射频器件基础知识培训
射频基础知识培训02
无线电波的传播方式
1
2
2
4 3
图示:①直射波 ②反射波 ③ ④绕射(衍射)波
23
无线电波的衰落特性
自由空间的传播损耗
自由空间是一个理想的空间,在自由空间中,电波沿直线传播而不被吸收, 也不发生反射、折射、绕射和散射等现象。在下图所示的自由空间中,设在 原点0有一辐射源,均匀地向各方向辐射,辐射功率为Pt。能量均匀地分布 在以0点为球心,d为半径的球面上。已知球面的表面积为4πd2 ,因此,在 球面单位面积上的功率应为Pt/4πd2。若接收天线所能接收的在效面积为 A=λ2/4π,则接收机输入功率为:
波长
26
微波的传播
无线电波的波长不同,传播特点也不完全相同。 目前wlan使用的频段属于微波。 微波的视距传播 微波的频率很高,波长较短,它的地面波衰减很快。 因此也不能依靠地面波作较远距离的传播,它主要是 由空间波来传播的。空间波一般只能沿直线方向传播 到直接可见的地方。在直视距离内超短波的传播区域 习惯上称为“照明区”。在直视距离内超短波接收装 置才能稳定地接收信号。
例如一个建筑物的高度为10米,在距建筑物200米处接 收的信号质量几乎不受影响,但在距建筑物100米处,接收信号场 强将比无高搂时明显减弱。这时,如果接收的是216~223兆赫 的电视信号,接收信号场强比无高搂时减弱16分贝,当接收670 兆赫的电视信号时,接收信号场强将比无高搂时减弱20分贝。如果 建筑物的高度增加到50米时,则在距建筑物1000米以内,接收 信号的场强都将受到影响,因而有不同程度的减弱。也就是说,频率 越高,建筑物越高、越近,影响越大。相反,频率越低,建筑物越矮、 越远,影响越小。
位:安培,A • 电感:线圈环绕着的东西,通常是导线,由于电磁感应
射频基础知识培训课件知识
信号的峰值功率、平均功率和峰均比PAR 解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示.峰值功率即是指以某种概率出现的肩峰的瞬态功率.通常概率取为0.01%.
功率相关概念
功率相关概念
信号的峰值功率、平均功率和峰均比PAR 解释:平均功率是系统输出的实际功率.在某个概率下峰值功率跟平均功率的比就称为在某个概率下的峰均比,如PAR=9.10.1%,各种概率下的峰均比就形成了CCDF曲线(互补累积分布函数). 在概率为0.01%处的PAR,一般称为CREST因子.
噪声相关概念
相位噪声 相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动.理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下面所示.一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声.相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比.
1dB压缩点 例如一个射频放大器,当输入信号较小时,其输出与输入可以保证线关系,输入电平增加1dB,输出相应增加1dB,增益保持不变,随着输入信号电平的增加,输入电平增加1dB,输出将增加不到1dB,增益开始压缩,增益压缩1dB时的输入信号电平称为输入1dB压缩点,这时输出信号电平称为输出1dB压缩点.如下图:
无线通信的电磁波传输
长波(低频LF)传播 长波是指波长1公里~10公里(频率为30~300kHz)的电磁波.其可沿地表面传播(地波)和靠电离层反射传播(天波). 中波(中频MF)传播 中波是指波长100米~1000米(频率为300~3000kHz)的电磁波.中波可沿地表面传播(地波)和靠电离层反射传播(天波).中波沿地表面传播时,受地表面的吸收较长波严重.中波的天波传播与昼夜变化有关.
射频培训资料1
天线的方向角
如下图所示,当天线正确安装时,水平与地面的 波瓣角度称为水平波束角,垂直于地面的波瓣角 度称为垂直波束角
天线的场图
如有图所示为某天线 的水平场图: (增益单位为:dBi) (增益单位为:dBi) 同相线
天线的场图
如有图所视为同一天线 的垂直场图 (增益单位为:dBi) (增益单位为:dBi)
射频基础知识培训资料( 射频基础知识培训资料(一) (内部讨论稿)
dBm,dBi,dBd,dB,dBc的概念辨析 dBm,dBi,dBd,dB,dBc的概念辨析
dBm是一个考征功率绝对值的值,计算公式为:10lgP(功率 值/1mw ) dBi和dBd是考征增益的值(功率增益),两者都是一个相对 值,但参考基准不一样。dBi的参考基准为全方向性天线, dBd的参考基准为偶极子,所以两者略有不同。一般认为, 表示同一个增益,用dBi表示出来比用dBd表示出来要大2.15。 例:GSM900天线增益可以为13dBd(15dBi) dB是一个表征相对值的值,当考虑甲的功率相比于乙功率大 或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率); 但 如果甲的功率为46dBm,乙的功率为40dBm,则可以说, 甲比乙大6 dB
阻抗的概念
阻抗是指信号电压与信号电流之比,阻抗具有电阻 信号电压与信号电流之比, 信号电压与信号电流之比 分量 R和电抗分量 X,即 Z = R+ j X 。 和电抗分量 , 总可通过阻抗调试, 在要求的工作频率范围内, 使 总可通过阻抗调试 , 在要求的工作频率范围内 , 输入或传输阻抗的虚部很小且实部相当接近 50 欧, 从而使得传输或输入阻抗为Z 从而使得传输或输入阻抗为 = R = 50 欧------目前 目前 工程中所涉及的射频传输线路处于良好的阻抗匹配 所必须的。 所必须的。
射频(RF)基础知识
●什么是RF?答:RF 即Radio frequency 射频,主要包括无线收发信机。
2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)?答:EGSM RX: 925-960MHz, TX:880-915MHz;CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。
3. 从事手机Rf工作没多久的新手,应怎样提高?答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。
● 4. RF仿真软件在手机设计调试中的作用是什么?答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。
5. 在设计手机的PCB时的基本原则是什么?答:基本原则是使EMC最小化。
6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意?答:ABB是Analog BaseBand,DBB是Ditital Baseband,MCU往往包括在DBB芯片中。
PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。
将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。
7. DSP和MCU各自主要完成什么样的功能?二者有何区别?答:其实MCU和DSP都是处理器,理论上没有太大的不同。
但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。
8. 刚开始从事RF前段设计的新手要注意些什么?答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。
9. 推荐RF仿真软件及其特点?答:Agilent ADS仿真软件作RF仿真。
射频基础知识
36dBμv=-71dBm
如: 0dBμv=0-107= -107dBm
15dBμv=15-107= -92dBm
0dBm=0+107= 107dBμv
15dBm=15+107=122dBμv
射频基础知识培训
先把0dBμv化成(反对数)1μv=0.000001V, 并在50Ω负载上求出功率P=V*V/R 10log(0.000001)*(0.000001)/50=107dBm
射频基础知识培训
光端机中激光器输出光功率一般在0-5dBm,低于-5dBm告 警。接收光功率可达+5dBm,最小接收光功率一般在
-10dBm左右,低于此值便告警,但不等于不工作,低于此 值后输出噪声会大一些,这个门槛的设置是人为的,可 以按照不同的要求去设置,我们要求厂家设置在
-12dBm左右。
射频基础知识培训
G1——直放站施主天线增益(dBi)
G2——基站上行收天线增益(dBi)
LR——空间传输衰减(dB)
LR=32.4+20 log+(MHz)+20 logR(Km)
LS------衰落中值23d
射频基础知识培训
引入噪声= PNo-有效路径损耗
=10logKBT+NF+G-有效路径损耗
=10logKBT+NF+基站和直放站的输出功率差 式中:10logKBT---系统底噪声
射频基础知识培训
4、互调(交调)
由于器件的非线性,当两个或两个以上信号通过时, 信号间相互作用会产生其它信号,这些信号统称为互调 信号。
f= (M*f1 ±Nf2) 或 (Nf2 ± M*f1)
(M、N为整数)
射频基础知识资料课件
WiFi技术利用了射频技术中的无线局域网技术,通过无线方式连接设备到互联网。
工作流程
WiFi路由器通过无线方式与设备建立连接,设备通过浏览器或特定的应用程序向路由器发送请求。路由器将请求 发送到互联网上的目标服务器,服务器响应并将数据返回到路由器,再由路由器将数据发送到设备。
案例三:GPS定位原理及关键技术特点
射频信号可用于治疗某些疾病,如肿瘤、 心血管疾病等,也可用于医学影像和生理 信号采集。
02
射频基础知识
射频电路基础
01
02
03
射频电路组成
射频电路主要由天线、射 频前端、射频芯片和电源 管理模块等组成。
射频电路设计原则
射频电路设计需要遵循稳 定性、高效性、一致性和 可靠性等原则。
射频电路优化方法
射频技术的数字化和智能化
随着数字化和智能化技术的不断发展,射频技术也需要适 应数字化和智能化的趋势,实现更高效、更灵活、更智能 的无线通信。
射频技术发展面临的挑战
01 02
传输损耗和干扰问题
随着无线通信技术的发展,射频信号需要传输更远的距离,同时需要处 理更多的干扰问题,如何提高传输效率和抗干扰能力是射频技术面临的 重要挑战。
射频基础知识资料课件
目录
• 射频基础概念 • 射频基础知识 • 射频技术原理 • 射频技术应用 • 射频技术发展趋势与挑战 • 射频技术应用案例
01
射频基础概念
射频定义
01
射频(Radio Frequency,RF) 定义为一种电磁波,其频率在一 定范围内,常用的单位是赫兹( Hz)。
02
射频信号是指通过调制或其他方 式加载了信息的电磁波,常用于 无线通信和传输数据。
射频基础知识讲座培训材料
收发信机(TRX):
有TX、RX、FS三个子模块
TX:
发射链路
RX:
接收链路
FS:
提供本振 专业课
8
基站射频系统的基本组成与架构 TX前向功能框图
TX_IN TX-LO1
SAW Filter TX-LO2
双 工滤 波器
发射 功 率检 测
功 率监 测单 元
(可 选)
RFC M
L NA
4分 路器
TE ST TR X
H PA
TRX
(可 选)
RFC M
95 RFE功专能业课 框图
17
基站射频系统的基本组成与架构
BTM
RPT
DIV
LNA1
ANT
RSM
LNA0
DUP
LPA
PVD
TSM
RMM
3G RFE功专业能课 示意框图 18
• 混频 RF
IF LO
• 滤波
• 频综
• 耦合
• 检测(功率)
专业课
60
射频电路的基本功能部件
• 耦合 ▽微带耦合 ▽同轴耦合 ▽电阻耦合
专业课
61
射频电路的基本功能部件
• 耦合器的主要参数 ▽耦合度 ▽工作频率 ▽阻抗 ▽插损
专业课
TX Freq.(MHz)
869~894
1930~1990
917~960
832~834
838~846
860~870
1840-1870
460~467.5
421.7~430.0
461.3~470.0
489~493.5
RF射频技术培训教材
• WLAN(802.11g) 2.41~2.497GHz 2.41~2.462GHz(北美)
2.412~2.472GHz(欧洲)
射频常用的基本器件
• 电容、电感 射频用到的电容容量并不大, 多数都是<180pF(如我们公司产品射频部 分多数都是0.5pF、1pF、4.7pF、10pF等 等),和电容一样,电感的感量也不大, 通常也是在nH级别,它们的封装不大于 1210,而我们用得最多的是0603和0402两种 封装。但是射频电路用的电容和电感与普 通用的电容和电感不同,它们除了精度要
射频技术讲座
(基础知识篇)
主讲:蔡显华
5/11/2020
1
一、无线电波
目录
二、无线电收发机
三、无线电波的频率与应用划分
四、射频基本元器件
五、常用的基本单位
六、射频器件的焊接与静电防护知识
七、射频仪器安全使用保护
5/11/2020
2
一、无线电波
• 无线电波是一种肉眼看不到,用手摸不着,但又确实存在的东西。 • 我们可以通过专用的接收设备方式来感觉到无线电波的存在,如:我
: • dBm和W的对应关系表
• dBc也是一个表示功率相对值的单位 ,与dB 的计算方法完全一样 。一般来说,dBc 是相 对于载波(Carrier)功率而言 ,在许多情 况下,用来度量与载波功率的相对值,如
用来度量干扰(同频干扰、互调干扰、交
调干扰、带外干扰等)以及耦合、杂散等 的相对量值。 在采用dBc的地方,原则上也 可以使用dB替代。
射频器件焊接 • 焊接前确保要做好防静电措施 • 器件拿取使用绝缘无感镊子 • 电烙铁外表金属要接地 • 保证器件的接地管脚已经完全接地 • 注意焊盘的位置,尽可能做到平整 • 焊好后注意清洁
射频基础知识资料(最新整理)
第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。
对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。
无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产生反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。
射频很多接口的驻波系数指标规定小于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB 表示射频信号的功率常用dBm 、dBW 表示,它与mW 、W 的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W ,利用dBm 表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。
常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。
理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。
一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。
射频基础知识知识讲解
射频基础知识知识讲解第⼀部分射频基础知识⽬录第⼀章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 ⽆线电频段和波段命名 (9)1.3 移动通信系统使⽤频段 (9)1.4 第⼀代移动通信系统及其主要特点 (12)1.5 第⼆代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双⼯”⽅式?何谓“多址”⽅式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G⽹的全速率和半速率信道 (14)1.13 G⽹设计中选⽤哪个信道的发射功率作为参考功率 (15) 1.14 G⽹的传输时延,时间提前量和最⼤⼩区半径的限制 (15) 1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第⼆章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应⽤ (17)2.1.4⽆线电波 (17)2.1.5 ⽆线电波的频率与波长 (17)2.1.6偶极⼦ (18)2.1.7频率范围 (19)2.1.8天线如何控制⽆线辐射能量⾛向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾⾓ (23)2.2.4前后⽐ (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (29)2.2.9交调 (31)2.2.10天线参数在⽆线组⽹中的作⽤ (31)2.2.11通信⽅程式 (32)2.3.⽹络优化中天线 (33)2.3.1⽹络优化中天线的作⽤ (33)2.3.2天线分集技术 (34)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中⽆线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服⽅法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对⼯程设计参数的影响 (4) 3.4 什么是⾃由空间的传播模式 (5)3.5 2G系统的宏⼩区传播模式 (5)3.6 3G系统的宏⼩区传播模式 (6)3.7 微⼩区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和⽆线覆盖区位置百分⽐的关系 (10) 3.10 全链路平衡和最⼤允许路径损耗 (11)第四章电磁⼲扰 (12)4.1 电磁兼容(EMC)与电磁⼲扰(EMI) (12)4.2 同频⼲扰和同频⼲扰保护⽐ (13)4.3 邻道⼲扰和邻道选择性 (14)4.4 发信机的(三阶)互调⼲扰辐射 (15)4.5 收信机的互调⼲扰响应 (15)4.6 收信机的杂散响应和强⼲扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归⼀化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的⼲扰 (19)4.12 G⽹与PHS⽹的相互⼲扰 (20)4.13 3G系统电磁⼲扰 (22)4.14 PHS系统与3G系统之间的互⼲扰 (24)4.15 GSM系统与3G系统之间的互⼲扰 (25)第五章室内覆盖交流问题应答 (12)5.1、⽬前GSM室内覆盖⽆线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致⽹络上⾏噪声被直放站抬⾼,请问怎么考虑?5.2、⾼层窗边的室内覆盖信号场强难以做到主导,⽽室内窗边将是数据业务需求的⾼发区域,室内窗边的⾼速速率如何保证?5.3、有⼚家建议室内覆盖不⽤⼲放,全⽤⽆源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引⼊后,有何新要求?5.5、系统引⼊多载频对室内覆盖的影响?5.6、上、下⾏噪声受限如何考虑?5.7、室内覆盖时延分集增益。
《射频基础知识培训》课件
射频功率放大器: 用于放大射频信 号的功率
射频天线:用于 发射和接收射频
信号
射频开关:用于 控制射频信号的
传输路径
直射传输:信号直接传播到接收端,适用于近距离通信 反射传输:信号通过反射物体传播到接收端,适用于远距离通信 散射传输:信号通过散射物体传播到接收端,适用于复杂环境通信 绕射传输:信号绕过障碍物传播到接收端,适用于障碍物较多的环境通信
GPS:全球定位系统,利用 卫星信号进行定位和导航
北斗:中国自主研发的全球 卫星导航系统,提供定位、 导航和授时服务
伽利略:欧洲研发的全球卫 星导航系统,提供定位和导 航服务
格洛纳斯:俄罗斯研发的全 球卫星导航系统,提供定位 和导航服务
区域导航系统:如美国的 WAAS、日本的MSAS等, 提供区域范围内的定位和 导航服务
调制方式:射频信号可以通过幅度、 频率、相位等多种方式进行调制
添加标题
添加标题
添加标题
添加标题
传播方式:射频信号可以通过空气、 电缆、光纤等多种介质进行传播
应用领域:射频信号广泛应用于无 线通信、广播电视、雷达、卫星通 信等领域
射频放大器:用 于放大射频信号
射频滤波器:用 于滤除不需要的
频率成分
射频混频器:用 于将射频信号转
射频振荡器是产生射频信号的电子设备 工作原理:通过振荡电路产生高频信号,然后通过放大器放大信号 振荡电路:由电容、电感、电阻等元件组成,通过调整元件参数可以改变信号频率 放大器:将振荡电路产生的信号放大,以满足传输或接收的要求 射频信号:高频电磁波,用于无线通信、雷达、广播电视等领域
射频放大器是射频电路中的关键部件,用于放大射频信号 射频放大器的工作原理主要是通过改变射频信号的频率和相位来实现信号的放大 射频放大器通常采用晶体管、场效应管等半导体器件作为放大元件 射频放大器的性能指标包括增益、噪声系数、线性度等
射频基础知识培训
第一章 无线通讯的基本概念
3、甚长波(甚低频VLF)传播 甚长波是指波长10公里~100公里(频率为3~30kHz)
的电磁波。无线通信中使用的甚长波的频率为10~30kHz, 该波段的电磁波可在大地与低层的电离层间形成的波导中 进行传播,距离可达数千公里乃至覆盖全球。 4、长波(低频LF)传播
长波是指波长1公里~10公里(频率为30~300kHz)的 电磁波。其可沿地表面传播(地波)和靠电离层反射传播 (天波)。 5、中波(中频MF)传播
第一章 无线通讯的基本概念
四、短距离无线通讯 (SDR) 常用频段 无线微功率短距离产品基于国际上通用的ISM
波段进行频率的划分,其工作的输出功率一般以 10mW 为限,目前国际上通用的U/V 段的ISM 波段 大致划分如下: 1、北美地区: 315MHZ 和 915MHZ, 902~928MHZ (某些产品也可使用433MHz频段)。 2、欧盟地区: 433MHZ 和 868MHZ其他还有日 本和澳大利亚的一些频段。 目前我国的频率使用状况大致如下:
第一章 无线通讯的基本概念
800M 和900M 频段目前已经被GSM 的蜂窝 移动网所占用,绝大部分的产品都工作在 433MHZ(433.05-434.79 MHz)左右, 315M频段 是早期的无线遥控的产品的主要频段,因此在该 段的无线电磁环境是相当的复杂的,进行无线的 数据传输是不太可靠的,433M频段目前由于很多 新的汽车的遥控器目前也逐步使用该频段,因此 也正在变得越来越复杂, 针对这种情况,并且随 着水、电、气等公用事业的计量数据采集的需求 的急剧发展,国家无线电管理部门释放了两个免 申请的无线计量频段(470-510M)。专门用于民 用计量设备的无线数据传输。
将电信息源(模拟或数字的)用高频电流进 行调制(调幅或调频),形成射频信号,经过天 线发射到空中;远距离将射频信号接收后进行反 调制,还原成电信息源,这一过程称为无线传输。
射频器件基础知识培训
2020/9/18
射频器件基础知识
38
LDMOS 结构特点
• P+ Sinker
• 连接源极到衬底,消除连接源极的表层键合丝
• N-LDD(Lightly Doped Drain ,轻掺杂漏极)
• 在沟道与漏极之间有一个低浓度的 n- 漂移区(N- LDD), LDD可以通过注入磷(P)或砷(As)离子得到。LDD的影响 是两方面的:一方面,与传统的注入N+工艺相比,漏极区域 的电场强度(是导致热载流子的主要原因)大约降低80%,同 时提高了漏极击穿电压,另一方面,N-注入也使源漏间串联 电阻增加,降低了器件的跨导
19
非线性失真的主要指标 ——IMD3
• 三阶交调(IMD3)
• 三阶交调(双音三阶交调)是用来衡量非线 性的一个重要指标
IMD3
三阶交调常用dBc表 示,即交调产物与主 输出信号的比
三阶交调 五阶交调
2020/9/18
射频器件基础知识
20
非线性失真的主要指标 ——IP3、P1dB
• IP3
• 任一微波单元电路,输入信 号增加1dB,输出三阶交调 产物将增加3dB,这样输入 信号电平增加到一定值时, 输出三阶交调产物与主输出 信号相等,这一点称为三阶 截止点
• Faraday Shield(法拉第屏蔽)
• 起屏蔽作用,可以降低栅极边缘电场,从而提高漏源击穿电 压,减小生成热载流子的因素。同时,也降低了栅极(输入) 和漏极(输出)间的寄生电容(Cdg)
• 然而,法拉弟屏蔽层也相应的增加了Cgs的值。在电路设计中, 优化输入匹配网络可以抵消增加的Cgs
2020/9/18
射频器件基础知识
39
射频开关 ——功能、指标
射频开发入门基础知识
射频开发入门需要掌握一些基础知识,包括以下几个方面:
1.
射频基础知识:了解射频的基本概念、频率、波长、传播特性等。
2.
电磁波传播:了解电磁波在空间中的传播方式,包括反射、折射、衍射等现象。
3.
射频电路基础:了解射频电路的基本组成和原理,包括放大器、滤波器、混频器等。
4.
射频测量技术:了解射频测量的基本原理和方法,包括信号发生器、频谱分析仪、网络分析仪等的使用。
5.
射频系统设计:了解射频系统的基本组成和设计方法,包括天线、功率放大器、频率合成器等的设计。
6.
射频干扰与防护:了解射频干扰的产生和防护方法,包括电磁兼容性设计、屏蔽技术等。
7.
射频应用领域:了解射频在通信、雷达、电子对抗等领域的应用。
射频(rf)器件基础知识培训
2015/8/27
射频小信号放大器 ——功能、指标
• 功能:
• 信号的线性放大
• 分类
• Si、SiGe、GaAs 与 InGaP • HBT 与 MESFET
• 主要指标:
• • • • 增益 P1dB OIP3 噪声系数
2015/8/27
射频器件基础知识
30
射频小信号放大器 ——内部结构
• IP3
• 任一微波单元电路,输入信 号增加1dB,输出三阶交调 产物将增加3dB,这样输入 信号电平增加到一定值时, 输出三阶交调产物与主输出 信号相等,这一点称为三阶 截止点
• PndB
• ndB压缩点用来衡量电路输 出功率的能力 • 当输入信号较小时,其输出 与输入可以保证线性关系, 随着输入信号电平的增加, 输入电平增加1dB,输出将 增加不到1dB,增益开始压 缩,增益压缩ndB时的输入 信号电平称为输入ndB压缩 点
射频网络
• 射频设计中所指的网络为具有固定输入和输出 关系的一段电路,网络有N个输入输出接口就 叫N端口网络
2015/8/27
射频器件基础知识
15
S参数
• 对N网络进行分析需要常用网络参数。如Z参数,A参数, Y参数,S参数等 • S参数的物理意义最明显,因此分析中使用最广泛 • S参的物理意义在于从某个端口输入一定的功率后在其 他端口引起的输出,实部表示功率电平,虚部表示相位
• 我们分析阻抗和阻抗匹配问题的目的就在于使电路中 任意一个参考平面向源端和向负载端的阻抗相等,从 而使信号完全通过该参考面,不发生反射。如果对于 某参考面2端阻抗不等则会产生反射现象形成驻波。见 下图:在参考面A处 • 情况1:阻抗连续,没有反射,传输线上各点电压相等, 形成行波 • 情况2:阻抗跳变,发生反射,形成驻波 • 情况3:短路或开路发生全反射
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-7-28
射频器件基础知识
15
2端口网络的S参数
• S11为放大器的输入 反射系数 • S21为放大器的增益 • S22为放大器的输出 反射系数 • S12为放大器的反向 隔离度
2013-7-28
射频器件基础知识
16
射频电路基础 ——非线性失真
• 什么是线性失真? • 什么是非线性失真? • 非线性失真的主要指标
A Zl
Zo
2013-7-28
射频器件基础知识
6
反射系数与驻波系数
• 反射系数:
• 定义为反射信号电压电平 与入射信号电压电平之比 Zl Zo Zl Zo
A Zl
• 驻波系数:
• 定义为射频信号包络的最 大值与射频信号包络的最 小值之比 1 VSWR 1
2013-7-28 射频器件基础知识
•
无BeO隔离层
• 一般地,衬底直接接地,不需BeO隔离,以降低热阻,达到最 好的散热效果,同时减低了封装成本。由于BeO为有毒物质, 不用BeO有利于保护环境
2013-7-28
射频器件基础知识
38
LDMOS 结构特点
• P+ Sinker
• 连接源极到衬底,消除连接源极的表层键合丝
• N-LDD(Lightly Doped Drain ,轻掺杂漏极)
2013-7-28 射频器件基础知识 11
噪声因子与噪声系数
• 噪声系数决定了接收灵敏度的好坏,是用 来衡量射频部件对小信号的处理能力 S N • 噪声因子与噪声系数 Nf
in
in
• 噪声因子用Nf(或F)表示,定义为: N out 即输入信噪比与输出信噪比的比值,表示信噪 比恶化的情况 • 噪声系数用NF表示,定义为:NF dB 10 logNf
• 主要指标:
• • • • 增益 P1dB OIP3 Pout
2013-7-28
射频器件基础知识
33
射频大功率放大器(LDMOS) ——内部结构
2013-7-28
射频器件基础知识
34
射频大功率放大器(LDMOS) ——内部结构
• LDMOS平面结构的扫描电镜照片(MRF9080):
2013-7-28
射频器件基础知识 28
2013-7-28
射频小信号放大器 ——功能、指标
• 功能:
• 信号的线性放大
• 分类
• Si、SiGe、GaAs 与 InGaP • HBT 与 MESFET
• 主要指标:
• • • • 增益 P1dB OIP3 噪声系数
2013-7-28
射频器件基础知识
29
射频小信号放大器 ——内部结构
• Faraday Shield(法拉第屏蔽)
• 起屏蔽作用,可以降低栅极边缘电场,从而提高漏源击穿电 压,减小生成热载流子的因素。同时,也降低了栅极(输入) 和漏极(输出)间的寄生电容(Cdg) • 然而,法拉弟屏蔽层也相应的增加了Cgs的值。在电路设计中, 优化输入匹配网络可以抵消增加的Cgs
2013-7-28 射频器件基础知识 39
Zo
7
阻抗匹配
2013-7-28
射频器件基础知识
8
射频电路基础 ——噪声
• 什么是噪声? • 噪声与干扰 • 噪声因子与噪声系数
2013-7-28
射频器件基础知识
9
什么是噪声?
• 信号中所有的无用成分都称为噪声干扰 • 任何射频电子系统都是在噪声与干扰环境下工 作的,射频电子系统的任务之一是与噪声及干 扰作斗争,尽可能减小系统本身产生的噪声, 尽可能在传递信号、处理信号的过程中使信噪 比的恶化降到最小,这是设计射频电子系统首 要考虑的问题。
2013-7-28
射频器件基础知识
26
低噪声放大器 ——工作原理
• MESFET工作原理:
• 表面沟道型器件 • 源S、漏D、栅G:载流子经沟道自S到D;G电位控制着沟道 宽度 • 源-漏间距LSD、栅长LG与沟道内电子漂移速度v决定器件频率 特性;WG 决定器件RF电流——增益、功率
2013-7-28 射频器件基础知识 27
射频器件基础知识
22
目录
• 射频电路基本概念
• • • • • 阻抗 噪声 S参数 功率 线性与非线性
• 射频器件基础知识
(主要功能、关键指标、 内部结构、工作原理)
• • • • • • • •
射频器件基础知识
射频放大器 射频开关 射频衰减器 功分器、耦合器 环形器、隔离器 混频器 滤波器(声表、介质) VCO、频综
LDMOS FET典型剖面结构图
2013-7-28 射频器件基础知识 37
LDMOS 结构特点
• 横向沟道
• LDMOS最大的特征是具有横向沟道结构,漏极、源极和栅极 都在芯片表面
•
双扩散技术(Double Diffusion)
• LDMOS采用双扩散技术,在同一光刻窗口相继进行硼(B, 形成 P- 区)、磷(P,形成 N- 区)两次扩散,由两次杂质扩 散横向结深之差可以精确地决定沟道长度 L 。由于目前扩散 工艺很成熟,沟道长度L可以做得很小(1um以下)并且不受 光刻精度的限制
射频器件基础知识
目录
• 射频电路基本概念
• • • • • 阻抗 噪声 S参数 非线性失真 功率
• 射频器件基础知识
(主要功能、关键指标、 内部结构、工作原理)
• • • • • • •
射频器件基础知识
射频放大器 射频开关 射频衰减器 功分器、耦合器 环形器、隔离器 混频器 滤波器
2
2013-7-28
Subcollector
2013-7-28
射频器件基础知识
31
射频小信号放大器 ——工作原理
• SGA-6486内部电路结构
2013-7-28
射频器件基础知识
32
射频大功率放大器 ——功能、指标
• 功能:
• 大功率信号的线性放 大、输出
• 分类
• 分离、单片集成、混 合集成 • Si、GaAs、SiC • LDMOS、VDMOS、 BJT
低噪声放大器 ——工作原理
2DEG层
2D
HEMT原理
PHEMT层结构
• HEMT/pHEMT工作原理:
• • • • 与MESFET基本相同的器件结构 2DEG沟道层 栅电容控制2DEG电流的强弱 源-漏间距LSD、栅长LG与沟道内电子漂移速度v决定器件频率 特性;WG决定器件RF电流——增益、功率
射频电路基础 ——阻抗
• • • • • 阻抗的定义 特征阻抗 端口阻抗 反射系数与驻波系数 阻抗匹配
2013-7-28
射频器件基础知识
3
阻抗的定义
• 射频电路中阻抗的概念有很多,对于器 件有器件阻抗,对于2端口网络有输入阻 抗和输出阻抗,对于传输线有特性阻抗
2013-7-28
射频器件基础知识
4
2013-7-28
射频器件基础知识
19
非线性失真的主要指标 ——IMD3
• 三阶交调(IMD3)
• 三阶交调(双音三阶交调)是用来衡量非线 性的一个重要指标
三阶交调常用dBc表 示,即交调产物与主 输出信号的比
IMD3
三阶交调 五阶交调
2013-7-28
射频器件基础知识
20
非线性失真的主要指标 ——IP3、P1dB
射频开关 ——功能、指标
• 功能:
• 控制信号、选择通道
• 分类
• GaAs、Si • Pin管、MESFET、 PHEMT、SOI MOSFET • 单刀单掷开关、单刀 双掷开关、单刀四掷 开关、双刀双掷开关 等
射频器件基础知识
35
射频大功率放大器 ——内部结构
单片集成
混合集成
2013-7-28 射频器件基础知识 36
射频大功率放大器(LDMOS) ——工作原理
• LDMOS剖面结构
• LDMOS,Laterally Double-Diffused Metal Oxide Semiconductors,横向双扩散晶体管 • LDMOS是为射频功率放大器设计的改进的n沟道增 强型MOSFET。
S out
• 噪声的级联公式: NF 总
G1、NF1
2013-7-28
NF 1
NF 2 G1
1 ...
NF n
1
G1 G2 ... Gn 1
G2、NF2
Gn、NFn
12
射频器件基础知识
射频电路基础 ——S参数
• 射频网络: • S参数 • 2端口网络的S参数
2013-7-28
射频器件基础知识
• 以SGA-6486为例
2013-7-28
射频器件基础知识
30
射频小信号放大器 ——工作原理
B E B
Field Oxide
Channel Stop Subcollector P-Substrate 20 cm
C
C deep
M etal 2
Metal1
Only Difference
Base - SiGe replaces Silicon
• 在沟道与漏极之间有一个低浓度的 n- 漂移区(N- LDD), LDD可以通过注入磷(P)或砷(As)离子得到。LDD的影响 是两方面的:一方面,与传统的注入N+工艺相比,漏极区域 的电场强度(是导致热载流子的主要原因)大约降低80%,同 时提高了漏极击穿电压,另一方面,N-注入也使源漏间串联 电阻增加,降低了器件的跨导
2013-7-28
射频器件基础知识
10
噪声与干扰
• 噪声可分为自然的和人为的噪声