三角与向量综合

合集下载

2015年高考数学复习学案:三角与向量的综合问题

2015年高考数学复习学案:三角与向量的综合问题

一、复习要点1.掌握三角函数的图象、性质和恒等变换,会运用正、余弦定理解三角形;2.理解平面向量的代数和几何意义,会解决平面向量与解三角形、三角函数交汇的综合问题. 二、考点展示1.(13·四川)设),2(,sin 2sin ππααα∈-=,则=α2tan .2.(13·山东)将函数)2sin(ϕ+=x y 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 .3. (13·福建)如图,在ABC ∆中,已知点D 在BC 边上,AC AD ⊥,322sin =∠BAC ,23=AB ,3=AD ,则BD 的长为 .4. (13·浙江) 设21,e e 为单位向量,非零向量21e y e x +=, R y x ∈,.若21,e e 的夹角为6π的最大值等于 .三、典型例题例1. (1) (12·江苏) 如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.(2) (13·湖南) 已知a ,b 是单位向量,a ·b =0,若向量c 满足|c -a -b |=1, 则|c |的取值范围是 .变式1 (1) (13·济南模拟)已知A B C ∆的外接圆半径为1,圆心为O ,且3+4+5=0,则⋅的值为 .(2) 已知a ,b ,c 均为单位向量,且a·b =0,(c -a )·(c -b )≤0,则|a +b -c |的最大值为 .例2.已知向量)23sin ,23(cosx x a =,)2sin ,2(cos x x b -=,且]2,0[π∈x .⑴ 求⋅+⑵ 若x f -⋅=2)(23-,求λ的值.变式 2 已知二次函数)(x f 对任意R x ∈,都有)1()1(x f x f -=+成立. 设向量)2,(sin x =,)21,sin 2(x =,)1,2(cos x =,)2,1(=.当],0[π∈x 时,解不等式)()(f f ⋅>⋅.四、课堂总结五、巩固练习1.(13·安徽)若非零向量,b +==,则与b 夹角的余弦值为 .2.(13·全国Ⅱ)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知2=b ,6π=B ,4π=C ,则ABC ∆的面积为 .3. 若向量a ,b ,c , d 满足:|a |=1,|b |=2,b 在a 方向上的投影为12,(a -c )·(b -c )=0,|d -c |=1,则|d |的最大值为________.4.(13·重庆)在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→. 若|OP →|<12,则|OA →|的取值范围是 .5. 如图所示,向量i , j ,e 1, e 2均为单位向量,且i ⊥j ,e 1⊥e 2 . ⑴ 用i , j 表示e 1, e 2;⑵若→OP=x i +y j ,且xy=1; →OP=x 1 e 1+y 1 e 2 .当θ= π4时,求关于x 1 、y 1的表达式,并说明方程表达的曲线形状.6. 设平面向量→a = (3,-1) ,→b = (12 ,32),若存在实数m (m ≠0)和角θ(θ∈(-2π,2π)),使向量→c =→a +(tan 2θ-3)→b ,→d =-m →a +(tan θ)→b ,且→c ⊥→d . ⑴ 试求函数m =f (θ)的关系式;⑵ 令t = tan θ,求出函数m = g (t )的极值.1 e i。

向量与三角形四心的关系

向量与三角形四心的关系

向量与三角形四心的关系三角形中的“四心”的向量表示向量既反映数量关系,又体现位置关系,从而能数形结合地用代数方法来研究几何问题,即把几何代数化,从而用代数运算解几何问题。

作为处理几何问题的一种工具,向量方法兼有几何的直观性,表述的简洁性和方法的一般性。

使用向量的第一步,是要在图中指定基向量(基底),这组基底一般是线性无关的。

一旦确定了基向量,在整个问题的解决过程中,以此为依据而进行计算。

在确定点的位置时,经常用向量的线性关系(这是向量的重要性质,贯穿在整个向量法中)来解决;在处理垂直关系,长度关系及交角等问题时,一般用向量的数量积来解决。

一、线共点问题。

解决线共点问题转化为向量共线问题来解决。

=例1、用向量法求证:△ABC 的三条高共点.分析:得BC 与AC 边上的高AD 与BE 交于H ,连接CH ,只要证明CH ⊥AB 即可。

因此,关键是选好基向量. 设l =,m =,n =,则 由⊥,⊥得 ()()()⎩⎨⎧=-⋅=-⋅⋅=⋅=-⋅000l m n l n m n l n l 即由此得 ∴CH ⊥AB ,同理,BC AH ⊥得证。

类似方法,还可以证明:(1)三角形的三条内角平分线交于一点。

(2)三角形的三条中线交与一点。

二、三角形的四心——重心、垂心、外心、内心的向量表示例2、已知O 是△ABC 所在平面内一点,若-=+,则点O 是△ABC 的重心。

分析:利用-=+及加法的平行四边形法则可证。

拓展:若()AC AB OA OP ++=λ,λ∈(0,+∞),则点P 的的轨迹一定是△ABC 的_______心。

(重心)例3、已知O 是△ABC 所在平面内一点,若·=·=·,则点O 是△ABC 的垂心。

分析:·=·得·==0,∴OB ⊥AC 同理OA ⊥BC ,OC ⊥AB 可证。

拓展1:已知O 是△ABC 平面上一定点,若=+λ⎫⎛+C AC B AB cos cos ,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的_______心。

三角函数和向量的综合

三角函数和向量的综合

三角函数和向量的综合复习要点:1、 熟练应用三角恒等变换和向量数量积等公式2、 三角函数和向量综合问题的处理思路典例剖析:1、已知向量.1,43),1,1(-=⋅=且的夹角为与向量向量π (1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x ==向量,其中R x ∈,若0=⋅,试求||+的取值范围.2、已知向量552sin ,(cos ,sin ,cos =-==b a ββαα)( (1)求)cos(βα-的值 (2)若02,20<<-<<βππα且135sin -=β,求αsin 的值3、 已知向量⎥⎦⎤⎢⎣⎡∈-==2,0)2sin ,2(cos ),23sin ,23(cos πx x x b x x a 且向量。

求(1)+⋅;(2)若x f +-⋅=2)(的最小值是23-,求实数λ的值。

4、已知函数2()2cos2sin cos 1(0)f x x x x x ωωωω=++∈R >,的最小正周期是2π. (Ⅰ)求ω的值; (Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.17题、如图,函数y=2sin(πx+ϕ),(x ∈R)(其中0≤ϕ≤2π)的图象与y 轴交于点(0,1);①、求ϕ的值;②、设P 为图象上的最高点,M ,N是图象与x 轴的交点,求→PM 与→PN 的夹角。

课后作业:1、已知向量(sin ,cos ),(1,2)m A A n ==- ,且0.m n ⋅=(Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.2、已知向量)1,2sin 2(cos .22x x a -=)sin ,1(.x b =,函数f (x )=b a ⋅ (Ⅰ)求函数f (x )的最小正周期;(Ⅱ)当x 0∈(0,4π)且f (x 0)=524时,求f (x 0+6π)的值.3、(山东17)(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫ ⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.4.(上海18)(本题满分15分)已知函数f (x )=sin2x ,g (x )=cos π26x ⎛⎫+⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图像分别交于M 、N 两点.(1)当π4t =时,求|MN |的值; (2)求|MN |在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值.5、如图在长方体ABCD 中,,,AB a AD b N == 是CD 的中点,M 是线段AB 上的点,2,1a b == ,(1)若M 是AB 的中点,求证:AN 与CM 共线;(2)在线段AB 上是否存在点M ,使得BD 与CM 垂直?若不存在请说明理由,若存在请求出M 点的位置;(3)若动点P 在长方体ABCD 上运动,试求AP AB ⋅ 的最大值及取得最大值时P点的位置。

向量与三角函数的综合应用

向量与三角函数的综合应用

2
解法4 解法4: 3 6 1 2 (sin θ + cos θ ) = sin θ + cos θ =± sin θ ⋅ cos θ = 2 2 ∴ ∴ 4 (sin θ − cos θ )2 = 1 sin θ − cos θ =± 2 sin 2 θ + cos 2 θ = 1 2 2 6+ 2 6− 2 sin θ = sin θ = 4 4 或 ∴ cos θ = 6 − 2 cos θ = 6 + 2 4 4 6+ 2 6− 2 sin θ = − sin θ = − 4 4 或 6− 2 cos θ = − cos θ = − 6 + 2 4 4
例2:已知 a = (cos 2α , sin α ), b = (1,2 sin α − 1), α ∈ ( , π ) : 2 2 π a ⋅ b = , 求 cos( α + ) 解: a ⋅ b = cos 2α + sin α ( 2 sin α − 1) 2 = 1 − sin α = 5 4 π 3 ∴ sin α = ,因为 α ∈ ( , π ) ∴ cos α = − 5 2 5 π π π ∴ cos(α + ) = cos α cos − sin α sin
∴ tan θ = 2 ± 3
小结:1.向量的坐标运算。 小结:1.向量的坐标运算。 向量的坐标运算 2.三角函数的化简 计算。 三角函数的化简、 2.三角函数的化简、计算。 三角恒等变换、齐次式问题) (三角恒等变换、齐次式问题) 转化思想方法的应用。 3. 转化思想方法的应用。
本节目标: 本节目标
• 1.向量运算与三角函数求值的综合。 向量运算与三角函数求值的综合。 向量运算与三角函数求值的综合 • 2.向量运算与三角函数化简的综合。 2.向量运算与三角函数化简的综合 向量运算与三角函数化简的综合。 • 3.转化思想方法的应用。 转化思想方法的应用。 转化思想方法的应用

专题二 三角函数与平面向量的综合应用

专题二 三角函数与平面向量的综合应用

的参数 A,ω ,φ,从图象的特征上寻找答案,A 主要由最值 确定,ω 是由周期确定,周期通过特殊点观察求得,如相邻 两个最大、最小值点相差半个周期,φ 可由点在函数图象上 求得,确定 φ 值时,注意它的不惟一性.如果函数的最大值 与最小值不互为相反数,说明解析式为 y=Asin( ω x+φ)+k 的形式.设最大值为 m,最小值为 n,则 A+k=m,-A+k m-n m+n =n,从而 A= 2 ,k= 2 .
π 由图象最高点为 , 3得 6
(2)由 (1)知,函数的最小值为- 3; π π π 由 2x+ =2kπ- ,k∈Z,得 x=kπ- ,k∈ Z, 6 2 3 π ∴函数取得最小值时自变量 x 的集合为x|x=kπ- , k∈ Z. 3
探究提高
确定函数关系式 y=Asin( ω x+φ)就是确定其中
题型分类 深度剖析
题型一 三角函数的化简求值问题 3 1 1 例1 求 2 - 2 · 的值. sin 140° cos 140° 2sin 10°
思维启迪 从角、函数名称、式子结构入手找其
特征,构造“相消”、“约分”或构造特殊角.
3cos2140° - sin2140° 1 解 原式= · sin2140° cos2140° 2sin 10° 3cos240° - sin240° 1 = · sin240° cos240° 2sin 10° ( 3cos 40° - sin 40° )( 3cos 40° + sin 40° ) 1 = · 1 2 2sin 10° sin 80° 4 2sin(60° - 40° )· 2sin(60° + 40° ) 1 = · 1 2 2sin 10° cos 10° 4 8sin 20° sin 100° 16sin 10° · cos210° = = = 16. cos210° · sin 10° cos210° · sin 10° π 探究提高 若 α+β=π,则 sin α=sin β;若 α+β=2,

三角函数与向量综合题

三角函数与向量综合题

题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的值依次为 ( )A .π12,-3B .π3,3C .π3,-3D .-π12,3 【分析】 根据向量的坐标确定平行公式为⎩⎨⎧ x =x '+π6y =y '+3,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】 由平移向量知向量平移公式⎩⎨⎧ x '=x -π6y '=y -3,即⎩⎨⎧ x =x '+π6y =y '+3,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C. 【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA),则sin 2A =34, 又A 为锐角,所以sinA =32,则A =π3. (Ⅱ)y =2sin 2B +cos C -3B 2=2sin 2B +cos (π-π3-B)-3B 2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B =32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2. 【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值. 【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果. 【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0.由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12. ∵α∈(3π2,2π),tanα<0,故t anα=12(舍去).∴tanα=-43. (Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255, ∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法. 题型四 三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=-35. (Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π, 由cos(α-β)=-35,得sin(α-β)=45, 又sin β=-513,∴cos β=1213, ∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365. 点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx ,由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1. (Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1, 当sin(x +π4)=-1时,f(x)的最小值为1- 2. 点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),a =23,且→m·→n =12. (Ⅰ)若△ABC 的面积S =3,求b +c 的值.(Ⅱ)求b +c 的取值范围.【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12, ∴-cos 2A 2+sin 2A 2=12,即-cosA =12, 又A ∈(0,π),∴A =2π3. 又由S △ABC =12bcsinA =3,所以bc =4, 由余弦定理得:a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4. (Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3, ∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3),∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4]. [点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.。

(完整版)向量与三角,不等式等知识综合应用

(完整版)向量与三角,不等式等知识综合应用

第19讲 向量与三角、不等式等知识综合应用常熟市中学 蔡祖才一、高考要求平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=02.函数y =sin x 的图象按向量a =(32π-,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +23.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为.4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN u u u u r u u u r与的夹角余弦值为 .四、典型例题例1 已知a =(3sin ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω 例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ ( )(A)6π (B) 4π (C) 3π (D) 2π例3 设向量a r =(sin x ,cos x ),b r =(cos x ,cos x ),x ∈R ,函数f(x)=a r ·(a r +b r).使不等式f (x )≥23成立的x 的取值集合为 .例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅u u u r u u u r u u u r+的最小值是 .例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π,1),且当x ∈[0, 4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |=,5求cos()28θπ+的值.第19讲 向量与三角、不等式等知识综合应用 过关练习1.已知i r ,j r 为互相垂直的单位向量,2a i j =-r r r ,b i j λ=+r r r ,且||||a b r r与的夹角为锐角,则实数λ的取值范围是( )(A )),21(+∞ (B ))21,2()2,(-⋃--∞ (C )),32()32,2(+∞⋃- (D ))21,(-∞2.在直角坐标系中,O 是原点,OQ =(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x =3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )(A ) 4 (B ) 5 (C ) 26 (D )263.已知||2||0a b =≠r r ,且关于x 的方程2||0x a x a b ++⋅=r r r 有实根,则a r 与b r 的夹角的取值范围是 ( )(A )[0,6π] (B )[,]3ππ (C )2[,]33ππ (D )[,]6ππ 4.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=u u u r u u u r,若OP AB PA PB ⋅≥⋅u u u r u u u r u u u r u u u r,则实数λ的取值范围是 ( )(A )112λ≤≤ (B )11λ-≤≤(C )1122λ≤≤+ (D )1122λ-≤≤+ 5. 已知向量a r =(cos α,sin α),b r =(cos β,sin β),且a b ≠±r r ,那么a b +r r 与a b-r r的夹角的大小是 .6. 已知向量].2,0[),2sin ,2(cos ),23sin,23(cos π∈-==x x x x x 且若||2)(x f +-⋅=λ的最小值为32-,则λ的值为 .7.已知A 、B 、C 是ABC ∆三内角,向量(m =-u r(cos ,sin ),n A A =r 且 1.m n ⋅=u r r(Ⅰ)求角A ; (Ⅱ)若221sin 23cos sin BB B+=--,求tanC . 8.设函数f (x )=a b ⋅r r ,其中向量a r =(2cos x ,1),b r=(cos x ,3sin2x ),x ∈R .(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c r =(m ,n )(|m |<2π)平移后得到函数y =f (x )的图象,求实数m 、n 的值.第19讲 向量与三角、不等式等知识综合应用 参考答案课前训练部分1.C2.D3.4.1517典型例题部分例1 A例2 1111sin cos (1cos )(1sin )222ABC S θθθθ∆=----- 当2θπ=即2πθ=时,面积最大.例3 3,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭例4 如图,OM OA OC OB OA -≥-=⋅⋅=+⋅2)(=.222-=⋅- 即)(+⋅的最小值为:-2.例5 (Ⅰ)由题意知⎩⎨⎧=+=+,1,1b a c a ∴b =c =1-a , ∴f (x )=a +2(1-a )sin(2x +4π).∵x∈[0,4π], ∴2x +4π∈[4π,4π3].当1-a >0时,由a +2(1-a )=22-1, 解得a =-1; 当1-a <0时, a +2(1-a )·22=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +4π). (Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8π个单位,再向下平移一个单位就可以得到f (x )的图象. 因此,将f (x )的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数g(x )=22sin2x 的图象.故m u r =(8π,1)是满足条件的一个向量.例6 (cos sin sin )m n θθθθ+=-++u r rm n +=u r r由已知m n +=u r r ,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+- 过关练习部分1.B2.C3.B4.B 5、2π6. 217(Ⅰ)∵1m n ⋅=u r r∴(()cos ,sin 1A A -⋅= cos 1A A -=12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭, 1sin 62A π⎛⎫-= ⎪⎝⎭ ∵50,666A A ππππ<<-<-<∴66A ππ-= ∴3A π= (Ⅱ)由题知2212sin cos 3cos sin B B B B+=--,整理得22sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2tan tan 20B B --= ∴tan 2B =或tan 1B =-而tan 1B =-使22cos sin 0B B -=,舍去 ∴tan 2B =8.(Ⅰ)依题设可知,函数的解析式为f (x )=a b ⋅r r =2cos 2x +3sin2x =1+2sin(2x +6π).由1+2sin(2x +6π)=1-3,可得三角方程sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π,即x =-4π. (Ⅱ)函数y =2sin2x 的图象按向量c r=(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f(x)的图象.由(1)得 f(x)=2sin2(x +12π)+1. ∵|m |<2π,∴12m π=-, 1.n =。

三角函数与向量的基本概念及综合应用

三角函数与向量的基本概念及综合应用

向量和三角函数的基本概念与应用一、 向量的基本概念:1、 向量、平行向量(共线向量)、零向量、单位向量、相等向量:2、 向量的表示:→AB 、→a 、区别于|→AB|、|→a |3、 向量的加法、减法:平行四边形法则和三角形法则★ 例题1、一艘船从A 点出发以2 3 km/h 的速度向垂直于对岸的方向行驶,同时河水的速为2km/h ;求船实际航行的速度大小和方向。

(答案:4km/h ,方向与水流方向成60°角)★【※题2】①设O 为平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足→OP=→OA+λ(→AB+→AC),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( D )A 外心B 垂心C 内心D 重心 ②将上题中的条件改为→OP=→OA+λ( →AB |→AB| + →AC|→AC|)则应选( C )★ 例题3:(1)、化简下列各式:①→MN+→NM ;②→FD+→DE-→EF ;③→AB+→BC+→CA ;④(→AB-→DC )+(→DA-→CB )其中结果为0的有①③④( 2)、在平行四边形ABCD 中,→AB=→a ,DB=→b ,则有:→AD=→a -→b ,→AC=→a +→a -→b4、 实数与向量的积、平面向量基本定理、平面向量的坐标表示:① 注意点的坐标和向量的坐标的差别:②向量的平等行和垂直坐标公式:5、向量的数量积的概念,以及向量平行、垂直、长度、夹角:★例1、已知平行四边形OADB 中,→OA=→a ,→OB=→b ,AB 与OD 相交于点C ,且|BM|=13|BC|,|CN|=13|CD|,用→a 、→b 表示→OM 、→ON 、和→MN 。

★ 例2、求证;G 为△ABC 的重心的充要条件是:→GA+→GB+→GC=0★例3、已知AD 、BE 分别是△ABC 的边BC 、AC 上的中线,→AD=→a ,→BE=→b ,则→BC=____★ 例4、①已知等差数列{a n }的前n 项之和为S n ,若M,N,,P 三点共线,O 为坐标原点,且→ON=a 31→OM+a 2→OP(直线MP 不过点O ),则S 32等于多少?②(2006年江西高考)已知等差数列{a n }的前n 项之和为S n ,若→OB=a 1→OA+a 200→OC,且=A,B,C 三点共线(该直线不过点O ),则S 200等于( )A 100B 101C 200D 201★例5、①若→a 的起点和终点坐标分别为(1,3),(4,7),则|→a |=_____② 已知→a =(1,2),→b =(x,1),且→a +2→b 与2→a -→b 平行,则x 之值为____③ 已知→a =(3,4),→a ⊥→b ,且→b 的起点坐标为(1,2),终点坐标为 (x,3x),则→b 等于_____ ④ 已知点M (3,-2),N (-5,-1),且→MP=12→MN ,则点P 的坐标是____(答案:(-1,-32)巩固练习:(一)平面向量的坐标运算规律:①设→a =(x 1,y 1),→b =(x 2,y 2),则→a +→b =_________;→a -→b =__________,λ→a =______;②|→a |=→a 2 =x 12+y 12;又→a ²→b =|→a |²|→b |²cos<→a ,→b >=x 1x 2+y 1y 2则cos<→a ,→b >= →a ²→b |→a ||→b = x 1x 2+y 1y 2 x 12+y 12 ²x 22+y 22 ; ③若→a ∥→b ⇔x 1y 2-x 2y 1=0; 若→a ⊥→b ⇔x 1x 2+y 1y 2=0,★例1、 ① 已知→a =(3,5) → b=(2,3),→c =(1,-2),求(→a ²→b )²→c (答案:(21,-42))②已知→a =(3,-1),→b =(-1,2),则-3→a -2→b 的坐标为_____(答案:(-7,-1)) ③已知|→a |=4,|→b |=3,(2→a -3→b )²(2→a +→b )=61,求→a 与→b 的夹角.(为120°) ④已知|→a |=2,|→b |=9, →a ²→b =-542,求→a 与→b 的夹角.(为135°)★ 例2、①已知→a =(1,2),→b =(x,1)且→a +2→b 与2→a -→b 平行,则x=_____(答案:21)②已知|→a |=2,|→b |=1, →a 与→b 的夹角为3π,求向量2→a +3→b 与3→a -→b 的夹角的余弦值.(答案:2837 ²31 );③已知向量→a =(cos α,sin α),→b =(cos β,sin β),且→a ≠±→b ,则→a +→b 与→a -→b 的夹角大小是____(90°)④已知向量→a 与→b 的夹角为120°,且|→a |=3,|→a +→b |=13 ,则|→b |=_____★例3已知→a =(1,2),→b =(-3,2),当k 为何值时,①k →a +→b 与→a -3→b 垂直?②k →a +→b 与→a -3→b 平行,平行时它们是同向还是反向?(解:①k=19; ②k=-1/3,反向.)★例4:①若向量→a +3→b 垂直于向量7→a -5→b ,且向量→a -4→b 垂直于向量7→a -2→b ,求向量→a 与→b 的夹角大小.(答案:60°)②已知向量→a =(2,7),→b =(x,-3),当→a 与→b 的夹角为钝角时,求出x 的取值范围;若→a 与→b 的夹角为锐角时,问x 的取值范围又为多少?(答案:为钝角时x<212≠-67; 为锐角时x>212)★例5、已知→a =(cos x 2,sin x 2),→b =(sin 3x 2,cos 3x2),x ∈[0,2π],①求→a ²→b ;②求|→a +→b |,③设函数ƒ(x)=→a ²→b+2|→a +→b |,求出ƒ(x )的最大值和最小值。

案例高考专题三角与向量

案例高考专题三角与向量

三角与向量Ⅰ认识高考中的三角与向量三角与向量,是现行课程标准和教材的基础和重点内容,每年高考都会考查,考查的规律和特点稳定而明确.1现行课程标准及教材中三角与向量的主要内容1.1课程标准明确具体内容和要求.数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换.数学5:解三角形具体内容和要求如下:数学 4在本模块中,学生将学习三角函数、平面上的向量(简称平面向量)、三角恒等变换.三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用.在本模块中,学生将通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用.向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本模块中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力.三角恒等变换在数学中有一定的应用,同时有利于发展学生的推理能力和运算能力.在本模块中,学生将运用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,并能运用这些公式进行简单的恒等变换.内容与要求1.三角函数(约 16 课时)(1)任意角、弧度了解任意角的概念和弧度制,能进行弧度与角度的互化.(2)三角函数①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.②借助单位圆中的三角函数线推导出诱导公式(π±α,π ±α的正弦、余弦、正2切),能画出y = sin x,y = cos x,y = tan x 的图象,了解三角函数的周期性.(-π π③借助图象理解正弦函数、余弦函数在[0,2π],正切函数在调性、最大和最小值、图象与x 轴交点等).④理解同角三角函数的基本关系式:, ) 上的性质(如单2 2sin2x + cos2x = 1,sin xcos x= tan x⑤结合具体实例,了解y =A sin(ωx +ϕ)的实际意义;能借助计算器或计算机画出y =A sin(ωx +ϕ)的图象,观察参数A,ω,ϕ对函数图象变化的影响.⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.2.平面向量(约 12 课时)(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义.②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义.③了解向量的线性运算性质及其几何意义.(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加、减与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.②体会平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力.3.三角恒等变换(约 8 课时)(1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用.(2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.(3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆).数学 5在本模块中,学生将学习解三角形、数列、不等式.学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题.内容与要求1.解三角形(约 8 课时)(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1.2人教社教材, ) 明确教材体系和结构:数学 4(必修):共分为 3 章,三角函数(6 节)、平面向量(5 节)、三角恒等变换(2节)数学 5(必修):解三角形(3 节) 2 高考考试说明中三角与向量的要求 2.1 三角的考查内容与要求 明确考什么、考到什么程度. (八)基本初等函数Ⅱ(三角函数) 1.任意角的概念、弧度制 (1) 了解任意角的概念.(2) 了解弧度制的概念,能进行弧度与角度的互化. 2.三角函数(1) 理解任意角三角函数(正弦、余弦、正切)的定义.(2) 能利用单位圆中的三角函数线推导出 π± α ,π ± α 的正弦、余弦、正切的诱导公式,2 能画出 y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.(3) 理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与 x 轴的交点等),理解正切函数在区间(- π π2 2 (4) 理解同角三角函数的基本关系式: sin 2 x + cos 2 x = 1,sin x= tan x . cos x内的单调性.(5) 了解函数 y = A sin(ωx + ϕ) 的物理意义;能画出 y = A sin(ωx + ϕ) 的图象,了解参数 A ,ω,ϕ 对函数图象变化的影响.(6) 了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(十) 三角恒等变换 1.和与差的三角函数公式(1) 会用向量的数量积推导出两角差的余弦公式.(2) 能利用两角差的余弦公式导出两角差的正弦、正切公式.(3) 能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形 1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 2.2 向量的考查内容与要求 (九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景. (2)理解平面向量的概念,理解两个向量相等的含义. (3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义. (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. (3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义. (2)掌握平面向量的正交分解及其坐标表示. (3)会用坐标表示平面向量的加法、减法与数乘运算. (4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义. (2)了解平面向量的数量积与向量投影的关系. (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算. (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题. (2)会用向量方法解决简单的力学问题与其他一些实际问题.3 高考试卷中的三角与向量试题 3.1 三角试题实例例 2017 年全国Ⅰ卷理科第(9)题已知曲线C : y = cos x , C : y = sin(2x + 2π) ,则下面结论正确的是123A .把C 上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向右平移 π16个单位长度,得到曲线C 2B .把C 上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向左平移 π112个单位长度,得到曲线C 2C .把C1 π1上各点的横坐标缩短到原来的 2倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,得到曲线C 2D .把C 上各点的横坐标缩短到原来的 1倍,纵坐标不变,再把得到的曲线向左平移 π12 12个单位长度,得到曲线C 2【解析】 曲线C : y = cos x = cos(x + π - π) = sin(x + π) ,可知将把C 上各点的横坐标12 2 2 1缩短到原来的 1 倍,纵坐标不变,得到的解析式为 y = sin(2x + π ) = sin 2(x + π) ,再把得到的2曲线向左平移 π122 4 个单位长度,得到曲线的解析式为 y = sin 2(x + π + π ) = sin(2x + 2π ) 即C12 4 3 2的解析式,选项 D 正确.关键问题:平移多少?三角函数图象的伸缩、平移变换→一般函数? 作为选择题,可以怎么解答?例 2018 年全国Ⅲ卷理科第(15)题2 B函数 f (x ) = cos(3x + π) 在[0 ,π]的零点个数为 .6【解析】 由题意,令cos(3x + π)=0 ,得 63x + π =k π+ π , x = k π + π , k ∈ Z ,取且仅k = 0,1, 26 2 3 9 有 x ∈[0, π] ,即cos(3x + π)=0 有且仅有 3 个解.6余弦型函数的图象与性质.零点即方程的解→数形结合.自己习惯的解答方式是什么?例 2016 年全国Ⅲ卷理科第(5)题若 tan α = 3,则cos 2α + 2sin 2α =4A. 6425B. 4825C. 1D.1625【解析】 由已知,4sin α = 3cos α ,两边平方,得cos 2 α =16.可以:cos 2 α + 2sin 2α 25= cos 2 α (1 + 4 tan α ) = 4cos 2 α = 64,还可以: cos 2 α + 2sin 2α = cos α (cos α + 4sin α ) =….25作为选择题,你还可以有另外的想法.反思总结:问题特征——知值求值,三角变换,选择题.联想方法——角度到角度的联系,三角式到三角式的变换,利用题型特点.例 2018 年全国Ⅲ卷理科第(9)题∆ABC 的内角 A ,B ,C 的对边分别为a ,b ,c ,若∆ABC 的面积为a 2 +b 2 -c 24 ,则C = A . π2 【解析】B . π3= a 2+ b 2- c2=1C . π4 ⇔ == π .D . π6S ∆ABCab sin C 4 2 sin C cos C ,C4反思总结:结构特点,公式选择,目标导向.例 2018 年全国Ⅰ卷理科第(17)题在平面四边形 ABCD 中,∠ADC = 90︒ ,∠A = 45︒ , AB = 2 , BD = 5 . (1) 求cos ∠ADB ;(2) 若 DC = 2 【解析】 在 ,求 BC . ABD 中,运用正弦定理, A∠ = ,△sin ADB 5cos ∠ADB = 23;在△BCD 中,运用余弦定理,BC =5. 5反思总结:画出图形,立足结构.3.2 向量试题实例D例 2018 年全国Ⅱ卷理科第(4)题已知向量a , b 满足| a | = 1 , a ⋅ b = -1 ,则a ⋅ (2a - b ) = A .4B .3C .2D .0向量的基本运算.例 2016 年全国Ⅱ卷理科第(3)题已知向量a = (1,m ),b = (3,- 2) ,且(a + b ) ⊥ b ,则 m = A. -8B. -6C. 6D. 82B . 1AB - 3AC向量的坐标运算,向量垂直的条件. 例 2018 年全国Ⅰ卷理科第(6)题在△ ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点, A则 EB =A . 3AB - 1ACE4 444 D . 1AB + 3AC4 44 4BDC【解析】 首先建立联系:以向量 AE 为纽带.选 A .你愿意用坐标系,也是可以的. 3.3 三角与向量试题的解答策略 3.3.1 问题的背景与特征(题型归类)三角问题:三角函数及其图象、三角变换、解三角形(应用) 向量问题:向量的概念与运算、向量在几何及物理中的应用 3.3.2 解决的方法与策略三角问题:函数的研究手段,角——角的和差倍半及诱导关系,名——函数名的转换, 形——结构特征(代数、几何)及联系向量问题:多角度表示——基底(来自向量本身),坐标(与解析几何联系)和图形 3.4 对于三角与向量,高考考查了什么?是怎么考查的? 3.4.1 三角与向量试题设置与考查的特点与规律简单统计 三角 年度科类题型与考点题型汇总2016文科甲 3,函数图象;11,变换、最大值;15,解三角形理科:2 套 2 选 1 填,1 套 1 选 1 解文科:3 套 2 选 1 填理科甲7,函数图象;9,变换;13,解三角形 文科乙 4,解三角形;6,函数图象;14,变换 理科乙 12,函数图象与性质;17,解三角形,变换 文科丙 6,变换;9,解三角形;14,函数图象 理科丙 6,变换;9,解三角形;14,函数图象2017文科甲 8,函数图象、性质;11,解三角形;15,变换 理科:3 套 1 选 1 解文科:3 套 2 选 1 填理科甲 9,函数图象;17,解三角形文科乙 3,函数性质;13,变换、性质;16,解三角形 理科乙 14,变换、性质;17,解三角形文科丙 4,变换;6,变换、函数性质;15,解三角形 理科丙 6,函数性质;17,解三角形2018文科甲 8,函数性质;11,函数概念与变换;16,解三角形 理科:2 套 2 选 1 填,1 套 1 选 1 解文科:3 套 2 选 1 填理科甲 16,函数与变换;17,解三角形文科乙 7,解三角形;10,函数性质;15,变换 理科乙 6,解三角形;10,函数性质;15,变换文科丙 4,变换;6,函数性质与变换;11,解三角形 理科丙4,变换;9,解三角形;15,函数图象C . 3 AB + 1 AC向量年度科类题型与考点题型汇总2016文科甲13,坐标表示,向量的平行1 选或1 填理科甲3,坐标表示,向量的垂直文科乙13,坐标表示,向量的模理科乙13,坐标表示,向量的模文科丙3,向量的夹角理科丙3,向量的夹角2017文科甲13,坐标表示,向量的垂直1 选或1 填(在解析几何题中融合)理科甲13,向量的夹角,向量的模文科乙4,向量的模(性质)理科乙文科丙13,坐标表示,向量的垂直理科丙12,向量与几何,线性运算2018文科甲7,向量的线性运算1 选或1 填理科甲6,向量的线性运算文科乙4,向量的数量积理科乙4,向量的数量积文科丙13,坐标表示,向量的平行理科丙13,坐标表示,向量的平行3.4.2三角函数是高中数学的重要内容.高考主要考查任意角三角函数的概念和正弦函数、余弦函数、正切函数的图象与性质,突出考查形如y=A sin(ωx+φ)的函数的图象与性质;考查两角和与差的三角函数公式和简单的三角恒等变换;重点考查正弦定理和余弦定理及其应用.对三角函数的考查重点是考生对基本概念、基本公式的理解和应用以及运算求解能力,3.4.3平面向量具有几何形式和代数形式,是中学数学知识的一个交汇点.高考主要考查平面向量的概念、线性运算、平面向量基本定理、坐标表示、数量积及其应用,平面向量的考查重点是基础知识、基本技能和数形结合的思想方法,考查中将几何知识和代数知识有机结合,体现思维的灵活性.Ⅱ走进高考中的三角与向量1 三角函数及其图象例2014 年全国Ⅱ卷理科第(6)题如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 作直线OA 的垂线,垂足为M . 将点M 到直线OP 的距离表示成x 的函数f (x) ,则y在[0, π] 的图象大致为A. B.f (x)5C.D.【解析】 选 C .已知解读——点到直线的距离?知识产生和发展的过程——三角函数定义的背景,不同的思考角度(数、形);题型特点——选择题的解答.例 2018 年全国Ⅱ卷理科第(11)题已知角α 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1, a ) ,B (2,b ) ,且cos 2α = 2,则 a - b =3A . 1 5 【解析】 选B .B . 5 5C . 2 5 5D .1源于教材,回归基础——基于定义,倍角公式. 例 2015 年全国Ⅱ卷理科第(8)题函数 f (x ) = cos(ω x + ϕ) 的部分图象如图所示,则 f (x ) 的单调递减区间为A. (k π 1 , k π + 3), k Z 4 4B. (2k π 1 , 2k π + 3), k Z 4 4C. (k 1 , k + 3), k Z 4 4D. (2k 1 , 2k + 3), k Z 4 4 【解析】 选 D .基础:三角函数的性质、图象与基本量;需要求出解析式吗? 例 2013 年全国Ⅱ卷理科第(15)题设当 x = θ 时,函数f (x )=sin x -2cos x 取得最大值,则cos θ= .【解析】 第一个想法: f (x ) = 5 sin(x - ϕ) , sin ϕ = 5 , cos ϕ = 2 5.函数取最大 5 5 值时, x = 2k π + π + ϕ ,所以c os θ= cos(2k π + π+ ϕ) = - cos ϕ =- 2 5 .2 2 5有了第一,当然应该有第二个想法:对于函数最值,还有什么入手点?易知 f '(θ ) = cos θ + 2sin θ = 0 ,怎么求c os θ ?——平方(得出的是cos 2θ,有取舍的问 题);还有一个条件可资利用:sin θ-2cos θ=根据背景寻求联系,多种因素获取答案. 例 2016 年全国Ⅰ卷理科第(12)题.(如何想到?)已知函数 f (x ) = sin(ω x + ϕ) (ω > 0, | ϕ |≤ π ) ,x =- π 为 f (x ) 的零点,x = π为 y = f (x )2 4 4图象的对称轴,且 f (x ) 在( π , 5π) 单调,则ω 的最大值为18 36A. 11B. 9C. 7D. 52 ⎪⎩ ⎨ 【解析】 由题 π - (- π ) = T + k ⋅ T = 2k + 1 ⋅ 2π,所以ω = 2k + 1(k ∈ N * ) ;又因为 f (x )4 4 4 2 4 ω在( π , 5π ) 单调,所以 5π - π = π ≤ T = 2π,即ω ≤12 (仅为必要条件);更深刻地分析 18 36 36 18 12 2 2ω条件, f (x ) = sin ω (x + π) ,代入验证可知, ω 的最大值为 9.4例 2015 年全国Ⅰ卷理科第(10)题如图,长方形 ABCD 的边 AB =2,BC =1,O 是 AB 的中点,点 P 沿着边 BC ,CD 与 DA 运动,记∠BOP =x .将动点 P 到 A ,B 两点距离之和表示为 x 的函数 f (x ),则 f (x )的图象大致为【解析】 自然的想法:建立函数关系式,根据解析式分析图象. ⎧tan x + 4 + tan 2 x , 分段建立关系: f (x ) ⎪ 1 + (1 + cot x )2+ ⎪- tan x + 4 + tan 2 x . 命题者这样考查你?——寻求合适的解题路径. 反思总结:问题特点,思考方式,解答路径. 2 三角变换例 2018 年全国Ⅱ卷理科第(15)题已知sin α + cos β = 1, cos α + sin β = 0 ,则sin(α + β) = .【解析】 角名入手,平方相加: sin(α + β) = - 1.2例 已知函数 f (x ) = sin(3x + π) .4(1) 求 f (x ) 的单调递增区间;(2) 若α 是第二象限角, α f ( ) = 4cos(α + π ) cos 2α ,求cos α - sin α 的值.3 5 4(1) 函数 f (x ) 的单调递增区间为 [- π + 2k π , π + 2k π] , k ∈ Z .4 3 12 3(2) 由已知,有sin(α + π ) = 4 cos(α + π) cos 2α ,4 5 4 所以sin α cos π + cos α sin π = 4 (cos α cos π - sin α sin π)(cos 2 α - sin 2 α ) ,4 45 4 4即 sin α + cos α = 4(cos α - sin α )2 (sin α + cos α ) .5当sin α + cos α = 0 时,由α 是第二象限角,知 α = 3π+ 2k π, k ∈ Z .4此时, cos α - sin α = - .1 + (1 - cot x )2=当sin α + cos α ≠ 0 时,有(cos α - sin α )2 = 5.4由α 是第二象限角,知cos α - sin α<0 ,此时cos α - sin α = - 5.2 综上所述, cos α - sin α = - 2 或- 5.2 系 2014 年四川理科试题,第(1)小题得分率约 80%,零分率约 16%,满分率约76%;第(2)小题得分率约 49%,零分率约 15%,满分率约 4%!反思总结:问题特点,思考方式,解答路径. 3 解三角形(应用)例 如图,从气球 A 上测得正前方的河流的两岸 B ,C 的俯 角分别为 67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于m.(用四舍五入法将结果精确到个位.参考数据: sin 67︒≈ 0.92 , cos 67︒≈ 0.39 , sin 37︒≈ 0.60 , cos 37︒≈ 0.80 ,3 ≈ 1.73 )【解析】 解三角形的应用.解直角三角形好吗?近似计算的处理.例 2017 年全国Ⅰ卷文科第(11)题△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知sin B + sin A (sin C - cos C ) = 0 ,a = 2,c = A . π,则 C =B . πC . πD . π12 643【解析】 已知的等式怎么变形?——从可变形处入手.代入 B = π - ( A + C ) ,可由条件得sin A + cos A = 0 ,从而求出 A = 3π,据正弦定理可求出 C .选 B .4例 2018 年全国Ⅰ卷文科第(16)题△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知b sin C + c sin B = 4a sin B sin C , b 2 + c 2 - a 2 = 8 ,则△ABC 的面积为.【解析】 b sin C + c sin B = 4a sin B sin C 可以怎样变形?——正弦定理得出sin A = 1;2△ABC 的面积选择什么表达?—— b 2 + c 2 - a 2 = 8 ⇔ 2bc cos A = 8 ,面积用 1bc sin A 表示.2解题的基本策略:已知条件→联系(中间结论)←待求结论.例 2015 年全国Ⅱ卷理科第(16)题在平面四边形 ABCD 中,∠A = ∠B = ∠C = 75︒ ,BC = 2 ,则 AB 的取值范围是 . 【解析】 显然,先画一个图.——怎么画?其次,怎么入手建立关系?——和一般的解三角形问题有什么异同?(几何画板演示)基本策略:四边形→三角形(分割、补形). 例 2017 年全国Ⅲ卷理科第(17)题△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知sin A + (1) 求 c ;3 c os A = 0 ,a = 2 ,b = 2 . (2) 设 D 为 BC 边上一点,且 AD ⊥ AC ,求△ABD 的面积.【解析】 (1) 已知sin A + 3 cos A = 0 怎么用?——求出 A ;求 c 具备什么样的条件?—2 73 —运用正弦定理、余弦定理.(2) 求面积还需要什么条件?——求出 AD ,BD …….例 在∆ABC 中,角 A , B , C 的对边分别是a , b , c ,若(2a - c )cos B = b cos C , b = , 则 a + c 的取值范围是.【解析】 将(2a - c )cos B = b cos C 化为边还是角?思路 1 用余弦定理,上式可得 a ,c 的关系.能解否?——前景预测.思路 2 由正弦定理, (2a - c )cos B = b cos C 可变形为(2sin A - sin C ) cos B = sin B cos C ,从而有2sin A cos B = sin B cos C + cos B sin C = sin A , B = π.再由正弦定理, a + c = 2sin A +32sin C = 2sin A + 2sin( π + A )=2 3 sin( A + π) .而0 < A < 2π,所以a + c ∈ ( 3, 2 3]3 6 3图形的特点可否帮助我们?——数形结合. 反思总结:问题特点,思考方式,解答路径.4 向量的概念与运算例 2017 年全国Ⅱ卷理科第(13)题已知向量 a ,b 的夹角为60︒ , | a |= 2 , | b |= 1 ,则|a + 2b | = . 【解析】 运算——模、夹角与数量积.例 设向量a = (m ,1) , b = (1, 2) ,且| a + b |2 =| a |2 + | b |2 ,则m = . 【解析】 坐标运算、解方程;看到条件| a + b |2 =| a |2 + | b |2 有什么想法?例 平面向量 a = (1, 2) , b = (4, 2) , c = m a + b ( m ∈ R ), 且 c 与 a 的夹角等于 c 与 b 的夹角,则m =A. -2B. -1C. 1D. 2【解析】 当然,夹角公式入手;向量的表达还有什么?——图形;题型特点可否利用?反思总结:问题特点,思考方式,解答路径. 5 向量与几何例 人教版教材数学 4§2.5.1 例 2如图,平行四边形 ABCD 中,点 E ,F 分别是 AD ,DC 边的中点,BE ,BF 分别与 AC 交于 R ,T 两点,你能发现 AR ,RT , TC 之间的关系吗?2 512 + 22 5……例 2017 年全国Ⅱ卷理科第(12)题已知∆ABC 是边长为 2 的等边三角形,P 为平面 ABC 内一点,则 PA ⋅ (PB + PC ) 的最小值是A . -2 B. - 32C. -4 3D. -1【解析】求最值的常用途径: PA ⋅ (PB + PC ) 怎么表示?——向量的数、形入手.思路 1: 如图, PB + PC = 2PD ( D 为 BC 中点), 则 APA ⋅ (PB + PC )= 2PD ⋅ PA ,要使 PA ⋅ PD 最小,则 PA , P D 方 P向相反,即 P 点在线段 AD 上,则2PD ⋅ PA min = -2 PA ⋅ PD , 即求 PD ⋅ PA 最大值,又 PA + PD = AD = 3 ,则 PA ⋅ PD ≤( PA + PD )2 = 3,则2PD ⋅ PA min = -2 ⨯ 3 = - 3 .B DC2 44 2 思路 2:以 BC 为 x 轴, BC 的垂直平分线 AD 为 y 轴, D 为 坐 标 原 点 建 立 坐 标 , 设 P (x , y ) , 则 PA = (-x , 3 - y ) , PB = (-1 - x , - y ) , PC = (1 - x , - y ) .所以 PB + PC = (-2x , -2 y ) ,PA ⋅ (PB + PC ) = 2x 2 - 2 y ( 3 - y ) = 2x 2 + 2( y - 3 )2 - 3 ≥ - 3 , 2 2 2当 P (0, 3 ) 时,所求的最小值为- 3.2 2例 2017 年全国Ⅲ卷第(12)题在矩形 ABCD 中,AB =1,AD =2,动点 P 在以 C 为圆心且与 BD 相切的圆上.若 AP = λ AB + μ AD ,则λ + μ 的最大值为A .3B . 2C .D .2【解析】 求最值的常用途径: λ + μ 怎么表示?——向量的数、形入手. 思路 1 如图,设 BD 与 C 切于点 E ,连接CE .以 A 为原点,建立如图直角坐标 系,则C 点坐标为(2,1) . | CD |= 1 , | BC |= 2 . BD = = .BD 切 C 于点 E ,55 5 ⎩ 1 22 CE ⊥ BD ,则| EC |=| BC | ⋅ | CD | = | BD | 2, 则 C : ⎧x = 2 + 2 5 cos θ, 224⎪ 0 5(x - 2) + ( y -1) = ,令 P (x 0 , y 0) ,则⎨ ⎪ y = 1 + 2 5 sin θ. ⎪⎩ 0 5又 AP = (x 0 , y 0 ) AP = λ AB + μ AD = λ(0,1) + μ(2,0) = (2μ,λ) ,可得 μ = 1 x = 1 + 5cos θ , λ = y = 1 + 2 5 sin θ ,2 050 5 所以λ + μ = 1 + 2 5 sin θ + 1 + 5 cos θ = 2 + ( 2 5 )2 + ( 5 )2sin(θ + ϕ)5 5 5 5= 2 + sin(θ + ϕ) ≤ 3 ,其中sin ϕ = 5 , cos ϕ = 2 5 ,当且仅当θ = π+ 2k π - ϕ , k ∈ Z5 52 时, λ + μ 取得最大值 3.思路 2 如图,建立直角坐标系,设P (x , y ) , C 的半径 | EC |= | BC | ⋅ | CD | =| BD | 2 ,则 C 方程为(x - 2)2 + ( y -1)2 = 4 ,5AP = (x , y ), AB = (0,1), AD = (2,0),由 AP = λ AB + μ AD ,得(x , y ) = λ(0,1) + μ(2, 0) ,即⎧x = 2μ,所以λ + μ = x+ y ,设⎨y = λ,2 z = x + y ,即 x + y - z = 0 ,点 P (x , y ) 在圆(x - 2)2 + ( y -1)2 = 4上,则圆心到直线的距离2 2 52 - z ≤2d ≤ r ,即 1 + 1 45 ,解得1 ≤ z ≤ 3 ,所以 z 的最大值是 3,即λ + μ 的最大值是 3.思路 3 设 P (x , y ) ,同思路 2, C : (x - 2)2 + ( y -1)2 = 4 ,则λ + μ = x+ y ,设z = x+ y 2 5 2,根据规划的相关知识,当直线 z = x + y 与 C 相切 2时, z 取最值.由最大值是 3.=5 ,可知 z 的最大值是 3,即λ + μ 的思路 4 如连接 AP ,交 BD 于点 F ,根据平面向量基本定理,得 AF = t AB + t AD ,且t 1 + t 2 = 1 .12由题设 AP = mAF ,可知m ≥ 1,所以 AP = mt AB + mt AD , 又 AP = λ AB + μ AD ,所以λ + μ = mt 1 + mt 1 = m ,故只需求 m 的最大值即可,而 m = |AP |,过 P 作 BD 的平行线 l ,并交 AD 的延长线于点 Q ,可得|AF |2 - z 1 + 1 45 5 5 3 1m = |AP | =|AQ |,当 l 与 C 相切时,m 取得最大值,计算得 EP = 4 ,则 |AF | |AD |4 4DG = 5 = sin ∠Q 5 = 4 ,故|AQ | = 6,所以m = 3 .5思路 5 由 AP = λ AB + μ AD 可得: AP ⨯ AB = λ AB 2+ μ AD ⨯ AB ,则有λ = AP ⨯ AB ;又由AP ⨯ AD = λ AB ⨯ AD + μ AD 2 ,则有μ = 1 AP ⨯ AD ,故λ + μ =AP ⨯ AB + 1AP ⨯ AD = 4 4AP ⨯ ( AB + 1AD ),在 BC 上取点 H ,使得 BH = 1 BC ,则 BH = 1 ,所以λ + μ =44 2 AP ⨯ AH .又由于△ABH ∽△DAB ,则∠BAH =∠ADB ,从而得 AH ⊥BD .根据数量积的几何意义, AP ⨯ AH 即为| AH |与 AP 在向量 AH 方向上的投影|AQ |之积,故当|AQ |取最大值时,AP ⨯ AH 取得最大值.可知当直线 PQ 与 C 相切时,|AQ |最大,计算得|AQ |= 6 最大值为 3.,此时 AP ⨯ AH 的值为 6⨯ 5 = 3 ,即λ + μ2例 在平面内,定点 A ,B ,C ,D 满足| DA |=| DB |=| DC | , DA ⋅ DB = DB ⋅ DC = DC ⋅ DA = -2 , 动 点 P , M 满足 | AP |= 1 , PM = MC ,则| BM | 2 的最大值是A. 43 4B. 49 4C. 37 + 6 34D.37 + 2 334【解析】 还是老思路——揭示代数意义或几何意义,表示| BM | 2 .如图,由| DA |=| DB |=| DC | 可知,点 D 到 A ,B ,C 三点的距离相等;又 DA ⋅ DB = DB ⋅ DC = DC ⋅ DA = -2 ,所以∠ADB = ∠BDC = ∠CDA = 120︒ ,且| DA |=| DB |=| DC | =2.故△ABC 是边长 为2 的等边三角形.因为| AP |= 1,所以动点P 在以A 为圆心,1 为半径的圆上;由 PM = MC , 可得 M 是 PC 的中点.思路 1.设 Q 是 AC 的中点,易知|BQ |=3.如图,根据向量加法的几何意义,有=BQ 2 + BQ ⋅ AP + 1 AP 2 = 37 + BQ ⋅ AP . P 2 4 4而 BQ ⋅ AP = 3cos BQ , AP≤ 3 ,所以| BM |2≤ 49 . 4思路 2.以 A 为原点,AB 所在直线为 x 轴(AB 方向为正方向)建立直角坐标系,则点 B ,C 的坐标分别为(2 3, 0) , ( 3, 3) .3 + x 3 + yyC设点 P 的坐标为(x , y ) ,则点 M 的坐标为( , ) ,所以2 2 M| BM | 2 = (3 + x - 2 3)2 + (3 + y )2 = 1 [(x - 3 3)2 + ( y + 3)2] .而 2 2 4 P(x - 3 3)2 + ( y + 3)2 表示点 P 到点(3 3, -3) 的距离,其最大值为(3 3)2 + (-3)2 +1 = 7 .从而| BM | 2 的最大值为 49.4ABxBM = (BQ + AP )2 2 1 CM QC QMAP 若设点 P 的坐标为(cos θ ,sin θ ) ,则| BM | 2 = 1 [37 + 12sin(θ + π)] ,亦可4 3得出答案.思路 3.如图,根据中位线定理,MQ ∥AP ,且 MQ = 1 AP = 1, 2 2 故点 M 在以 Q 为圆心,1为半径的圆上,从而|BM |的最大值 B2为3 + 1 = 7.2 2 Ⅲ 展望高考中的三角与向量2019 年高考,三角与向量的考查方式与难度设置如何? Ⅳ 自我测试与评价(见附页)。

向量和三角函数综合题

向量和三角函数综合题

向量和三角函数综合题引言向量和三角函数是数学中常见且重要的概念,它们在物理学、几何学、工程学等领域都有广泛的应用。

本文将介绍向量和三角函数的基本概念和性质,并通过一些综合题目来加深理解和应用。

向量的基本概念什么是向量向量是由大小和方向共同决定的量,可以用有向线段表示,其中起点和终点分别称为向量的始点和终点。

通常用小写字母表示向量,如a、b等。

向量的表示方法向量可以用矩阵或坐标表示。

如果一个向量在二维坐标系中,可以用二维列向量表示;如果一个向量在三维坐标系中,可以用三维列向量表示。

向量的运算向量之间可以进行加法、减法和数量乘法。

向量的加法和减法可以通过将向量的始点与终点相连得到,而数量乘法就是将向量的长度进行比例缩放。

向量的数量特征向量的数量特征包括模长、方向角和方向余弦。

模长表示向量的长度,方向角表示向量与正方向的夹角,而方向余弦就是向量的方向角的余弦值。

三角函数的基本概念什么是三角函数三角函数是描述角度关系的函数,主要包括正弦、余弦和正切函数。

它们在三角形的计算和周期性变化的问题中经常出现。

正弦函数正弦函数在数学上表示为sin(x),其中x为角度。

正弦函数的值域在[-1, 1]之间,当x为0、π、2π等整数倍的π时,函数的值为0,这也是函数图像上的极值点。

余弦函数余弦函数在数学上表示为cos(x),其中x为角度。

余弦函数的值域也在[-1, 1]之间,当x为π/2、3π/2、5π/2等奇数倍的π/2时,函数的值为0,极值点出现在函数图像的波峰和波谷处。

正切函数正切函数在数学上表示为tan(x),其中x为角度。

正切函数的值域为全体实数,当x为π/2、3π/2、5π/2等奇数倍的π/2时,函数没有定义。

三角函数的性质三角函数有很多重要的性质,包括周期性、奇偶性、和差公式、倍角公式、半角公式等。

这些性质在计算中经常用到,对于解题非常有帮助。

向量和三角函数的综合应用向量与三角函数的关系向量和三角函数在很多应用中是密切相关的。

三角形“四心” 与向量的完美结合

三角形“四心” 与向量的完美结合

三角形的“四心”与向量的完美结合三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结1)O 是ABC ∆的重心⇔=++; 若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222==) 若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆::::故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ∆的充要条件是(=-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。

如果记,,的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 C sin B sin A sin c b a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);二. 范例(一).将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心解析:AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.点评:这道题给人的印象当然是“新颖、陌生”是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

三角函数与平面向量的综合应用

三角函数与平面向量的综合应用

ʏ山东省威海市第二中学丛丽伟三角函数与平面向量之间的交汇与综合问题,一直是高考数学试卷中比较常见的一类热点问题,通过平面向量的工具性加以转化问题,结合三角函数中的概念及相应公式加以恒等变换,有时涉及正㊁余弦定理等相关知识,用来综合考查三角函数的基础知识㊁基本公式㊁基本技能与基本应用等㊂一㊁三角函数的求值与平面向量的综合以平面向量为载体,利用诱导公式㊁同角三角函数关系式㊁两角和与差的三角函数及倍角公式等解决三角函数中的求值问题,是高考的重要考向,考查同学们分析问题㊁解决问题的能力㊂例1已知向量m=(s i n x,3c o s x),n=(s i n x,s i n x),函数f(x)=m㊃n㊂(1)求fπ12的值;(2)当xɪ0,π2时,求函数f(x)的最大值与最小值㊂分析:(1)根据题设条件,利用平面向量的数量积公式,通过数量积的坐标运算来构建函数f(x)的解析式,把x=π12代入即可;(2)利用题设中x的取值范围所对应角的取值范围,结合三角函数的图像与性质来确定三角函数在给定区间上的最大值与最小值㊂解:(1)依题意可得f(x)=m㊃n=(s i n x,3c o s x)㊃(s i n x,s i n x)=s i n2x+3c o s x s i n x=1-c o s2x2+32s i n2x=32s i n2x-12c o s2x+12=s i n2x-π6+12,故fπ12=s i n2ˑπ12-π6+12=12㊂(2)当xɪ0,π2时,有2x-π6ɪ-π6,5π6㊂故当2x-π6=π2,即x=π3时,f(x)m a x=s i nπ2+12=1+12=32;当2x-π6=-π6,即x=0时,f(x)m i n=s i n-π6+12=-12+12=0㊂规律方法:平面向量在三角函数求值中的应用步骤:(1)利用平面向量的基本性质㊁运算公式㊁数量积等构建对应的三角函数关系式,特别是涉及向量的平行与垂直关系等;(2)利用三角恒等变换公式,以及题设条件中的角的取值限制等,通过三角函数的图像与性质来分析与求解㊂二㊁三角函数的性质与平面向量的综合以平面向量的坐标运算为载体,引入三角函数,通过三角恒等变换化为一个角的三角函数,重点考查三角函数的单调性㊁周期性㊁最值㊁取值范围及三角函数的图像变换等㊂例2已知向量m=(s i n x,-1),n=c o s x,32,函数f(x)=(m+n)㊃m㊂(1)求函数f(x)的最小正周期及单调递增区间;(2)当xɪ0,π2时,求函数f(x)的值域;(3)将函数f(x)的图像左移3π8个单位32解题篇创新题追根溯源高考数学2024年1月长度后得函数g (x )的图像,求函数g (x )在-π3,π3上的最大值㊂分析:(1)根据题设条件,通过向量的坐标运算及数量积公式,构建三角函数f (x )的解析式,并通过三角恒等变换转化为正弦型函数,进而求解对应的基本性质;(2)结合题设条件中角的取值范围,通过三角函数的图像与性质来确定函数的最值,进而得以确定函数f (x )的值域;(3)利用三角函数图像的平移变换可得函数g (x )的解析式,进而利用三角函数的图像与性质来求解最大值问题㊂解:(1)由已知可得f (x )=(m +n )㊃m =s i n x +c o s x ,12㊃(s i n x ,-1)=s i n 2x +s i n x c o s x -12=12s i n 2x -12c o s 2x =22s i n 2x -π4㊂故f (x )的最小正周期T =2π2=π㊂由2k π-π2ɤ2x -π4ɤ2k π+π2,k ɪZ ,可得k π-π8ɤx ɤk π+3π8,k ɪZ ,所以函数f (x )的单调递增区间是k π-π8,k π+3π8(k ɪZ )㊂(2)当x ɪ0,π2时,有2x -π4ɪ-π4,3π4 ,故-22ɤs i n 2x -π4 ɤ1,所以-12ɤ22s i n 2x -π4ɤ22㊂所以当x ɪ0,π2 时,函数f (x )的值域为-12,22㊂(3)根据题意可得函数g (x )=22s i n 2x +3π8-π4 =22s i n 2x +π2=22c o s 2x ㊂当x ɪ-π3,π3时,有2x ɪ-2π3,2π3㊂所以当2x =0,即x =0时,g (x )m a x =22c o s 0=22㊂规律方法:平面向量与三角函数的基本性质的综合问题的解法:(1)利用向量的相关概念㊁公式等构建相应的三角函数解析式;(2)利用三角恒等变换公式等将相应的三角函数关系式转化为正弦型(或余弦型)函数;(3)根据三角函数的图像与性质来研究相关函数的基本性质问题㊂三、平面向量在三角形计算中的应用以平面向量的线性运算㊁数量积为载体,考查三角形中正㊁余弦定理的应用,以及简单的三角恒等变换,主要解决三角形中的边㊁角及面积等问题㊂例3 在әA B C中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知s i n C =2s i n (B +C )㊃c o s B ㊂(1)判断әA B C 的形状;(2)设向量m =(a +c ,b ),n =(b +a ,c -a ),若m ʊn ,求A ㊂分析:(1)利用三角形的内角和公式A +B +C =π转化角后,结合题设条件进行消元处理,进而得到涉及角A ,B 的基本关系,结合三角函数值及三角形的性质来分析与判断;(2)利用两平面向量平行的关系,结合向量的坐标加以转化与应用,合理构建三角形中边与角的关系式,进而利用余弦定理加以分析与求解㊂解:(1)在әA B C 中,因为s i n C =s i n (A +B ),s i n A =s i n (B +C ),所以s i n C=s i n (A +B )=2s i n (B +C )c o s B =2s i n A c o s B ,所以s i n A c o s B +c o s A s i n B=2s i n A c o s B ,即s i n A c o s B -c o s A s i n B =0,即s i n (A -B )=0㊂又因为-π<A -B <π,所以A -B =0,即A =B ,故әA B C 为等腰三角形㊂(2)由m ʊn 得(a +c )(c -a )=b (b +a ),展开整理得b 2+a 2-c 2=-a b ,所以c o s C =a 2+b 2-c 22a b =-12㊂42 解题篇 创新题追根溯源 高考数学 2024年1月因为0<C<π,所以C=2π3㊂又A=B,故A+B=π3,所以A=π6㊂规律方法:平面向量与三角形计算综合问题的解法:(1)借助平面向量的基本概念㊁基本公式等,往往可以合理构建三角函数关系式,为利用解三角形来处理问题奠定基础;(2)合理综合解三角形㊁三角函数及平面向量的相关知识加以合理转化与巧妙应用㊂特别地,在解决三角形中的向量夹角问题时需注意向量的方向㊂四㊁三角函数㊁平面向量与其他知识的综合应用以平面向量为问题场景,通过坐标公式㊁数量积公式等变形,转化为相应的三角函数问题,综合函数与方程㊁不等式等其他相关知识来分析与综合,也是高考中比较常见的一类综合应用问题㊂例4设向量a=(4s i n x,c o s x-s i n x),b=s i n2π+2x4,c o s x+s i n x,函数f(x)=a㊃b㊂(1)求函数f(x)的解析式;(2)已知常数ω>0,若y=f(ωx)在-π2,2π3上是增函数,求ω的取值范围;(3)设集合A=xπ6ɤxɤ2π3,B= {x||f(x)-m|<2},若A⊆B,求实数m的取值范围㊂分析:(1)利用向量的数量积把三角函数关系式加以转化,即可得到函数f(x)= 2s i n x+1;(2)根据三角函数在给定区间上的单调性,通过不等式组的求解来确定参数的取值范围;(3)结合绝对值不等式的求解㊁集合的包含关系㊁三角关系式的最值,以及三角函数的图像与性质来加以直观转化与求解㊂解:(1)因为a=(4s i n x,c o s x-s i n x), b=s i n2π+2x4,c o s x+s i n x,所以函数f(x)=a㊃b=4s i n xˑs i n2π+2x4+(c o s x-s i n x)ˑ(c o s x+s i n x)= 4s i n x㊃1-c o sπ2+x2+c o s2x= 2s i n x(1+s i n x)+1-2s i n2x=2s i n x+1㊂(2)由于f(ωx)=2s i nωx+1,由2kπ-π2ɤωxɤ2kπ+π2,kɪZ,可得函数y= f(ωx)的增区间是2kπω-π2ω,2kπω+π2ω,kɪZ㊂又因为y=f(ωx)在区间-π2,2π3上是增函数,所以-π2,2π3⊆-π2ω,π2ω,即-π2ωɤ-π2,2π3ɤπ2ω,解得0<ωɤ34㊂所以ω的取值范围为0,34㊂(3)由|f(x)-m|<2解得-2<m-f(x)<2,即f(x)-2<m<f(x)+2㊂因为A⊆B,所以当π6ɤxɤ2π3时,不等式f(x)-2<m<f(x)+2恒成立㊂所以[f(x)-2]m a x<m<[f(x)+2]m i n,即[f(x)]m a x-2<m<[f(x)]m i n+2㊂因为f(x)=2s i n x+1,所以在π6,2π3上,[f(x)]m a x=fπ2=3, [f(x)]m i n=fπ6=2,所以1<m<4㊂故实数m的取值范围为(1,4)㊂规律方法:本题巧妙地把平面向量㊁三角函数㊁集合㊁不等式等相关知识加以交汇,以平面向量为问题背景,通过平面向量的数量积为媒介,结合三角函数的图像与性质来考查数学基本知识点,得以达到提高数学品质与提升数学能力的目的㊂注意高考中三角函数与平面向量的交汇综合问题往往以平面向量的相关概念与数量积等来建立相应的三角函数关系式,结合三角函数的基本公式与三角恒等变换公式㊁解三角形公式等来综合考查,一般难度中等,真正达到考查能力,注意应用的目的㊂(责任编辑王福华)52解题篇创新题追根溯源高考数学2024年1月。

6 向量与三角的综合应用

6 向量与三角的综合应用

6向量与三角函数的综合应用1.若ΔABC 的三个内角C B A 、、所对边的长分别为c b a 、、,向量()a b c a m -+=,,),(b c a n -=,若n m ⊥,则∠C 等于 .2.在ABC ∆中,已知,,a b c 分别,,A B C ∠∠∠所对的边,S 为ABC ∆的面积,若向量222(4,)p a b c =+- ,(1,)q S = 满足//p q ,则C ∠= .3.已知向量2(3sin ,1),(cos ,cos )444x x x m n == .(1)若1m n ⋅= ,求2cos()3x π-的值;(2)记()f x m n =⋅,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足C b B c a cos cos )2(=-,求函数f (A )的取值范围.4. 在ABC ∆中,B ∠,C ∠的对边分别为c b ,。

已知向量),(a b c a m -+=,),(b c a n -=,且n m ⊥。

(1)求C ∠的大小;(2)若26sin sin =+B A ,求角A 的值。

5. 设已知(2c o s s i n )22a αβαβ+-= ,,(cos 3sin )22b αβαβ+-= ,,其中(0,)αβπ∈、. (1)若32πβα=+,且2a b = ,求βα、的值;(2)若52a b ⋅= ,求βαtan tan 的值.6. 设ABC ∆的三个内角C B A 、、所对的边分别为c b a 、、,且满足0)()2(=⋅+⋅+CB CA c BA BC c a。

(Ⅰ)求角B 的大小; (Ⅱ)若32=b ,试求CB AB ⋅的最小值.7. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若().CA AB CB BA k k R ⋅=⋅=∈(1)判断△ABC 的形状;(2)若k c 求,2=的值.8. 已知点A (3,0),B (0,3),C (cos α,sin α),α∈322ππ⎛⎫⎪⎝⎭,.(1)若AC =BC ,求角α的值;(2)若AC BC ⋅ =-1,求22sin sin 21tan ααα++的值.9. 已知ABC ∆三个内角,,A B C 的对边分别为,,a b c ,6AC AB =⋅,向量)sin ,(cos A A s =与向量)3,4(-=t 相互垂直。

专题三 三角函数与平面向量的综合应用

专题三 三角函数与平面向量的综合应用

专题三 三角函数与平面向量的综合应用1. 三角恒等变换(1)公式:同角三角函数基本关系式、诱导公式、和差公式.(2)公式应用:注意公式的正用、逆用、变形使用的技巧,观察三角函数式中角之间的联系,式子之间以及式子和公式间的联系.(3)注意公式应用的条件、三角函数的符号、角的范围. 2. 三角函数的性质(1)研究三角函数的性质,一般要化为y =A sin(ωx +φ)的形式,其特征:一角、一次、一函数.(2)在讨论y =A sin(ωx +φ)的图象和性质时,要重视两种思想的应用:整体思想和数形结合思想,一般地,可设t =ωx +φ,y =A sin t ,通过研究这两个函数的图象、性质达到目的. 3. 解三角形解三角形问题主要有两种题型:一是与三角函数结合起来考查,通过三角变换化简,然后运用正、余弦定理求值;二是与平面向量结合(主要是数量积),判断三角形形状或结合正、余弦定理求值.试题一般为中档题,客观题、解答题均有可能出现. 4. 平面向量平面向量的线性运算,为证明两线平行提供了重要方法.平面向量数量积的运算解决了两向量的夹角、垂直等问题.特别是平面向量的坐标运算与三角函数的有机结合,体现了向量应用的广泛性.1. 已知角α终边上一点P (-4,3),则cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值为________.答案 -34解析cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin (9π2+α)=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义得tan α=y x =-34.所以cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α=-34.2. 已知f (x )=sin(x +θ)+3cos(x +θ)的一条对称轴为y 轴,且θ∈(0,π),则θ=________.答案 π6解析 f (x )=sin(x +θ)+3cos(x +θ)=2sin ⎝⎛⎭⎫x +θ+π3,由θ+π3=k π+π2 (k ∈Z )及θ∈(0,π),可得θ=π6.3. 如图所示的是函数f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|∈⎝⎛⎭⎫0,π2)图象 的一部分,则f (x )的解析式为____________. 答案 f (x )=2sin ⎝⎛⎭⎫23x +π6+1解析 由于最大值和最小值之差等于4,故A =2,B =1. 由于2=2sin φ+1,且|φ|∈⎝⎛⎭⎫0,π2,得φ=π6. 由图象知ω(-π)+φ=2k π-π2 (k ∈Z ),得ω=-2k +23(k ∈Z ).又2πω>2π,∴0<ω<1.∴ω=23.∴函数f (x )的解析式是f (x )=2sin ⎝⎛⎭⎫23x +π6+1.4. (2012·四川改编)如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin ∠CED =________. 答案1010解析 方法一 应用两角差的正弦公式求解. 由题意知,在Rt △ADE 中,∠AED =45°, 在Rt △BCE 中,BE =2,BC =1, ∴CE =5,则sin ∠CEB =15,cos ∠CEB =25.而∠CED =45°-∠CEB , ∴sin ∠CED =sin(45°-∠CEB ) =22(cos ∠CEB -sin ∠CEB ) =22×⎝⎛⎭⎫25-15=1010.方法二 利用余弦定理及同角三角函数基本关系式求解. 由题意得ED =2,EC =12+22= 5.在△EDC 中,由余弦定理得cos ∠CED =CE 2+DE 2-DC 22CE ·DE =31010,又0<∠CED <π, ∴sin ∠CED =1-cos 2∠CED=1-⎝⎛⎭⎫310102=1010.5. 如图,在梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,AB=3,P 是BC 上的一个动点,当PD →·P A →取得最小值时,tan ∠DP A 的 值为________. 答案1235解析 如图,以A 为原点,建立平面直角坐标系xAy ,则A (0,0), B (3,0),C (3,2),D (0,1),设∠CPD =α,∠BP A =β, P (3,y ) (0≤y ≤2).∴PD →=(-3,1-y ),P A →=(-3,-y ), ∴PD →·P A →=y 2-y +9=⎝⎛⎭⎫y -122+354, ∴当y =12时,PD →·P A →取得最小值,此时P ⎝⎛⎭⎫3,12, 易知|DP →|=|AP →|,α=β. 在△ABP 中,tan β=312=6,tan ∠DP A =-tan(α+β)=2tan βtan 2β-1=1235.题型一 三角恒等变换例1 设π3<α<3π4,sin ⎝⎛⎭⎫α-π4=35,求sin α-cos 2α+1tan α的值. 思维启迪:可以先将所求式子化简,寻求和已知条件的联系. 解 方法一 由π3<α<3π4,得π12<α-π4<π2,又sin ⎝⎛⎭⎫α-π4=35, 所以cos ⎝⎛⎭⎫α-π4=45. 所以cos α=cos[(α-π4)+π4]=cos ⎝⎛⎭⎫α-π4cos π4-sin ⎝⎛⎭⎫α-π4sin π4=210, 所以sin α=7210.故原式=sin α+2sin 2αsin αcos α=cos α(1+2sin α)=14+5250.方法二 由sin ⎝⎛⎭⎫α-π4=35,得sin α-cos α=325, 两边平方,得1-2sin αcos α=1825,即2sin αcos α=725>0.由于π3<α<3π4,故π3<α<π2.因为(sin α+cos α)2=1+2sin αcos α=3225,故sin α+cos α=425,解得sin α=7210,cos α=210.下同方法一.探究提高 三角变换的关键是寻求已知和所求式子间的联系,要先进行化简,角的转化是三角变换的“灵魂”.要注意角的范围对式子变形的影响.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( )A .-235B.235 C .-45D.45答案 C解析 cos ⎝⎛⎭⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 题型二 三角函数的图象与性质例2 (2011·浙江)已知函数f (x )=A sin(π3x +φ),x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点, 点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.思维启迪:三角函数图象的确定,可以利用图象的周期性、最值、已知点的坐标列方程来解决.解 (1)由题意得T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图象上,所以sin(π3+φ)=1.又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ).由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).连接PQ ,在△PRQ 中,∠PRQ =2π3,由余弦定理得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-(9+4A 2)2A ·9+A 2=-12,解得A 2=3.又A >0,所以A= 3.探究提高 本题确定φ的值时,一定要考虑φ的范围;在三角形中利用余弦定理求A 是本题的难点.已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2.(1)求f (x )的解析式;(2)在闭区间⎣⎡⎦⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由. 解 (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π,又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2 (k ∈Z ),φ=2k π+π6 (k ∈Z ),所以f (x )=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6. 故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫πx +π6. (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2 (k ∈Z ),解得x =k +13,由214≤k +13≤234,解得5912≤k ≤6512,又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f (x )的对称轴,其方程为x =163. 题型三 三角函数、平面向量、解三角形的综合应用 例3 已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.思维启迪:(1)由向量数量积的运算转化成三角函数式,化简求值.(2)在△ABC 中,求出∠A 的范围,再求f (A )的取值范围. 解 (1)m·n =3sin x 4·cos x 4+cos 2x4=32sin x2+1+cosx22=sin ⎝⎛⎭⎫x 2+π6+12,∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12. cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12. ∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 探究提高 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且lg a -lg b =lg cos B -lg cos A ≠0.(1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(n -m )=14,求a ,b ,c 的值.解 (1)因为lg a -lg b =lg cos B -lg cos A ≠0, 所以a b =cos B cos A ≠1,所以sin 2A =sin 2B 且a ≠b .因为A ,B ∈(0,π)且A ≠B ,所以2A =π-2B ,即A +B =π2且A ≠B .所以△ABC 是非等腰的直角三角形. (2)由m ⊥n ,得m·n =0.所以2a 2-3b 2=0.① 由(m +n )·(n -m )=14,得n 2-m 2=14, 所以a 2+9b 2-4a 2-b 2=14,即-3a 2+8b 2=14.② 联立①②,解得a =6,b =2.所以c =a 2+b 2=10.故所求的a ,b ,c 的值分别为6,2,10.高考中的平面向量、三角函数客观题典例1:(5分)(2012·山东)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3考点分析 本题考查三角函数的性质,考查整体思想和数形结合思想. 解题策略 根据整体思想,找出角π6x -π3的范围,再根据图象求函数的最值.解析 由题意-π3≤πx 6-π3≤7π6.画出y =2sin x 的图象如图,知, 当π6x -π3=-π3时,y min =- 3. 当π6x -π3=π2时,y max =2. 故y max +y min =2- 3. 答案 A解后反思 (1)函数y =A sin(ωx +φ)可看作由函数y =A sin t 和t =ωx +φ构成的复合函数.(2)复合函数的值域即为外层函数的值域,可以通过图象观察得到.典例2:(5分)(2012·天津)在△ABC 中,∠A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D .2考点分析 本题考查向量的线性运算,考查向量的数量积和运算求解能力.解题策略 根据平面向量基本定理,将题中的向量BQ →,CP →分别用向量AB →,AC →表示出来,再进行数量积计算.解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →, CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23.答案 B解后反思 (1)利用平面向量基本定理结合向量的线性运算表示向量是向量问题求解的基础;(2)本题在求解过程中利用了方程思想.方法与技巧1.研究三角函数的图象、性质一定要化成y =A sin(ωx +φ)+B 的形式,然后利用数形结合思想求解.2.三角函数与向量的综合问题,一般情况下向量知识作为一个载体,可以先通过计算转化为三角函数问题再进行求解. 失误与防范1.三角函数式的变换要熟练公式,注意角的范围.2.向量计算时要注意向量夹角的大小,不要混同于直线的夹角或三角形的内角.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·大纲全国)△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →等于( )A.13a -13b B.23a -23b C.35a -35bD.45a -45b 答案 D解析 利用向量的三角形法则求解.如图,∵a ·b =0,∴a ⊥b , ∴∠ACB =90°, ∴AB =AC 2+BC 2= 5.又CD ⊥AB ,∴AC 2=AD ·AB ,∴AD =455.∴AD →=45AB →=45(a -b )=45a -45b .2. 已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f (x )=a·b 的最小正周期是( )A.π2B .πC .2πD .4π答案 B解析 f (x )=2cos 2x +2sin x cos x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎫2x +π4,T =2π2=π. 3. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为 ( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3答案 C解析 由m ⊥n 得m·n =0,即3cos A -sin A =0,即2cos ⎝⎛⎭⎫A +π6=0, ∵π6<A +π6<7π6,∴A +π6=π2,即A =π3. 又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c =c sin C , 所以sin C =1,C =π2,所以B =π-π3-π2=π6.4. 已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB→的夹角的取值范围是( )A.⎣⎡⎦⎤0,π4 B.⎣⎡⎦⎤π4,512π C.⎣⎡⎦⎤512π,π2D.⎣⎡⎦⎤π12,512π答案 D解析 由题意,得:OA →=OC →+CA →=(2+2cos α,2+2sin α),所以 点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使向量OA →与圆相 切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D. 二、填空题(每小题5分,共15分)5. (2012·北京)在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________.答案 π2解析 利用正弦定理及三角形内角和性质求解. 在△ABC 中,由正弦定理可知a sin A =b sin B, 即sin B =b sin Aa=3×323=12. 又∵a >b ,∴∠B =π6.∴∠C =π-∠A -∠B =π2.6. 在直角坐标系xOy 中,已知点A (-1,2),B (2cos x ,-2cos 2x ),C (cos x,1),其中x ∈[0,π],若AB →⊥OC →,则x 的值为______.答案 π2或π3解析 因为AB →=(2cos x +1,-2cos 2x -2),OC →=(cos x,1), 所以AB →·OC →=(2cos x +1)cos x +(-2cos 2x -2)·1 =-2cos 2x +cos x =0,可得cos x =0或cos x =12,所以x 的值为π2或π3.7. 已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),f ′(x )是f (x )的导函数,则1+sin 2xcos 2x -sin 2x=________. 答案 -195解析 由题意知,f ′(x )=cos x +sin x ,由f ′(x )=2f (x ), 得cos x +sin x =2(sin x -cos x ),得tan x =3, 所以1+sin 2xcos 2x -sin 2x =1+sin 2xcos 2x -2sin x cos x=2sin 2x +cos 2x cos 2x -2sin x cos x =2tan 2x +11-2tan x =-195.三、解答题(共22分)8. (10分)已知A ,B ,C 的坐标分别为A (3,0),B (0,3),C (cos α,sin α),α∈⎝⎛⎭⎫π2,3π2.(1)若|AC →|=|BC →|,求角α的值;(2)若AC →·BC →=-1,求2sin 2α+sin 2α1+tan α的值.解 (1)∵AC →=(cos α-3,sin α),BC →=(cos α,sin α-3), ∴AC →2=(cos α-3)2+sin 2α=10-6cos α, BC →2=cos 2α+(sin α-3)2=10-6sin α, 由|AC →|=|BC →|,可得AC →2=BC →2,即10-6cos α=10-6sin α,得sin α=cos α. 又α∈⎝⎛⎭⎫π2,3π2,∴α=5π4.(2)由AC →·BC →=-1,得(cos α-3)cos α+sin α(sin α-3)=-1, ∴sin α+cos α=23.①又2sin 2α+sin 2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α.由①式两边分别平方,得1+2sin αcos α=49,∴2sin αcos α=-59.∴2sin 2α+sin 2α1+tan α=-59.9. (12分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围. 解 (1)由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由△ABC 为锐角三角形可得B =π6.(2)由(1)可知A +C =π-B =5π6,故C =5π6-A . 故cos A +sin C =cos A +sin ⎝⎛⎭⎫5π6-A =cos A +sin ⎝⎛⎭⎫π6+A =cos A +12cos A +32sin A =32cos A +32sin A =3⎝⎛⎭⎫32cos A +12sin A =3sin ⎝⎛⎭⎫A +π3, 由△ABC 为锐角三角形可得,0<C <π2,故0<5π6-A <π2,解得π3<A <5π6,又0<A <π2,所以π3<A <π2.故2π3<A +π3<5π6,所以12<sin ⎝⎛⎭⎫A +π3<32, 所以32<3sin ⎝⎛⎭⎫A +π3<32, 即cos A +sin C 的取值范围为⎝⎛⎭⎫32,32.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·江西)已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1答案 C解析 将函数整理,利用奇函数性质求解. 由题意知f (x )=sin 2⎝⎛⎭⎫x +π4 =1-cos ⎝⎛⎭⎫2x +π22=1+sin 2x 2,令g (x )=12sin 2x ,则g (x )为奇函数,且f (x )=g (x )+12,a =f (lg 5)=g (lg 5)+12,b =f ⎝⎛⎭⎫lg 15=g ⎝⎛⎭⎫lg 15+12, 则a +b =g (lg 5)+g ⎝⎛⎭⎫lg 15+1=g (lg 5)+g (-lg 5)+1=1,故a +b =1. 2. 已知a =⎝⎛⎭⎫-12,32,b =(1,3),则|a +t b | (t ∈R )的最小值等于( )A .1 B.32C.12D.22答案 B解析 方法一 a +t b =⎝⎛⎭⎫-12+t ,32+3t ,∴|a +t b |2=⎝⎛⎭⎫-12+t 2+⎝⎛⎭⎫32+3t 2 =4t 2+2t +1=4⎝⎛⎭⎫t +142+34,∴当t =-14时,|a +t b |2取得最小值34,即|a +t b |取得最小值32. 方法二 如图所示,OA →=a ,OB →=b ,在OB 上任取一点T ,使得OT →=-t b (t <0),则|a +t b |=|TA →|,显然,当AT ⊥OB 时,取最小值. 由TA →·OB →=(a +t b )·b =a·b +t b 2=0,得t =-14,∴当t =-14时,|a +t b |取得最小值32.3. 在△ABC 中,AB →·BC →=3,△ABC 的面积S △ABC ∈⎣⎡⎦⎤32,32,则AB →与BC →夹角的取值范围是( )A.⎣⎡⎦⎤π4,π3B.⎣⎡⎦⎤π6,π4 C.⎣⎡⎦⎤π6,π3D.⎣⎡⎦⎤π3,π2答案 B解析 记AB →与BC →的夹角为θ,AB →·BC →=|AB →|·|BC →|·cos θ=3,|AB →|·|BC →|=3cos θ,S △ABC =12|AB→|·|BC →|·sin(π-θ)=12|AB →|·|BC →|sin θ=32tan θ,由题意得tan θ∈⎣⎡⎦⎤33,1,所以θ∈⎣⎡⎦⎤π6,π4,正确答案为B.二、填空题(每小题5分,共15分)4. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是__________. 答案 ⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) 解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6知,当x =π6时f (x )取最值,∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1, ∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝⎛⎭⎫π2>f (π),∴sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ). 5.若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13, cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=________. 答案593 解析 ∵0<α<π2,∴sin ⎝⎛⎭⎫π4+α=232, ∵-π2<β<0,∴sin ⎝⎛⎭⎫π4-β2=63, 则cos ⎝⎛⎭⎫α+β2=cos[⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2] =13×33+232×63=593.6. (2012·山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向 滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________. 答案 (2-sin 2,1-cos 2)解析 利用平面向量的坐标定义、解三角形知识以及数形结合思想求解.设A (2,0),B (2,1),由题意知劣弧P A 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎫2-π2 =2-sin 2,y =1+1×sin ⎝⎛⎭⎫2-π2=1-cos 2, ∴OP →的坐标为(2-sin 2,1-cos 2). 三、解答题7. (13分)已知f (x )=log a ⎝⎛⎭⎫sin 2x 2-sin 4x2(a >0且a ≠1),试讨论函数的奇偶性、单调性. 解 f (x )=log a ⎣⎡⎦⎤sin 2x 2⎝⎛⎭⎫1-sin 2x 2 =log a 1-cos 2x8.故定义域为cos 2x ≠1,即{x |x ≠k π,k ∈Z },关于原点对称且满足f (-x )=f (x ),所以此函数是偶函数. 令t =18(1-cos 2x ),则t 的递增区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z ); 递减区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z ). 所以,当a >1时,f (x )的递增区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z );递减区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z ). 当0<a <1时,f (x )的递增区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z );递减区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z ).。

三角函数与向量的综合应用

三角函数与向量的综合应用

三角函数与向量的综合应用在数学领域中,三角函数与向量是两个重要的概念。

它们在各自的领域中拥有广泛的应用,并且可以相互结合,产生更强大的数学工具。

本文将讨论三角函数与向量的综合应用,并探究它们在实际问题中的应用。

一、三角函数与向量的基础知识1. 三角函数三角函数是描述角度关系的函数,其中最常用的三角函数包括正弦函数、余弦函数和正切函数。

它们可以通过三角比值或单位圆上的点坐标来定义。

三角函数在几何、物理和工程等领域中广泛应用,用于求解角度、距离、速度等问题。

2. 向量向量是具有大小和方向的量,可用于表示物体的位移、力和速度等。

向量通常用有序数组表示,其中包括了向量的分量或坐标。

向量在几何、物理、计算机图形学等领域中有重要的应用,用于描述与计算空间中的各种问题。

二、三角函数与向量的结合运用1. 正弦函数与向量的应用正弦函数可以用于求解两个向量之间的夹角。

对于给定的两个向量A和B,它们的夹角θ可以通过以下公式求得:θ = arcsin(|A × B| / (|A| |B|))其中,|A|和|B|分别表示向量A和向量B的模长,A × B表示两个向量的叉乘,|A × B|表示叉乘结果的模长。

这个夹角的计算提供了求解向量运动方向、力的方向以及判断向量共线性等问题的重要依据。

2. 余弦函数与向量的应用余弦函数可以用于求解两个向量之间的夹角以及向量在特定方向上的投影。

对于给定的两个向量A和B,它们的夹角θ可以通过以下公式求得:θ = arccos(A · B / (|A| |B|))其中,|A|和|B|分别表示向量A和向量B的模长,A · B表示两个向量的点乘。

此外,余弦函数还可以用于求解向量在特定方向上的投影长度,从而实现对向量分解和向量运动路径的分析。

3. 正切函数与向量的应用正切函数可以用于求解向量的斜率。

对于给定的向量A,它的斜率可以通过以下公式求得:m = tan(θ) = (A.y / A.x)其中,A.x和A.y分别表示向量A在x轴和y轴上的分量。

平面向量与三角函数的综合习题

平面向量与三角函数的综合习题

三角函数与平面向量综合题题型一:三角函数与平面向量平行(共线)的综合【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合【例2】 已知向量→a =(3sinα,cosα),→b =(2s inα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值. 题型三. 三角函数与平面向量的模的综合【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合【例3】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.题型五:结合三角形中的向量知识考查三角形的边长或角的运算【例5】(山东卷)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan 37C =.(1)求cos C ;(2)若52CB CA ⋅=,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算【例6】(2007年高考陕西卷)()f x a b =⋅,其中向量(,cos 2)a m x =,(1sin 2,1)b x =+,x R ∈,且函数()y f x =的图象经过点(,2)4π. (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

专题三角函数与向量(学生版).docx

专题三角函数与向量(学生版).docx

专题:三角函数与向量的交汇题型分析及解题策略主要考点如下:1.考查三角式化简、求值、证明及求角问题.2.考查三角函数的性质与图像,特别是y=Asin(cox+(p)的性质和图像及其图像变换.3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.6.考查利用正弦定理、余弦定理解三角形问题.题型一解斜三角形与向量的综合【例1】已知角A、B、C为^ABC的三个内角,其对边分别为a、b、c,京=(—cos成,sin*^"), / = (cos*^", sin*^"), a = 2^3? J E L= 2^*(I )若ZiABC的面积S=,,求b + c的值.(II )求b+c的取值范围.题型二三角函数与平面向量平行(共线)的综合【例2】已知A、B、C为三个锐角,且A+B +C=TI.若向量8 = (2sinA — 2, cosA + sinA)与向量2 =C — 3B(cosA—sinA, 1+sinA)是共线向量.(I )求角A; (II )求函数y=2sin2B+cos—-—的最大值.题型三三角函数与平面向量垂直的综合【例3】已知向量甘= (3sina,cosa), 3 = (2sina, 5sina—4cosa), aG(宇,2n),且甘_L言.Ct jr(I )求tana 的值; (II)求cos(y+~)的值.题型四三角函数与平面向量的模的综合此类题型主要是利用向量模的性质ltl2=t2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例4】已知向量盲= (cosa,sina),言= (cosB,sir)B), |2 —言|=|>姑.TT TT 5(I )求cos(a—P)的值;(II )^—^<P<O<a<p 且sinP = ——,求sina 的值.题型五三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;⑵利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】1.设函数f(x) = 4.含.其中向量冷= (m, cosx),言= (l+sinx, 1), x《R,且f(亨) = 2.(I )求实数m的值;(II)求函数f(x)的最小值.(3)求f(x)的对称中心和对称轴2.(山东)已知向量扁= (smx,l)〃(品cosx*s2W>0),函数/'(x) = M的最大值为6.JT(I)求刀;(II)将函数y = /(x)的图象向左平移g个单位,再将所得图象上各点的横坐标缩短为原来的5倍,纵坐标不变,得到函数V = g(x)的图象.(1)求g(x)在[0,芸]上的值域.(2)五点法做出g(x)在一个周期上的图像。

三角函数与向量结合的题型

三角函数与向量结合的题型

三角函数与向量结合的题型【引言】在高中数学课程中,三角函数和向量是两个重要的概念。

它们分别代表了数学的几何和代数两个方面。

三角函数帮助我们研究角度、三角形的性质,而向量则使得我们能够进行矢量运算和分析。

这两个概念的结合可以带来更加复杂和有趣的数学题型。

在本文中,我们将探讨三角函数与向量结合的题型,从简单到复杂,逐步深入地理解这个主题。

【1. 什么是三角函数】三角函数是描述角度和角度相关的性质的一组函数。

其中最常见的三角函数有正弦函数、余弦函数和正切函数。

我们通常用sin、cos和tan来表示它们。

三角函数的定义涉及到一个直角三角形的三个边长或角度,使得我们能够通过角度来研究三角形的性质。

三角函数在解决几何问题、物理问题和工程问题中起着重要的作用。

【2. 什么是向量】向量是用来表示大小和方向的量。

在数学中,向量通常用有序数对或有序数组来表示。

有向线段也可以看作是向量的几何表示。

向量在几何和代数中都有广泛的应用。

我们可以通过向量进行矢量运算,如向量加法、向量减法和数量乘法。

向量还可以用于描述力、速度和位移等物理量。

【3. 三角函数与向量的关系】三角函数和向量之间有许多密切相关的关系。

我们可以通过三角函数来表达向量的方向。

给定一个向量,我们可以计算出它与横轴的夹角,并通过三角函数来表示这个夹角的大小。

我们可以使用三角函数来计算两个向量之间的夹角。

夹角的正弦、余弦和正切值可以帮助我们理解向量之间的关系和性质。

在解决几何问题时,我们常常会遇到涉及角度和向量的复杂题目,这些题目需要我们结合三角函数和向量来求解。

【4. 三角函数与向量结合的题型举例】下面我们来看一些常见的三角函数与向量结合的题型。

4.1 题型一:求两个向量的夹角已知两个向量a和b,求它们的夹角。

解决这个问题时,我们可以使用向量的数量积和三角函数来求解。

具体步骤如下:计算向量a和b的数量积,即a·b。

计算a和b的模长,即|a|和|b|。

高考数学二轮精讲三角与向量第3讲三角恒等变换(含解析)

高考数学二轮精讲三角与向量第3讲三角恒等变换(含解析)

第3讲三角恒等变换知识与方法本专题主要知识为两角和与差的正弦、余弦和正切公式.同学们要会推导正弦、余弦、正切的倍角公式和辅助角公式,运用这些公式进行简单的恒等变换.要掌握以两角差的余弦公式为基础,推导两角和与差(或二倍角)的正弦、余弦、正切公式的方法,了解它们的内在联系.进行公式探究,能利用对比、联系、化归的观点来分析、处理问题.能依据三角函数式的特点,逐渐明确三角恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换.体验由简单到复杂、从特殊到一般的变换思想,代换和方程的思想,进而提高分析问题、解决问题的能力. 1.两角和与差的正弦、余弦和正切公式 2.二倍角公式sin22sin cos ααα=;缩角升幂2221sin2(sin cos ),1cos22cos ,1cos22sin ααααααα±=±+=-=.扩角降幂22sin21cos21cos2sin cos ,sin ,cos 222ααααααα-+===.3.辅助角公式()sin cos a b αααϕ+=+(其中cos ϕϕ==,辅助角ϕ所在象限由点(),a b 的象限决定,tan b a ϕ⎫=⎪⎭. 注意应用特殊角的三角函数值实现数值与三角函数间的转化,要加强各三角函数公式的正用、逆用及变形应用;尤其是二倍角的正弦公式在构成完全平方式中的应用和二倍角的余弦公式在升幂、降幂变形中的应用.在进行三角恒等变换时,要掌握三角函数式的化简及证明的基本方法与常用技巧.典型例题【例1】若()()13cos ,cos 55αβαβ+=-=,则tan tan αβ=________________. 【分析】本题为已知两个角,αβtan tan αβ,一般先“化切为弦”,发现sin sin tan tan cos cos αβαβαβ=,因此需探求角,αβ的同名三角函数值,分子恰为两角和与差的余弦公式的变形与应用.【解析】13cos cos sin sin ,cos cos sin sin 55αβαβαβαβ-=+=. 两式分别相加、相减得21cos cos ,sin sin 55αβαβ==,故sin sin 1tan tan cos cos 2αβαβαβ==. 【点睛】tan tan αβ转化为sin sin cos cos αβαβ,运用已知两角和与差的余弦公式展开,然后相加、相减可得;若为tan tan αβ,则化为sin cos cos sin αβαβ,利用两角和与差的正弦公式展开,然后相加、相减可得.【例2】若cos cos cos 0,sin sin sin 0αβγαβγ++=++=,则()cos αβ-=______. 【分析】本题涉及两角差的余弦公式的变形与应用,解决问题的关键在于将已知条件变形为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,分别对等号两边平方,然后相加消去角γ,进而求出结论.【解析】因为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,所以22(cos cos )(sin sin )1αβαβ+++=,即()22cos cos sin sin 1αβαβ++=,整理得()22cos 1αβ+-=,所以()1cos 2αβ-=-. 【点睛】将已知条件变形为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,分别对等号两边平方,然后相加消去角γsin sin ,cos cos ,m n p m n q αβαβ+=⎧⎨+=⎩求()cos αβ-;或已知sin cos ,cos sin ,m n p m n q αβαβ+=⎧⎨+=⎩求()sin αβ+.【例3】已知()sin 22sin αββ+=,且2tan1tan 22αα=-,则()tan αβ+=______.【分析】本题求角αβ+的正切值,涉及的角有2,,2ααββ+,函数名有正弦与正切.从待求目标出发,先利用二倍角正切公式求出α的正切,再将式子()sin 22sin αββ+=,化为关于α+β与α的三角函数值,得到()tan αβ+与tan α的关系求解.【解析】因为2tan1tan 22αα=-,所以22tan2tan 21tan2ααα==-.又()()sin 2sin αβααβα⎡⎤⎡⎤++=+-⎣⎦⎣⎦,所以()()()()sin cos cos sin 2sin cos 2cos sin αβααβααβααβα+++=+-+,即()()sin cos 3cos sin αβααβα+=+.等号两边同除以()cos cos ααβ+,得()tan 3tan 6αβα+==.【点睛】要善于将三角恒等变换公式展开和变形.在计算过程中注意角的配凑,把末知角用已知角表示,如将2αβ+表示为(),αβαβ++表示为()αβα+-;角α是2α的二倍. 【例4】计算4cos50tan40-=()B.21 【分析】本题为三角函数式4cos50tan40-的化简与求值,涉及的角有40,50,函数名和系数均不同,先将正切化为正弦和余弦的商,再通分.利用二倍角公式时,注意到2sin80sin40cos40-中的角有80,40,先将80化为12040-,再将()sin 12040-展开,合并求解.【解析】原式sin404sin40cos40sin402sin80sin404sin40cos40cos40cos40--=-==()2sin 12040sin403cos40sin40sin403cos40cos40--+-===,答案选 C.【点睛】利用同角三角函数的基本关系、诱导公式、两角差的正弦公式、二倍角公式化简所给的式子,注意角的变换和拆角等. 【例5】计算()sin40tan103-.【分析】本题计算()sin40tan103-的值,涉及的角有40,10,三角函数名有正切与正弦,一般先将正切化为正弦和余弦的商,再通分并运用辅助角公式进行恒等变换.求解时要充分运用特殊角和特殊值的隐含关系,注意公式的逆用.【解析】解法1:原式()sin40sin103cos10sin10sin403cos10cos10-⎛⎫=-=⎪⎝⎭解法2:原式()sin40tan10tan60=-【点睛】解法1,构建余弦的两角和的关系.解法2则是正切的差角公式的变形应用.【例6】()1sin cos sincos )θθθθθπ⎛⎫++- ⎪<<的结果是___________.【分析】,方法是缩角升幂,去根号,加绝对值符号,开方时注意θ的范围是0θπ<<.注意到分子中含有sincos22θθ-,因此分子1sin cos θθ++的处理也化为半角的三角函数.一方面,()1sin cos 1sin cos θθθθ++=++=222sin cos cos sin sin cos sin cos cos sin 2222222222θθθθθθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫++-=+++- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2cos sin cos 222θθθ⎛⎫=+ ⎪⎝⎭;另一方面,()21sin cos 1cos sin 2cos 2θθθθθ++=++=+2sincos2cos sin cos 22222θθθθθ⎛⎫=+ ⎪⎝⎭,也就是合理分组、升幂、因式分解、提取公因式.涉及二倍角公式的应用,突出转化思想与运算能力. 【解析】0,cos0222θπθ<<>,原式212sin cos 2cos 1sin cos θθθθθ⎛⎫⎛⎫++-- ⎪⎪=222cos sin cos sin cos 2cos sin cos 222cos 2cos 2θθθθθθθθθθ⎛⎫⎛⎫⎛⎫+-- ⎪⎪ ⎪⎝⎭===-.【点睛】依题意,可求得cos 02θ>,利用二倍角的正弦与余弦公式将所求关系式化简并约分即可.【例7】已知,sin 2cos 2ααα∈+=R ,则tan2α=() A.43B.34C.34- D.43- 【分析】本题为已知同角α的正弦、余弦三角函数值的和,求角α的二倍角的正切值.通常做法是先利用同角三角函数的平方关系,解方程组,解出α的正弦、余弦三角函数值,再求出α的正切值,最后求二倍角的正切.若对原式平方,等号两边同除以“1”,化为关于tan α的二次齐次式,则更为方便.【解析】解法1:由22sin 2cos sin cos 1αααα⎧+=⎪⎨⎪+=⎩得222cos cos 1αα⎫+=⎪⎪⎝⎭.所以210cos 30αα-+=,解得cos α=.当cos α=,sin 2cos αα==,此时tan 3α=;当cos α=时,sin α=此时1tan 3α=-. 所以tan 3α=或13-,所以22tan 3tan21tan 4ααα==--.故选C.解法2:将sin 2cos αα+=平方,得225sin 4sin cos 4cos 2αααα++=. 所以2222sin 4sin cos 4cos 5sin cos 2αααααα++=+,所以22tan 4tan 45tan 12ααα++=+, 所以23tan 8tan 30αα--=,解得tan 3α=或13-,所以22tan 3tan21tan 4ααα==--. 故选C.【点睛】由题意,结合22sin cos 1αα+=可得sin ,cos αα,进而可得tan α,将其代入二倍角的正切公式求解.【例8】若50,sin 4413x x ππ⎛⎫<<-= ⎪⎝⎭,求cos2cos 4x x π⎛⎫+ ⎪⎝⎭的值.【分析】此题解法较多,若从条件与结论中角的关系入手,可发现2242x x ππ⎛⎫+=+⎪⎝⎭.若从诱导公式角度入手,可以把2x 看成是4x π+的“二倍角”.而44x x ππ⎛⎫=+- ⎪⎝⎭,从而将单角转化为两角差来处理.若从条件与结论的函数关系入手,可借助cos sin 44x x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭. 【解析】解法1:因为04x π<<,所以120,cos 44413x x πππ⎛⎫<-<-== ⎪⎝⎭, 所以120cos2sin 22sin cos 244169x x x x πππ⎛⎫⎛⎫⎛⎫=-=--=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 注意到442x x πππ⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,所以5cos sin 4413x x ππ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭. 原式cos22413cos 4x x π==⎛⎫+ ⎪⎝⎭.解法2:因为04x π<<,所以044x ππ<-<.所以12sin sin cos 424413x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以原式sin 22sin cos 242442sin 413cos cos 44x x x x x x ππππππ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+= ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭.解法3:由5sin 413x π⎛⎫-=⎪⎝⎭展开得()5cos sin 213x x -=,所以cos sin 13x x -=.所以)22cos2cos sin cos 4x x x x π==+⎛⎫+ ⎪⎝⎭. 因为22(cos sin )(cos sin )2x x x x -++=,所以cos sin 13x x +=. 故原式2413=. 【点睛】(1)解有条件的三角函数求值题,关键是从条件与结论中角的关系和函数关系入手,变换条件或结论,在变换条件过程中注意角的范围的变化.(2)在恒等变形中,注意变角优先,要根据函数式中的“角”“名”“形”的特点(即有没有与特殊角相关联的角;有没有互余、互补的角;角和角之间有没有和、差、倍、半的关系)来寻求已知条件和所求式子之间的关系,从而找到解题的突破口. (3)对于条件求值题,一般先化简,再代入求值.【例9】化简1sin4cos41sin4cos4αααα+-++.【分析】可以考虑正弦、余弦的倍角公式的和与积的互化,2(sin cos )1sin2ααα±=±及1-22cos22sin ,1cos22cos αααα=+=;考虑用余弦倍角公式的升幕形式.【解析】1 原式()()221cos4sin42sin 22sin2cos21cos4sin42cos 22sin2cos2αααααααααα-++==+++ 【解析】2原式()()222222(sin2cos2)cos 2sin 2(sin2cos2)cos 2sin 2αααααααα+--=++- 【点睛】对于较复杂的三角函数式的化简与求值题,一般先观察式子的结构特征,在熟练堂握三角函数变换公式的基础上,灵活运用公式的变形、公式的逆用等.【例10】已知02πβαπ<<<<,且12cos ,sin 2923βααβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,求()cos αβ+的值.【分析】本题已知cos ,sin 22βααβ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值,要求角αβ+的余弦值.观察已知角和所求角,可作222αββααβ+⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭的配凑角变换,利用余弦的差角公式求2αβ+的正弦值或余弦值,最后用二倍角公式求角αβ+的余弦值.【解析】因为02πβαπ<<<<,所以,,,24242βπαππαπβ⎛⎫⎛⎫-∈-∈- ⎪ ⎪⎝⎭⎝⎭.所以sin 22βααβ⎛⎫⎛⎫-==-== ⎪ ⎪⎝⎭⎝⎭, 所以coscos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以()22239cos 2cos1212729αβαβ++=-=⨯-=-⎝⎭.【点睛】“凑角法”是解三角函数题的常用技巧,本题计算角αβ+的余弦函数值,而已知角只有,22βααβ--,因此要将αβ+配凑为22βααβ⎛⎫--- ⎪⎝⎭的二倍.【例11】已知都是锐角,若sin αβ==,则αβ+=______________. A.4πB.34πC.4π和34πD.4π-和34π- 【分析】本题要求角αβ+的大小,一般方法是求其某一三角函数值,结合角的范围求角的大小(或范围).考虑到,αβ都是锐角,0αβπ<+<,为使角的三角函数值唯一,则考虑选用求()cos αβ+.【解析】因为sin αβ==且,αβ都是锐角,所以cos αβ==所以()cos cos cos sin sin αβαβαβ+=-==. 又()0,αβπ+∈,所以4παβ+=.故选A.【点睛】例已知,αβ的正弦值,根据同角的正弦值与余弦值的平方关系,可分别求出,αβ的余弦值,接下来利用两角和的余弦公式求出()cos αβ+,然后结合αβ+αβ+的取值范围这里选用()cos αβ+求解,若选用()sin αβ+求解,应先考虑缩小αβ+的取值范围,否则会产生增解34παβ+=.【例12】已知函数()226sin cos 2cos 1,4f x x x x x x π⎛⎫=++-+∈ ⎪⎝⎭R . (1)求()f x 的最小正周期.(2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【分析】本题研究三角函数()f x 的性质,计算化简时利用相关三角恒等变换公式,需要将已知函数式化为()()sin f x A x b ωϕ=++的形式,常用公式为辅助角公式.【解析】(1) ()3sin2cos2f x x x x x⎫=+-⎪⎪⎭所以()f x 的最小正周期2T ππω==.(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤-∈-⎢⎥⎣⎦.所以sin 242x π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦,所以max min?()()2f x f x ==-.【点睛】用二倍角公式降幂,结合辅助角公式研究三角函数的图象与性质.强化训练1.若()()13sin ,sin 55αβαβ+=-=,则tan tan αβ=________________. 【答案】2- 【解析】1sin cos cos sin 5αβαβ+=,3sin cos cos sin 5αβαβ-=,两式分别相加、相减得,21sin cos ,cos sin 55αβαβ==- 所以tan sin cos 2tan cos sin ααββαβ==-.2.已知22sin sin ,cos cos 33x y x y -=--=,且,x y 为锐角,则()tan x y -的值是()B.C.【答案】B 【解析】已知22sin sin ,cos cos 33x y x y -=--=,两式平方并相加得 ()822cos cos sin sin 9x y x y -+=, 即()5cos 9x y -=. 因为,x y 为锐角,sin sin 0x y -<,所以x y <.所以()sin x y -==()()()sin tan cos 5x y x y x y --==--. 3.求值:tan20tan403tan20tan40++.【解析】原式()()tan 20401tan20tan403tan20tan40=+-+ )1tan20tan403tan20tan403=-+=. 4.化简2cos10sin20cos20-. 【解析】:原式2cos10sin20cos20-==5.求值():cos4013tan10+. 【解析】原式3sin10cos10cos40cos10+=⨯()2sin 1030cos40cos10+=⨯ 2sin40cos40sin801cos10cos10===.6.化简()()()()22:cos 60cos 60cos 60cos 60θθθθ-+++-+. 【解析】解法1:原式=()()1cos 12021cos 120211cos cos 222222θθθθθθ+-++⎛⎫⎫⎛+++- ⎪⎪ ⎪⎪⎝⎝⎭⎭34=.解法2:由余弦的平方差公式得()()22cos cos cos sin αβαβαβ+-=-,所以原式()()()()2cos 60cos 60cos 60cos 60θθθθ⎡⎤=-++--+⎣⎦34=.7.已知3sin 4cos 0αα-=,则23cos2α+=_______.【答案】2925【解析】因为3sin 4cos 0αα-=所以4tan 3α=.所以222222cos sin 1tan 7cos2cos sin 1tan 25ααααααα--===-++, 所以212923cos222525α+=-=. 8.已知1sin cos 2αα=+,且0,2πα⎛⎫∈ ⎪⎝⎭,则cos2sin 4απα⎛⎫- ⎪⎝⎭的值为_______.【答案】 【解析】解法1:由1sin cos 2αα=+和22sin cos 1αα+=,0,2πα⎛⎫∈ ⎪⎝⎭可得11sin 44αα+-+==, 则)22cos2sin cos 2sin 4αααπα==+=-⎛⎫- ⎪⎝⎭ 解法2:由1sin cos 2αα=+可得1sin cos 2αα-=,等号两边平方可得3sin24α=, 则27(sin cos )4αα+=. 又0,2πα⎛⎫∈ ⎪⎝⎭,则sin cos 2αα+=, 则)22cos2sin cos 2sin 4αααπα==+=-⎛⎫- ⎪⎝⎭9.设3,22παπ⎛⎫∈ ⎪⎝⎭,. 【解析】因为3,22παπ⎛⎫∈ ⎪⎝⎭,所以3,24αππ⎛⎫∈ ⎪⎝⎭.原式cos cos 22αα====-.10.已知函数(),12f x x x π⎛⎫=-∈ ⎪⎝⎭R . (1)求6f π⎛⎫- ⎪⎝⎭的值. (2)若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【解析】(1)164f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭. (2)因为33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,所以4sin 5θ=-. 故4324sin22sin cos 25525θθθ⎛⎫==⨯-⨯=- ⎪⎝⎭, 所以27cos212sin 25θθ=-=-.从而1722cos2sin23425f ππθθθθ⎛⎫⎛⎫+=+=-= ⎪ ⎪⎝⎭⎝⎭. 11.已知()113cos ,cos 714ααβ=-=,且02πβα<<<.(1)求tan2α的值.(2)求β.【解析】(1)因为1cos ,072παα=<<,所以sin tan 7αα==所以22tan tan21tan 14847ααα===---. (2)因为02παβ<-<,所以()sin αβ-==所以()cos cos βααβ⎡⎤=--⎣⎦11317142=⨯+=. 因为02πβ<<,所以3πβ=.12.已知函数()26cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,,B C 为图象与x 轴的交点,ABC 为正三角形.(1)求ω的值及函数()f x 的值域.(2)若()0f x =且0102,33x ⎛⎫∈- ⎪⎝⎭,求()01f x +的值.【解析】(1)由已知可得,()3cos 3f x x x x πωωω⎛⎫==+ ⎪⎝⎭.所以正三角形ABC 的高为从而4BC =. 所以函数()f x 的周期428T =⨯=,即28πω=,4πω=函数()f x 的值域为⎡-⎣.(2)已知()0f x =由(1)有()00435f x x ππ⎛⎫=+= ⎪⎝⎭, 即04sin 435x ππ⎛⎫+= ⎪⎝⎭. 由0102,33x ⎛⎫∈- ⎪⎝⎭知0,4322x ππππ⎛⎫+∈- ⎪⎝⎭,所以03cos 435x ππ⎛⎫+== ⎪⎝⎭.故()001443f x x πππ⎛⎫+=++⎪⎝⎭00sin cos 43435x x ππππ⎤⎛⎫⎛⎫=+++= ⎪ ⎪⎥⎝⎭⎝⎭⎦.。

三角形“四心”问题与向量的关系

三角形“四心”问题与向量的关系

三角形“四心”问题与向量的关系一、三角形的重心与向量重心是三角形三条中线的交点,它到三角形顶点的距离与它到该顶点的对边中点的距离之比为2∶1.在向量表达形式中,设点G是△ABC所在平面内的一点,则当点G是△ABC 的重心时,有+ +=0或=(++)(其中P为平面内的任意一点);若+ += 0,则点G 是△ABC的重心;设λ∈[0,+∞),则λ(+)是BC边上的中线AD 上的任意向量,其所在直线必过重心.例1 已知O是△ABC所在平面内的一点,若+ += 0,则点O是△ABC的A.外心B.内心C.重心D.垂心解若+ +=0,则+ =-.以,为邻边作平行四边形OAC1B.设OC1与AB交于点D ,可知D为线段AB的中点,由+ =,可得=-,即C,O,D,C1四点共线.同理,设AO与BC交于点E,BO与AC交于点F,可知AE,BF也是△ABC的中线.所以,点O 是△ABC的重心.选C.例2 已知O是平面内的一个定点,A,B,C是平面内不共线的三个点,动点P满足=+λ?(+),λ∈[0,+∞),动点P的轨迹一定通过△ABC的A.重心B.垂心C.外心D.内心解由已知有=λ(+).由正弦定理可知||sin B=||sin C,则=(+).设边BC的中点为D,则由平行四边形法则,可知点P在边BC的中线AD所在的射线上,所以动点P 的轨迹一定通过△ABC的重心.选A.二、三角形的垂心与向量垂心是三角形三条高的交点,它与顶点的连线垂直于该顶点的对边.在向量表达形式中,若H是△ABC的垂心,则?=?=?或2+2=2+2=2+2;若?=?=?,则H是△ABC的垂心;设λ∈(0,+∞),则向量λ(+)垂直于边BC,该向量所在的直线通过△ABC的垂心.例3 已知O是△ABC所在平面内的一点,?=?=?,则点O是△ABC的A.外心B.内心C.重心D.垂心解由?=?,得?-?=0,即?(-)=0,可得?=0,所以⊥.同理可证⊥,⊥,所以点O是△ABC的垂心.选D.例4 已知O是平面内的一个定点,A,B,C是平面内不共线的三个点,动点P满足=+λ(+),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC的A.重心B.垂心C.外心D.内心解由已知得=λ(+),则?=λ(+)=λ?(+)=0,可知⊥,所以动点P的轨迹通过△ABC的垂心.选B.三、三角形的内心与向量内心是三角形三条内角平分线的交点,也是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点O是△ABC的内心,则有||?+||?+||?=0;若||?+||?+||?= 0,则点O是△ABC的内心;设λ∈(0,+∞),则向量λ(+)所在的直线必过三角形的内心.例5 已知O是平面内的一个定点,A,B,C是平面内不共线的三个点,动点P满足=+λ?(+),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC的A.外心B.内心C.重心D.垂心解由已知得= λ(+),是方向上的单位向量,是方向上的单位向量.根据平行四边形法则,可知以和为邻边构成的平行四边形是菱形,点P在∠BAC的角平分线上,故动点P 的轨迹通过△ABC的内心.选B.四、三角形的外心与向量外心是三角形三条边的中垂线的交点,也是三角形外接圆的圆心,它到三角形三个顶点的距离相等.在向量表达形式中,若点O是△ABC的外心,则(+)?=(+)?=(+)?=0(或||=||=||);若||=||= ||,则点O是△ABC的外心.例6 已知O是平面内的一个定点,若A,B,C是平面内不共线的三个点,动点P满足=+λ(+),λ∈(0,+∞),则动点P的轨迹一定通过△ABC的A.重心B.垂心C.外心D.内心解设线段BC的中点为D,则=.由已知有=λ(+).由?=λ(+)=λ?(+)=0,可知DP⊥BC,所以点P在线段BC的垂直平分线上,动点P的轨迹通过△ABC的外心.选C.五、三角形的“四心”与向量的综合例7 设H,G,O分别是△ABC的垂心、重心、外心,求证:H,G,O三点共线.证明如右图,圆O为△ABC的外接圆.作圆O的直径BD,连接DA,DC,有=-,DA⊥AB,DC⊥BC,AH⊥BC,CH⊥AB,则CH∥DA,AH∥DC,可知AHCD是平行四边形.=+=+=+-=++,故=++.由点G是△ABC的重心,可知=(++).于是可得=,所以H,G,O三点共线.(责任编校?筑冯琪)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.考查三角式化简、求值、证明及求角问题.
2.考查三角函数的性质与图像,特别是y=Asin(x+)的性质和图像及其图像变换.
3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.
4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.
题型三 三角函数与平面向量垂直的综合
此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.
【例3】已知向量=(3sinα,cosα),=(2sinα,5sinα-4cosα),α∈( ,2π),且⊥.
5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.
6.考查利用正弦定理、余弦定理解三角形问题.
【典例分析】
题型二 三角函数与平面向量平行(共线)的综合
此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.
【例2】已知A、B、C为三个锐角,且A+B+C=π.若向量 =(2-2sinA,cosA+sinA)与向量 =(cosA-sinA,1+sinA)是共线向量.
(Ⅰ)求角A;
(Ⅱ)求函数y=2sin2B+cos 的最大值.
【分析】首先利用向量共线的充要条件建立三角函数等式,由于可求得A角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A、B、C三个角的关系,结合三角民恒等变换公式将函数转化为关于角B的表达式,再根据B的范围求(+)的值.
【分析】第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan 的值,再利用两角和与差的三角公式求得最后的结果.
【解】(Ⅰ)∵ ⊥,∴· =0.而 =(3sinα,cosα), =(2sinα,5sinα-4cosα),
(Ⅱ)∵-<β<0<α< ,∴0<α-β<π,
由cos(α-β)=-,得sin(α-β)=,
又sinβ=-,∴cosβ=,
∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ= .
点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化| -|为向量运算| - |2=(- )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.
∴cos(+ )=cos cos-sin sin=- × - × =-
【点评】本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.
∵B∈(0, ),∴2B- ∈(- , ),∴2B- =,解得B= ,ymax=2.
【点评】本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.
三角与向量综合
———————————————————————————————— 作者:
———————————————————————————————— 日期:
归纳总结高考题型解题策略
专题一:三角与向量的交汇题型分析及解题策略
【考点透视】
向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换.而三角函数是以“角”为自变量的函数,函数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切的联系.同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.主要考点如下:
【分析】利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cosβ即可.
【解】(Ⅰ)∵| -|= ,∴2-2 · + 2=,
将向量 =(cosα,sinα), =(cosβ,sinβ)代入上式得
12-2(cosαcosβ+sinαsinβ)+12= ,∴cos(α-β)=- .
故·=6sin2α+5sinαcosα-4cos2α=0.
由于cosα≠0,∴6tan2α+5tanα-4=0.解之,得tanα=- ,或tanα= .
∵α∈(,2π),tanα<0,故tanα=(舍去).∴tanα=-.
(Ⅱ)∵α∈( ,2π),∴ ∈( ,π).
由tanα=-,求得tan =-,tan =2(舍去).∴sin =,cos=- ,
题型四三角函数与平面向量的模的综合
此类题型主要是利用向量模的性质| |2=2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.
【例3】已知向量=(cosα,sinα),=(cosβ,sinβ),|- |= .(Ⅰ)求cos(α-β)的值;(Ⅱ)若-<β<0<α<,且sinβ=-,求sinα的值.
【解】(Ⅰ)∵、 共线,∴(2-2sinA)(1+sinA)=(cosA+sinA)(cosA-sinA),则sin2A=,
又A为锐角,所以sinA= ,则A= .
(Ⅱ)y=2sin2B+cos=2sin2B+cos
=2sin2B+cos( -2B)=1-cos2B+cos2B+sin2B
= sin2B- cos2B+1=sin(2B-)+1.
相关文档
最新文档