,提出优化建议。

四、实验结果与分析在实验中,我们设置了不同的实验参数和运输规则,观察了以下几个因素对运输效率的影响:1.供应商数量:增加供应商数量可以分担运输压力,提高运输效率。

2.运输节点数量:增加运输节点数量可以减少货物等待时间,提高运输效率。

3.货物数量:增加货物数量会导致运输压力增加,降低运输效率。

4.货物到达时间间隔:合理设置货物到达时间间隔可以平衡供需关系,提高运输效率。

通过对实验结果的分析,我们可以得出以下结论:1.在合理范围内,增加供应商和运输节点数量可以提高物流系统的运输效率。

2.合理控制货物数量,避免运输压力过大,可以提高运输效率。

3.合理设置货物到达时间间隔,可以平衡供需关系,提高运输效率。

五、优化建议基于实验结果的分析,我们提出以下优化建议:1.增加供应商和运输节点数量:根据实际情况,优化物流系统的布局,增加供应商和运输节点数量,以提高运输效率。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告一、实验目的本次控制系统仿真实验的主要目的是通过使用仿真软件对控制系统进行建模、分析和设计,深入理解控制系统的工作原理和性能特点,掌握控制系统的分析和设计方法,提高解决实际控制问题的能力。

二、实验设备与软件1、计算机一台2、 MATLAB 仿真软件三、实验原理控制系统是由控制对象、控制器和反馈环节组成的一个闭环系统。

其工作原理是通过传感器测量控制对象的输出,将其与期望的输出进行比较,得到误差信号,控制器根据误差信号产生控制信号,驱动控制对象,使系统的输出逐渐接近期望的输出。

在仿真实验中,我们使用数学模型来描述控制对象和控制器的动态特性。

常见的数学模型包括传递函数、状态空间方程等。

通过对这些数学模型进行数值求解,可以得到系统的输出响应,从而对系统的性能进行分析和评估。

四、实验内容1、一阶系统的仿真建立一阶系统的数学模型,如一阶惯性环节。

使用 MATLAB 绘制系统的单位阶跃响应曲线,分析系统的响应时间和稳态误差。

2、二阶系统的仿真建立二阶系统的数学模型,如典型的二阶振荡环节。

改变系统的阻尼比和自然频率,观察系统的阶跃响应曲线,分析系统的稳定性、超调量和调节时间。

3、控制器的设计与仿真设计比例控制器(P 控制器)、比例积分控制器(PI 控制器)和比例积分微分控制器(PID 控制器)。

对给定的控制系统,分别使用不同的控制器进行仿真,比较系统的性能指标,如稳态误差、响应速度等。

4、复杂控制系统的仿真建立包含多个环节的复杂控制系统模型,如串级控制系统、前馈控制系统等。

分析系统在不同输入信号下的响应,评估系统的控制效果。

五、实验步骤1、打开 MATLAB 软件,新建脚本文件。

2、根据实验内容,定义系统的数学模型和参数。

3、使用 MATLAB 中的函数,如 step()函数绘制系统的阶跃响应曲线。

4、对响应曲线进行分析,计算系统的性能指标,如超调量、调节时间、稳态误差等。

5、设计控制器,修改系统模型,重新进行仿真,比较系统性能的改善情况。

系统仿真信号实验报告

系统仿真信号实验报告

系统仿真信号实验报告系统仿真信号实验报告1. 引言系统仿真是一种通过计算机模拟系统行为的方法,可以对系统进行预测和优化。

在工程领域中,系统仿真有着广泛的应用,可以用于电子电路设计、通信网络规划、交通流模拟等方面。

本实验旨在通过系统仿真,研究信号的传输和处理过程,探索信号的特性和优化方法。

2. 实验目的本实验的主要目的是通过系统仿真,研究信号的传输和处理过程。

具体包括以下几个方面:- 了解信号的基本概念和特性;- 研究不同信号的传输特性;- 探索信号处理方法和优化策略。

3. 实验方法本实验采用MATLAB软件进行系统仿真。

在仿真过程中,我们将使用不同的信号类型,如正弦信号、方波信号和脉冲信号,并对其进行传输和处理。

4. 实验过程4.1 生成信号首先,我们使用MATLAB生成不同类型的信号。

通过调整信号的频率、幅度和相位等参数,我们可以得到不同特性的信号。

4.2 信号传输在信号传输过程中,我们将模拟信号在传输介质中的衰减和失真情况。

通过改变传输介质的特性和信号的传输距离,我们可以观察到信号的变化。

4.3 信号处理在信号处理过程中,我们将对传输后的信号进行滤波、降噪和增强等操作。

通过选择不同的信号处理算法和参数,我们可以改善信号质量并提取出所需的信息。

5. 实验结果与分析在实验过程中,我们得到了不同类型信号的传输和处理结果。

通过分析实验数据,我们可以得出以下结论:- 正弦信号在传输过程中受到较小的衰减和失真,适合用于远距离传输;- 方波信号在传输过程中会出现较大的失真,需要采取补偿措施;- 脉冲信号在传输过程中容易受到噪声干扰,需要进行滤波处理。

6. 结论与展望通过本实验,我们深入了解了信号的传输和处理过程,并探索了信号的特性和优化方法。

系统仿真为我们提供了一种有效的研究手段,可以在实际操作之前进行模拟和预测。

未来,我们可以进一步研究不同类型信号的传输特性和处理方法,以应对不同场景下的需求。

7. 参考文献[1] Smith, S. W. (1997). The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing.[2] Proakis, J., & Manolakis, D. (2006). Digital Signal Processing: Principles, Algorithms, and Applications. Pearson Education.8. 致谢感谢实验指导老师的悉心指导和支持,感谢实验室的同学们的合作,使本次实验取得了圆满的结果。

系统仿真实验报告

系统仿真实验报告

实验一熟悉Flexsim软件一.实验目的1.了解典型的离散事件系统仿真软件---Flexsim;2.为理论学习中的第9章增强感性认识;3.熟悉Flexsim的基本操作。

二.实验内容:学习要点:·如何建立一个简单布局·如何连接端口来安排临时实体的路径·如何在Flexsim 实体中输入数据和细节·如何操纵动画演示·如何查看每个Flexsim 实体的简单统计数据模型描述在第一个模型中,我们将研究三种产品离开一个生产线进行检验的过程。

有三种不同类型的临时实体将按照正态分布间隔到达。

临时实体的类型在类型1、2、3 三个类型之间均匀分布。

当临时实体到达时,它们将进入暂存区并等待检验。

有三个检验台用来检验。

一个用于检验类型1,另一个检验类型2,第三个检验类型3。

检验后的临时实体放到输送机上。

在输送机终端再被送到吸收器中,从而退出模型。

模型数据发生器到达速率:normal(20, 2)秒暂存区最大容量:25 个临时实体检验时间:exponential(0, 30)秒输送机速度:1米/秒临时实体路径:类型1到检验台1,类型2 到检验台2,类型3到检验台3。

三.实验步骤:第一步:创建实体•创建一个发生器,命名为发生器;•从库中拖出一个暂存区,3 个处理器,3 个传送带,1 个吸收器到视图中。

放置与命名方式如下。

命名一个实体:双击实体,在属性框的顶部改变实体名字,然后点击确定;第二步:端口连接点击按钮或者按住A 键进入连接模式。

一旦进入连接模式,有两种连接方式可以用来连接两个实体。

一种是你可以单击一个实体,然后单击另外一个实体。

另一种方法是点击一个实体拖动至另外一个实体。

需要注意的是连接方向将会直接影响到临时实体的流动方向。

临时实体从第一个连接的第一个实体,流向被连接的实体。

顺便值得提到的是,点击按钮,或按下Q 键,利用与连接相同的方式即可断开连接。

•发生器与暂存区连接。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告控制系统仿真实验报告引言控制系统是现代科学技术中的重要组成部分,广泛应用于工业生产、交通运输、航空航天等领域。

为了验证和优化控制系统的设计方案,仿真实验成为一种重要的手段。

本篇文章将对控制系统仿真实验进行详细的报告和分析。

一、实验目的本次控制系统仿真实验旨在通过模拟真实的控制系统运行环境,验证控制系统的性能和稳定性。

具体目标包括:1. 验证控制系统的闭环性能,包括稳定性、响应速度和误差补偿能力。

2. 评估不同控制策略在系统性能上的差异,比较PID控制、模糊控制等算法的效果。

3. 优化控制系统的设计方案,提高系统的控制精度和鲁棒性。

二、实验装置和方法本次实验采用MATLAB/Simulink软件进行仿真。

通过搭建控制系统的数学模型,并设置不同的控制参数和输入信号,模拟真实的控制环境。

具体步骤如下:1. 建立控制系统的数学模型,包括被控对象、传感器、执行器等部分。

2. 设计不同的控制策略,如PID控制器、模糊控制器等,并设置相应的参数。

3. 设置输入信号,模拟系统的工作条件和外部干扰。

4. 运行仿真实验,记录系统的输出响应、误差曲线和稳定性指标。

5. 分析实验结果,对比不同控制策略的性能差异,优化控制系统的设计方案。

三、实验结果与分析通过多次仿真实验,我们得到了一系列实验结果,并进行了详细的分析。

以下是其中的一些重要发现:1. PID控制器在大部分情况下表现出良好的控制性能,能够实现较快的响应速度和较小的稳态误差。

然而,在某些复杂系统中,PID控制器可能存在过调和震荡的问题。

2. 模糊控制器在处理非线性系统时表现出较好的鲁棒性,能够适应不同工况下的控制要求。

但是,模糊控制器的设计和参数调整相对复杂,需要较多的经验和专业知识。

3. 对于一些特殊的控制系统,如高阶系统和时变系统,需要采用更为复杂的控制策略,如自适应控制、鲁棒控制等。

这些策略能够提高系统的鲁棒性和适应性,但也增加了控制系统的设计和调试难度。

系统建模的仿真实验报告

系统建模的仿真实验报告

系统建模的仿真实验报告系统建模的仿真实验报告引言在现代科学与工程领域中,系统建模是一项重要的工作。

通过对系统进行建模,可以帮助我们更好地理解系统的运行原理、优化系统性能以及预测系统的行为。

仿真实验是一种常用的方法,通过模拟系统的运行过程,可以得到系统的各种指标,从而评估系统的性能。

本报告将介绍一个系统建模的仿真实验,并分析实验结果。

一、实验目的本次实验的目的是建立一个模型,模拟一个电梯系统的运行过程,并通过仿真实验来评估该电梯系统的性能。

电梯系统是现代建筑中不可或缺的设施,其运行效率和服务质量直接关系到人们的出行体验。

通过建立模型和仿真实验,我们可以优化电梯系统的设计和运行策略,提高其性能。

二、建模过程1. 系统边界的确定首先,我们需要确定电梯系统的边界。

电梯系统通常包括电梯本身、楼层按钮、电梯控制器等组成部分。

在建模过程中,我们将关注电梯的运行过程和楼层按钮的使用情况。

2. 系统的状态和状态转换接下来,我们需要确定电梯系统的状态和状态转换。

电梯系统的状态可以包括电梯的位置、运行方向、开关门状态等。

状态转换可以根据电梯的运行规则和楼层按钮的使用情况确定。

3. 系统参数的确定在建模过程中,我们还需要确定系统的参数。

电梯系统的参数可以包括电梯的运行速度、电梯的载重量、楼层按钮的响应时间等。

这些参数将直接影响到电梯系统的性能。

三、仿真实验设计基于建立的电梯系统模型,我们设计了一系列的仿真实验,以评估电梯系统的性能。

以下是几个典型的实验设计:1. 不同高峰期的电梯系统性能比较我们选择了不同高峰期的时间段,并模拟了电梯系统在这些时间段内的运行情况。

通过比较不同时间段内电梯的等待时间、运行效率等指标,我们可以评估电梯系统在不同高峰期的性能差异。

2. 不同楼层按钮响应时间的影响我们模拟了不同楼层按钮响应时间的情况,并评估了电梯系统的性能。

通过比较不同响应时间下电梯的等待时间和运行效率,我们可以确定最佳的楼层按钮响应时间。

系统建模与仿真实验报告_冉陈键

系统建模与仿真实验报告_冉陈键

实验 4:求
( s 2 2)( s 4)( s 1) 的商及余式。 s3 s 1
实验结果:
3
黑龙江大学电子工程学院《系统建模与仿真实验》指导书
《系统建模与仿真》实验报告二
报告人: 实验题目: 符号计算 实验目的:
1) 2) 3) 掌握反函数的运算、合并同类项、符号表达式的简化; 掌握替换求值、符号的微分 、积分、泰勒展式、留数; 掌握 Laplace 变换及其逆变换。
s s s 6.5 U1 ( s ) 6.5 U 2 ( s ) s 2 s 6.5
2
的 Simulink 结构图,并进行仿真(输入均为单位阶跃函数) 。
7
黑龙江大学电子工程学院《系统建模与仿真实验》指导书
绘制系统的单位阶跃响应和单位脉冲响应。 实验习题 3:已知系统的开环传递函数为 G ( s ) 和奈奎斯特图 5( s 2 5s 6) 实验习题 4:已知系统的传递函数为 G ( s ) 6 ,试判 s 2s 5 8s 4 12 s 3 20s 2 16s 16 断系统的稳定性。
B A. ^ 2 C A^2
4 2 0 2 4 实验 2:找出数组 A 中所有绝对值大于 3 的元素,并在 A 中将其 3 1 1 3 5 换成 0。 实验 3:建立方阵A 1 2 3 2 2 3 9 7 5 1)计算其行列式和逆矩阵; 2)计算其特征值和特征向量。
《系统建模与仿真》实验报告六
报告人: 实验题目: 实验目的:
用 Matlab 作图 Bernoulli―Gaussian 白噪声、对一阶自回归模型、状态空间模型分别绘图。
专业: 模型建立
学 号:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学系统仿真实验报告指导老师胡杨实验者学号专业班级实验日期 2014.6.4学院信息科学与工程学院目录实验一MATLAB中矩阵与多项式的基本运算 (3)实验二MATLAB绘图命令 (7)实验三MATLAB程序设计 (9)实验四MATLAB的符号计算与SIMULINK的使用 (13)实验五MATLAB在控制系统分析中的应用 (17)实验六连续系统数字仿真的基本算法 (30)实验一MATLAB中矩阵与多项式的基本运算一、实验任务1.了解MATLAB命令窗口和程序文件的调用。

2.熟悉如下MATLAB的基本运算:①矩阵的产生、数据的输入、相关元素的显示;②矩阵的加法、乘法、左除、右除;③特殊矩阵:单位矩阵、“1”矩阵、“0”矩阵、对角阵、随机矩阵的产生和运算;④多项式的运算:多项式求根、多项式之间的乘除。

二、基本命令训练1.eye(m)m=3;eye(m)ans =1 0 00 1 00 0 12.ones(n)、ones(m,n)n=1;m=2;ones(n)ones(m,n)ans =1ans =113.zeros(m,n)m=1,n=2;zeros(m,n)m =1ans =0 04.rand(m,n)m=1;n=2;rand(m,n)ans =0.8147 0.90585.diag(v)v=[1 2 3];diag(v)ans =1 0 00 2 00 0 36.A\B 、A/B、inv(A)*B 、B*inv(A) A=[1 2;3 4];B=[5 6;7 8];a=A\Bb=A/Bc=inv(A)*Bd=B*inv(A)a =-3 -44 5b =3.0000 -2.00002.0000 -1.0000c =-3.0000 -4.00004.00005.0000d =-1.0000 2.0000-2.0000 3.00007.roots(p)syms x;a=3*x.^3+2*x+1;p=[3,0,2,1];roots(p)ans =0.2012 + 0.8877i0.2012 - 0.8877i-0.40238.polyA=[1 2;3 4];poly(A)ans =1.0000 -5.0000 -2.0000 9.conv 、deconvA=[1 2];B=[5 6];a=conv(A,B)b=deconv(A,B)a =5 16 12b =0.200010.A*B 与A.*B的区别A=[1 2];B=[5 6]';a=A*BA=[1 2];B=[5 6];b=A.*Ba =17b =5 1211.who与whos的使用A=[1 2;3 4];whowhosYour variables are:AName Size Bytes Class AttributesA 2x2 32 double12.disp、size(a)、length(a)的使用a='A B C D E F';disp(a)a=[1 2 3 4];B=size(a)C=length(a)A B C D E FB =1 4C =4三、实验要求根据实验内容和相关命令进行实验,自拟输入元素,将上述各命令的输入和输出结果写成实验报告一(全部实验完成后交实验报告)。

实验二MATLAB绘图命令一、实验任务熟悉MATLAB基本绘图命令,掌握如下绘图方法:1.坐标系的选择、图形的绘制;2.图形注解(题目、标号、说明、分格线)的加入;3.图形线型、符号、颜色的选取。

二、基本命令训练1.plot 2.loglog 3.semilogx 4.semilogy5.polar 6.title 7.xlabel 8.ylabel9.text 10.grid 11.bar 12.stairs13.contour三、实验举例1.t=[0:pi/360:2*pi*22/3];x=93*cos(t)+36*cos(t*4.15);y=93*sin(t)+36*sin(t*4.15);plot(y,x),grid; %绘制二维坐标网格图2. t=0:0.05:100;x=t;y=2*t;z=sin(2*t);plot3(x,y,z,'r-.') %绘制三维坐标图3.t=0:pi/20:2*pi;y=sin(x);stairs(x,y) %绘制阶梯图4.th=[pi/200:pi/200:2*pi]';r=cos(2*th);polar(th,r),grid %在网格里画极坐标图5.th=[0:pi/10:2*pi];x=exp(j*th); %x为复数plot(real(x),imag(x),'r*'); %以实部为横轴,虚部为纵轴画图grid;四、实验要求在两种或两种以上坐标系绘制3~5个图形,要有颜色、图形种类、注解的不同实验结果写成实验报告二(全部实验完成后交实验报告)。

实验三MATLAB程序设计一、实验任务1.熟悉MATLAB程序设计的方法和思路;2.掌握循环、分支语句的编写,学会使用look for、help命令。

二、程序举例1.计算1~1000之内的斐波那契亚数列f=[1,1];i=1;while f(i)+f(i+1)<1000f(i+2)=f(i)+f(i+1);i=i+1;endf,if =Columns 1 through 141 123 5 8 13 21 34 55 89 144 233 377Columns 15 through 16610 987i =152. m=3;n=4;for i=1:mfor j=1:na(i,j)=1/(i+j-1);endendformat rataa =1 1/2 1/3 1/41/2 1/3 1/4 1/51/3 1/4 1/5 1/6 3.m=3;n=4;for i=1:mfor j=1:na(i,j)=1/(i+j-1);endendaa =1 1/2 1/3 1/41/2 1/3 1/4 1/51/3 1/4 1/5 1/6请比较程序2与程序3的区别4. x=input('请输入x的值:');if x==10y=cos(x+1)+sqrt(x*x+1);elsey=x*sqrt(x+sqrt(x));endy请输入x的值:2y =2391/6475.去掉多项式或数列开头的零项p=[0 0 0 1 3 0 2 0 0 9];for i=1:length(p),if p(1)==0,p=p(2:length(p));end;end;pp =Columns 1 through 51 3 02 0Columns 6 through 70 96.建立MATLAB的函数文件,程序代码如下,以文件名ex2_4.m存盘function f=ffibno(n)%ffibno 计算斐波那契亚数列的函数文件%n可取任意自然数%程序如下f=[1,1];i=1;while f(i)+f(i+1)<nf(i+2)=f(i)+f(i+1);i=i+1;end>>edit>>ex2_4(200)ans =Columns 1 through 51 123 5Columns 6 through 108 13 21 34 55Columns 11 through 1289 144>> lookfor ffibnoex2_4 - ffibno 计算斐波那契亚数列的函数文件ex2_4 - ffibno 计算斐波那契亚数列的函数文件>> help ex2_4ffibno 计算斐波那契亚数列的函数文件n可取任意自然数程序如下输入完毕后在MATLAB的命令窗口输入ex2_4(200),得到运行结果。

在MATLAB的命令窗口输入lookfor ffibno,得到结果:ex2_4.m: %ffibno 计算斐波那契亚数列的函数文件在MATLAB的命令窗口输入help ex2_4,得到结果:ffibno 计算斐波那契亚数列的函数文件n可取任意自然数程序如下三、程序设计题用一个MATLAB语言编写一个程序:输入一个自然数,判断它是否是素数,如果是,输出“It is one prime”,如果不是,输出“It is not one prime.”。

要求通过调用子函数实现。

最好能具有如下功能:①设计较好的人机对话界面,程序中含有提示性的输入输出语句。

②能实现循环操作,由操作者输入相关命令来控制是否继续进行素数的判断。

如果操作者希望停止这种判断,则可以退出程序。

③如果所输入的自然数是一个合数,除了给出其不是素数的结论外,还应给出至少一种其因数分解形式。

例:输入6,因为6不是素数。

则程序中除了有“It is not one prime”的结论外,还应有:“6=2*3”的说明。

close all;c=1;c=input('是否进行素数运算 1为是 0为否: ');while c==1a=input('请输入一个自然数: ');if factor(a)==adisp('It is one prime')elsedisp('It is not one prime');b=factor(a);fprintf('%3d =',a)for j=1:(length(b)-1)fprintf('%3d *',b(j))endfprintf('%3d \n',b(length(b)))endc=input('是否进行素数运算 1为是 0为否: ');end是否进行素数运算 1为是 0为否: 1请输入一个自然数: 20It is not one prime20 = 2 * 2 * 5是否进行素数运算 1为是 0为否: 1请输入一个自然数: 17It is one prime是否进行素数运算 1为是 0为否:四、实验要求1.参照已知程序,改动程序中的参数和输入量,验证输出结果。

2.使用lookfor、help命令,验证输出结果3.实验结果写成实验报告三(全部实验完成后交实验报告)。

实验四MATLAB的符号计算与SIMULINK的使用一、实验任务1.掌握MATLAB符号计算的特点和常用基本命令;2.掌握SIMULINK的使用。

二、程序举例1.求矩阵对应的行列式和特征根a=sym('[a11 a12;a21 a22]');da=det(a)ea=eig(a)da =a11*a22-a12*a21ea =1/2*a11+1/2*a22+1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)1/2*a11+1/2*a22-1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2) 2. 求方程的解(包括精确解和一定精度的解)r1=solve('x^2-x-1')rv=vpa(r1)rv4=vpa(r1,4)rv20=vpa(r1,20)r1 =1/2*5^(1/2)+1/2-1/2*5^(1/2)+1/2rv =1.6180339887498948482045868343656-.61803398874989484820458683436560rv4 =1.618-.6180rv20 =1.6180339887498948482-.618033988749894848203. a=sym('a');b=sym('b');c=sym('c');d=sym('d'); %定义4个符号变量w=10;x=5;y=-8;z=11; %定义4个数值变量A=[a,b;c,d] %建立符号矩阵AB=[w,x;y,z] %建立数值矩阵Bdet(A) %计算符号矩阵A的行列式 det(B) %计算数值矩阵B的行列式A =[ a, b][ c, d]B =10 5-8 11ans =a*d-b*cans =1504.syms x y;s=(-7*x^2-8*y^2)*(-x^2+3*y^2);expand(s) %对s展开collect(s,x) %对s按变量x合并同类项(无同类项)factor(ans) % 对ans分解因式ans =7*x^4-13*x^2*y^2-24*y^4ans =7*x^4-13*x^2*y^2-24*y^4ans =(8*y^2+7*x^2)*(x^2-3*y^2)5.对方程AX=b求解A=[34,8,4;3,34,3;3,6,8];b=[4;6;2];X=linsolve(A,b) %调用linsolve函数求解A\b %用另一种方法求解X =0.06750.16140.1037ans =0.06750.16140.10376.对方程组求解a11*x1+a12*x2+a13*x3=b1a21*x1+a22*x2+a23*x3=b2a31*x1+a32*x2+a33*x3=b3syms a11 a12 a13 a21 a22 a23 a31 a32 a33 b1 b2 b3;A=[a11,a12,a13;a21,a22,a23;a31,a32,a33];b=[b1;b2;b3];XX=A\b %用左除运算求解XX =(a12*a23*b3-a12*b2*a33+a13*a32*b2-a13*a22*b3+b1*a22*a33-b1*a32*a23)/(a11*a22*a33-a11*a3 2*a23-a21*a12*a33+a32*a21*a13-a22*a31*a13+a31*a12*a23)-(a11*a23*b3-a11*b2*a33-a21*a13*b3-a23*a31*b1+b2*a31*a13+a21*b1*a33)/(a11*a22*a33-a11*a 32*a23-a21*a12*a33+a32*a21*a13-a22*a31*a13+a31*a12*a23)(a32*a21*b1-a11*a32*b2+a11*a22*b3-a22*a31*b1-a21*a12*b3+a31*a12*b2)/(a11*a22*a33-a11*a3 2*a23-a21*a12*a33+a32*a21*a13-a22*a31*a13+a31*a12*a23)7.syms a b t x y z;f=sqrt(1+exp(x));diff(f) %未指定求导变量和阶数,按缺省规则处理f=x*cos(x);diff(f,x,2) %求f对x的二阶导数diff(f,x,3) %求f对x的三阶导数f1=a*cos(t);f2=b*sin(t);diff(f2)/diff(f1) %按参数方程求导公式求y对x的导数ans =1/2/(1+exp(x))^(1/2)*exp(x)ans =-2*sin(x)-x*cos(x)ans =-3*cos(x)+x*sin(x)ans =-b*cos(t)/a/sin(t)三、SIMULINK的使用1.在命令窗口中输入:simulink(回车)得到如下simulink模块:2.双击打开各模块,选择合适子模块构造控制系统,例如:3.双击各子模块可修改其参数,选择Simulation 菜单下的start 命令运行仿真,在示波器(Scope )中观察结果。

相关文档
最新文档