华为射频基础知识培训 课件

合集下载

射频基础知识培训02

射频基础知识培训02
22
无线电波的传播方式
1
2
2
4 3
图示:①直射波 ②反射波 ③ ④绕射(衍射)波
23
无线电波的衰落特性
自由空间的传播损耗
自由空间是一个理想的空间,在自由空间中,电波沿直线传播而不被吸收, 也不发生反射、折射、绕射和散射等现象。在下图所示的自由空间中,设在 原点0有一辐射源,均匀地向各方向辐射,辐射功率为Pt。能量均匀地分布 在以0点为球心,d为半径的球面上。已知球面的表面积为4πd2 ,因此,在 球面单位面积上的功率应为Pt/4πd2。若接收天线所能接收的在效面积为 A=λ2/4π,则接收机输入功率为:
波长
26
微波的传播
无线电波的波长不同,传播特点也不完全相同。 目前wlan使用的频段属于微波。 微波的视距传播 微波的频率很高,波长较短,它的地面波衰减很快。 因此也不能依靠地面波作较远距离的传播,它主要是 由空间波来传播的。空间波一般只能沿直线方向传播 到直接可见的地方。在直视距离内超短波的传播区域 习惯上称为“照明区”。在直视距离内超短波接收装 置才能稳定地接收信号。
例如一个建筑物的高度为10米,在距建筑物200米处接 收的信号质量几乎不受影响,但在距建筑物100米处,接收信号场 强将比无高搂时明显减弱。这时,如果接收的是216~223兆赫 的电视信号,接收信号场强比无高搂时减弱16分贝,当接收670 兆赫的电视信号时,接收信号场强将比无高搂时减弱20分贝。如果 建筑物的高度增加到50米时,则在距建筑物1000米以内,接收 信号的场强都将受到影响,因而有不同程度的减弱。也就是说,频率 越高,建筑物越高、越近,影响越大。相反,频率越低,建筑物越矮、 越远,影响越小。
位:安培,A • 电感:线圈环绕着的东西,通常是导线,由于电磁感应

射频基础知识及其主要指标PPT课件

射频基础知识及其主要指标PPT课件

A=e· 50 =E·λ/π
50
·
73 .13
73 .13
若以dBμv计,则有 A=E+20lgλ/π +20lg =E+20lg λ/π -1.65(dB
50
7μ3v.)13
=E+20lgλ-11.6(dBμv)
对于其它接收天线,只需增加其相对于
半波偶极天线的增益Gr即可
即:A=E+20lgλ-11.6+Gr
Comba Telecom Systems
为满足第三代(3G)蜂窝移动通信技术和业务发展的需求, 中国于2002年对3G系统使用的频谱作出了如下规划: ①第三代公众蜂窝移动通信系统的主要工作频段: 频分双工(FDD)方式:1920~1980 MHz / 2110~2170 MHz;
时分双工(TDD)方式:1880~1920MHz、2010~2025 MHz。
②第三代公众蜂窝移动通信系统的补充工作频段: 频分双工(FDD)方式:1755~1785 MHz / 1850~1880 MHz;
时分双工(TDD)方式:2300~2400MHz,与无线电定位业 务共用,均为主要业务。
Comba Telecom Systems
③IMT-2000的卫星移动通信系统工作频段:1980-2010 MHz / 2170-2200 MHz。
带宽或者提高载噪比来达到。
Comba Telecom Systems
电场强度、电压及功率电平的换算
电场强度是指长度为1m的天线所感应到的电压,以V/m,mV/m或μV/m计。对 半波耦合天线而言,其有效长度为λ/π,故其感应的电压为:
e=E·λ/π(V) 式中,E为电场强度(V/m), λ为波长(m) 由于半波偶极天线的阻抗是73.13Ω,而移动通信接收机的输入阻抗通常为 50Ω,在天线与接收机之间需有一个匹配网络,如图所示,此时,接收机的输 入电压A(开路电压)为:

射频基础知识分解PPT学习教案

射频基础知识分解PPT学习教案
第4页/共61页
★选择性(带外衰减) 衡量工作频带内的增益及带外辐射的抑制能力。衰减越大, 选择性越好。理想的滤波器的幅频特性是一个矩形。
幅频特性
第5页/共61页
噪声系数 噪声系数定义为系统的输入信噪功率比(SNR0)与输出 信噪功率比
(SNR1)的比值。噪声系数表征了信号通过系统后,系统 内部噪声造成信噪比恶化的程度。噪声系数越小越好。 噪声系数常用分贝表示: NF(dB)=10logF
1850 –1910 MHz
1930 –1990 MHz
1710-1785 MHz
1805-1880 MHz
1710-1755 MHz
2110-2155 MHz
824 – 849MHz
869-894MHz
830-840 MHz
875-885 MHz
第26页/共61页
★ TD-SCDMA简介
最小带宽 扩频技术 双工方式 帧长 调制方式 码片速率
第7页/共61页
★互调干扰(IMD) 由于不同频率的两个或多个射频信号在功放末端经非线性作用产生了 新的频率分量而引起的干扰。 互调产生的本来并不存在的“错误”信号,此信号会被系统误认为是 真实的信号。互调干扰分为偶次,奇次;奇次干扰较大,三阶互调 离主信号最近,影响最大。 互调可由有源元件(二极管,三极管,FET等)或无源元件(电缆, 接头,天线,滤波器等)引起。 互调一般是用于衡量GSM系统的关键指标。
第10页/共61页
无源器件介绍
★耦合器/定向耦合器 用于射频/微波领域需要按照一定相位和功率关系分配功率的场合。 常用耦合器有2种:金属腔体耦合器与微带线耦合器。 几个关键指标:
方向性: 方向性(dB)=10lg(耦合度/隔离度)=耦合度(dB)— 隔离度(dB)

《射频技术基础》课件

《射频技术基础》课件
工业领域:射频加热、射频焊接、射 频干燥等
军事领域:雷达、电子对抗、通信等
射频技术的发展历程
19世纪末,无线 电技术的诞生
20世纪初,无线 电技术的快速发展
20世纪中叶,射 频技术的广泛应用
21世纪初,射频 技术的创新与突破
03 射频技术基础知识
电磁波基础知识
电磁波:由电场和磁场相互激发产生的波
无线传感器网络中的射频技术
射频技术在无线传感器网 络中的应用
射频技术的特点和优势
射频技术的应用场景和案 例
射频技术在无线传感器网 络中的挑战和问题
物联网中的射频技术
射频识别 (RFID): 用于物品识别
和追踪
无线传感器网 络(WSN): 用于环境监测
和数据采集
近场通信 (NFC): 用于移动支付 和身份验证
射频技术在无线通信系统中的应用 实例
添加标题
添加题
添加标题
射频技术在无线通信系统中的发展 趋势
雷达系统中的射频技术
雷达系统:用于探测、跟踪和识别目标 射频技术:在雷达系统中用于发射和接收电磁波 应用实例:雷达系统中的射频技术用于探测、跟踪和识别目标 特点:射频技术在雷达系统中具有高精度、远距离、全天候等优点
调制:将信息信号转换为射 频信号的过程
解调方式:幅度解调、频率 解调、相位解调等
调制解调器的作用:实现射 频信号的调制和解调
射频信号的传输与接收:通 过天线进行传输和接收
射频信号的发射与接收
射频信号的发射:通过天线 将信号发射到空气中
射频信号的产生:通过振荡 器产生高频信号
射频信号的接收:通过天线 接收信号,并通过滤波器、
滤波器的类型:包括低通滤 波器、高通滤波器、带通滤 波器等

射频基础知识及其主要指标PPT课件

射频基础知识及其主要指标PPT课件

Comba Telecom Systems
何谓射频
射频是无线电频率(Radio frequency)的简称(RF)
射频是指能够承载信号能量的无线电波,它可通过天线发 射和接收,並以交变的电磁场形式在自由空间以光速传 播,碰到不同介质时传播速率发生变化,也会发生电磁 波反射、折射、绕射、穿透等,引起各种损耗。在金属 线传输时具有趋肤效应现象。该频率在各种无源和有源 电路中R、L、C各参数反映出是分布参数。 在下表中其波长在VHF(米)和UHF(分米)波段通常被我们 用作第二代和第三代移动通信的频率资源。
②第三代公众蜂窝移动通信系统的补充工作频段: 频分双工(FDD)方式:1755~1785 MHz / 1850~1880 MHz;
时分双工(TDD)方式:2300~2400MHz,与无线电定位业 务共用,均为主要业务。
Comba Telecom Systems
③IMT-2000的卫星移动通信系统工作频段:1980-2010 MHz / 2170-2200 MHz。
所决定)所截获的热噪声功率电平。这个热噪声功率电平也称为接收机
的底噪,是计算接收机噪声的基本参数。
No= KT B(W)
B: 接收机(中频)带宽
10
如用dBW表示,可写为
No(dBw)= -204 dBW + 10lgB
或 = -174 dBm + 10lgB
干扰协调
最大干扰容限
Comba Telecom Systems
无线电频段和波段命名
无线电频谱可划分为如下12个频段。频率的单位是赫兹
或周/秒,还可以使用千赫(kHz)、兆赫(MHz)、
吉赫(GHz)表示。
表1.1 无线电频段和波段命名

华为公司 射频器件与天馈基础知识培训材料

华为公司 射频器件与天馈基础知识培训材料

发射合插损 典型值 (dB)
4.5 6.8 8 1 1 4.5
价格比较 (每载频)
中 低 低 中 高 中
四合一 2级 3dB电桥 不合路 EDU 双双工器方式 双CDU(不经过合 不合路 路器) 双CDU方式
双CDU(经过合路 器)
合路 双CDU方式
目录
BTS收发信前端系统简介 BTS收发信前端系统简介 合分路单元 室外天馈系统
前后比(F/B) 前后比(F/B)
天线的后向180°±30°以内的副瓣电平与最大波束之差,用正值表 示 一般天线前后比可以达到18~45dB,对于密集市区要积极采用前后比 大的天线,如40dB.
天线主要技术指标
极化
天线辐射的电场矢量在空间的取向.双极化天线通常使用+45度和- 45度正交双线极化,垂直极化天线使用垂直极化方式.以大地为基准 面,电场矢量垂直于地面为垂直极化(VP),平行于地面为水平极化 (HP) 一根天线只有一个极化方向,所谓双极化天线其实是2根天线放在一 个防护罩里而已.
目录
BTS收发信前端系统简介 BTS收发信前端系统简介 合分路单元
CDU SCU EDU
室外天馈系统
合分路单元
作用
可以使多个发射信号和多个接收信号共用一个天线,减少天馈 数量 完成收发信双工,发射信号合路,滤波 完成接收信号的滤波,低噪声放大和分路 提供塔放的馈电电路功能:
包括CDU,SCU,EDU三种模块.
馈线(馈管) 馈线(馈管)
馈线选取
常用馈线类型:1/2",7/8",5/4" 900MHz,馈线长度大于80米采用5/4"馈线,小于80米采用7/8"馈线 1800MHz,馈线长度大于50米采用5/4"馈线,小于50米采用7/8"馈线 馈线弯曲曲率不宜过大,外导体要求接地良好

射频基础知识资料课件

射频基础知识资料课件
WiFi技术实现
WiFi技术利用了射频技术中的无线局域网技术,通过无线方式连接设备到互联网。
工作流程
WiFi路由器通过无线方式与设备建立连接,设备通过浏览器或特定的应用程序向路由器发送请求。路由器将请求 发送到互联网上的目标服务器,服务器响应并将数据返回到路由器,再由路由器将数据发送到设备。
案例三:GPS定位原理及关键技术特点
射频信号可用于治疗某些疾病,如肿瘤、 心血管疾病等,也可用于医学影像和生理 信号采集。
02
射频基础知识
射频电路基础
01
02
03
射频电路组成
射频电路主要由天线、射 频前端、射频芯片和电源 管理模块等组成。
射频电路设计原则
射频电路设计需要遵循稳 定性、高效性、一致性和 可靠性等原则。
射频电路优化方法
射频技术的数字化和智能化
随着数字化和智能化技术的不断发展,射频技术也需要适 应数字化和智能化的趋势,实现更高效、更灵活、更智能 的无线通信。
射频技术发展面临的挑战
01 02
传输损耗和干扰问题
随着无线通信技术的发展,射频信号需要传输更远的距离,同时需要处 理更多的干扰问题,如何提高传输效率和抗干扰能力是射频技术面临的 重要挑战。
射频基础知识资料课件
目录
• 射频基础概念 • 射频基础知识 • 射频技术原理 • 射频技术应用 • 射频技术发展趋势与挑战 • 射频技术应用案例
01
射频基础概念
射频定义
01
射频(Radio Frequency,RF) 定义为一种电磁波,其频率在一 定范围内,常用的单位是赫兹( Hz)。
02
射频信号是指通过调制或其他方 式加载了信息的电磁波,常用于 无线通信和传输数据。

《射频基础知识培训》课件

《射频基础知识培训》课件
换为中频信号
射频功率放大器: 用于放大射频信 号的功率
射频天线:用于 发射和接收射频
信号
射频开关:用于 控制射频信号的
传输路径
直射传输:信号直接传播到接收端,适用于近距离通信 反射传输:信号通过反射物体传播到接收端,适用于远距离通信 散射传输:信号通过散射物体传播到接收端,适用于复杂环境通信 绕射传输:信号绕过障碍物传播到接收端,适用于障碍物较多的环境通信
GPS:全球定位系统,利用 卫星信号进行定位和导航
北斗:中国自主研发的全球 卫星导航系统,提供定位、 导航和授时服务
伽利略:欧洲研发的全球卫 星导航系统,提供定位和导 航服务
格洛纳斯:俄罗斯研发的全 球卫星导航系统,提供定位 和导航服务
区域导航系统:如美国的 WAAS、日本的MSAS等, 提供区域范围内的定位和 导航服务
调制方式:射频信号可以通过幅度、 频率、相位等多种方式进行调制
添加标题
添加标题
添加标题
添加标题
传播方式:射频信号可以通过空气、 电缆、光纤等多种介质进行传播
应用领域:射频信号广泛应用于无 线通信、广播电视、雷达、卫星通 信等领域
射频放大器:用 于放大射频信号
射频滤波器:用 于滤除不需要的
频率成分
射频混频器:用 于将射频信号转
射频振荡器是产生射频信号的电子设备 工作原理:通过振荡电路产生高频信号,然后通过放大器放大信号 振荡电路:由电容、电感、电阻等元件组成,通过调整元件参数可以改变信号频率 放大器:将振荡电路产生的信号放大,以满足传输或接收的要求 射频信号:高频电磁波,用于无线通信、雷达、广播电视等领域
射频放大器是射频电路中的关键部件,用于放大射频信号 射频放大器的工作原理主要是通过改变射频信号的频率和相位来实现信号的放大 射频放大器通常采用晶体管、场效应管等半导体器件作为放大元件 射频放大器的性能指标包括增益、噪声系数、线性度等

wifi培训-射频基础知识

wifi培训-射频基础知识

第三章 射频基本概念辨析

第一节
功率相关概念


第二节 噪声相关概念
第三节 线性相关概念 第四节 传输线相关概念 第五节 下行通道射频指标 第六节 上行通道射频指标
噪声相关概念

噪声定义
噪声是指在信号处理过程中遇到的无法确切预测的干扰信号 (各类点
频干扰不是算噪声)。常见的噪声有来自外部的天电噪声,汽 车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产 生的散粒噪声,信号与噪声的互调产物。
极长波(极低频ELF)传播

极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理论研究表明,这一波段的电 磁波沿陆地表面和海水中传播的衰耗极小。 超长波(超低频SLF)传播

超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这一波段的电磁波传播 十分稳定,在海水中衰耗很小(频率为75Hz时衰耗系数为0.3dB/m)对海水穿透能力很强, 可深达100m以上。 甚长波(甚低频VLF)传播

第一节
功率单位简介

第二节
单位简介
天线传播相关

第三节 其他
其他

电阻:阻挡电流通过的物体或物质,从而把电能转化为热能或其它形
式的能量,单位:欧姆,Ω

电压:电位或电位差,单位:伏特,V 电流:单位时间内通过电路上某一确定点的电荷数,单位:安培,A 电感:线圈环绕着的东西,通常是导线,由于电磁感应的原因,线圈
样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:
噪声相关概念

噪声系数
噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义: 单元输入信噪比除输出信噪比,如下图:

射频入门培训36页PPT

射频入门培训36页PPT
3-30 KHz 30-300 KHz 300-3000 KHz
3-30 MHz 30-300 MHz 300-3000 MHz
3-30 GHz 30-300 GHz 300-3000 GHz 0.23-1 GHz
1-2 GHz 2-4 GHz 4-8 GHz 8-12.4 GHz 12.5-18 GHz 18-26.5 GHz 26.5-40 GHz 40-300 GHz 300-3000 GHz
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
射频电路系统入门培训教程
刘李云
培训目的
• 了解射频相关的一些概念; • 了解整个射频系统组成; • 了解组成射频系统的各个模块单元; • 了解实际射频电路; • 初步了解射频电路分析方法和工作内容;
No.
2 3 4 5 6 7 8 9 10 11 12
射频入门培训
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
• 天线 • 天线开关 • PA • LNA • 滤波器 • 射频传输线:微带线、同轴线等等 • 混频器(mixer) • VCO • PLL • 高频电容 • 高频电感 • 匹配网络
射频系统框图
放大器
上变频器
天线
基 DAC 带 处 理 器 单 元 ADC
PLL
VCO
滤波器
PA 滤波器
天线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光波
10~1cm(10-1~10-2m) 10~1mm(10-2~10-3m) 1~0.1mm(10-3~10-4m) 3×10-3~3×10-5mm (3×10-6~3×10-8m)
由于种种原因,在一些欧、美、日等西方国家常常把部分微波 波段分为L、S、C、X、Ku、K、Ka等波段(或称子波段),具体 如表1 - 2所示。
球。
无线通信的电磁波传输
➢ 长波(低频LF)传播
长波是指波长1公里~10公里(频率为30~300kHz)的电磁波。其可沿地 表面传播(地波)和靠电离层反射传播(天波)。
➢ 中波(中频MF)传播
中波是指波长100米~1000米(频率为300~3000kHz)的电磁波。中波可 沿地表面传播(地波)和靠电离层反射传播(天波)。中波沿地表面 传播时,受地表面的吸收较长波严重。中波的天波传播与昼夜变化有 关。
表1-1 无线通信使用的电磁波的频率范围和波段(续)
频段名称
频率范围 波段名称
特高频(UHF) 300~3000MHz 微波 分米波
波长范围 1~0.1m(1~10-1m)
超高频(SHF) 3~30GHz
厘米波
极高频(EHF) 30~300GHz
毫米波
至高频(THF) 300~3000GHz
亚毫米波
第一章 无线通信的基本概念
第一节 概述 第二节 无线通信使用的频
段和波段
第三节 无线通信的电磁波 传播无线通信的 Nhomakorabea磁波传输
无线通信中的电磁波按照其波长的不同具有不同的传播特点, 下面按波长分述如下:
➢ 极长波(极低频ELF)传播
极长波是指波长为1~10万公里(频率为3~30Hz)的电磁波。理 论研究表明,这一波段的电磁波沿陆地表面和海水中传播的衰 耗极小。
无线通信的电磁波传播
➢ 微波传播
微波是指波长小于1米(频率高于300MHz)的电磁波。目前又按其波长 的不同,分为分米波(特高频UHF)、厘米波(超高频SHF)、毫米波 (极高频EHF)和亚毫米波(至高频THF)。
微波的传播类似于光波的传播,是一种视距传播。其主要在对流层内 进行。总的说来,这种传播方式比较稳定,但其传播也受到大气折射 和地面反射的影响。另外,对流层中的大气湍流气团对微波有散射作
甚低频(VLF) 低频(LF) 中频(MF)
高频(HF) 甚高频(VHF)
频率范围 3~30Hz 30~300Hz 300~3000Hz
波段名称 极长波 超长波 特长波
3~30kHz 30~300kHz 300~3000kHz
甚长波 长波 中波
3~30MHz 30~300MHz
短波 超短波 (米波)
本章主要讲述了无线通信的概念、无线通信的频段和波动的划 分以及无线通信的电磁波传播方式及其特点,最后简要说明了 WCDMA的工作频段和电磁波传播方式。
无线通信的电磁波传输
➢ 超长波(超低频SLF)传播
超长波是指波长1千公里至1万公里(频率为30~300Hz)的电磁波。这 一波段的电磁波传播十分稳定,在海水中衰耗很小(频率为75Hz时衰 耗系数为0.3dB/m)对海水穿透能力很强,可深达100m以上。
➢ 甚长波(甚低频VLF)传播
甚长波是指波长10公里~100公里(频率为3~30kHz)的电磁波。无线通 信中使用的甚长波的频率为10~30kHz,该波段的电磁波可在大地与低 层的电离层间形成的波导中进行传播,距离可达数千公里乃至覆盖全
信 方 式 称 之 为 无 线 电 通 信 ( Wireless Communication ),也称之为无线通信。
WCDMA工作频段:上行1920~1980MHz,下行2110~ 2170MHz,属于微波波段。
WCDMA电磁波传播方式为微波传播,微波的传播类 似于光波的传播,是一种视距传播。
本章小结
无线通信的电磁波传输
➢ 短波(高频HF)传播
短波是指波长为10米~100米(频率为3~30MHz)的电磁波。短波可沿地 表面传播(地波),沿空间以直接或绕射方式传播(空间波)和靠电 离层反射传播(天波)。
➢ 超短波(甚高频VHF)传播
超短波是指波长为1米~10米(频率为30~300MHz)的电磁波。超短波难 以靠地波和天波传播,而主要以直射方式(即所谓的“视距”方式) 传播。
课程内容
第一章无线通信的基本概念 第二章 射频常用计算单位简介 第三章 射频常用概念辨析 第四章 天线传播基础知识简介

第一章 无线通信的基本概念
第一节 概述
第二节 无线通信使用的 频率和波段
第三节 无线通信的电磁 波传播
第一章 无线通信的基本概念
第一节 概述
波长范围 100~10Mm(108~107m) 10~1Mm(107~106m) 1000~100km(106~105m)
100~10km(105~104m) 10~1km(104~103m) 1000~100m(103~102m)
100~10m(102~10m) 10~1m
无线通信使用的频段和波段
用。利用这种散射作用可实现微波的超视距传播。
WCDMA工作频段:上行1920~1980MHz,下行2110~2170MHz,属于微波 波段,其电磁波传播方式为微波传播。
思考题
何谓无线通信? WCDMA的工作频段?该频段属于哪一波段? 简述WCDMA的电磁波传播方式及其特点。
解答
利用电磁波的辐射和传播,经过空间传送信息的通
第二节 无线通信使用的 频段和波段
第三节 无线通信的电磁 波传播
无线通信使用的频段和波段
目前无线通信使用的频率从超长波波段到亚毫米波段(包括亚 毫米波以下),以至光波。无线通信使用的频率范围和波段见 下表1-1。
无线通信使用的频段和波段
表1-1 无线通信使用的电磁波的频率范围和波段
频段名称 极低频(ELF) 超低频(SLF) 特低频(ULF)
无线通信使用的频段和波段
表 1-2 无线通信中所使用的部分微波波段的名称
频率和波 长
波段代号 L S C
X
Ku
K
Ka
频率范围
1~2GHz 2~4GHz 4~8GHz 8~13GHz 13~18GHz 18~28GHz 28~40GHz
波长范围
30~15cm 15~7.5cm 7.5~3.75cm 3.75~2.31cm 2.31~1.67cm 1.67~1.07cm 1.07~0.75cm
相关文档
最新文档