基于FPGA的信号发生器设计

合集下载

基于FPGA方波信号发生器的设计

基于FPGA方波信号发生器的设计

基于FPGA方波信号发生器设计一.实验目的:1.进一步熟悉QuartusII及其LPM_ROM与FPGA硬件资源的使用方法。

2.加深对电路理论概念的理解3.进一步熟悉常用仪器的使用及调试4.加深计算机辅助分析及设计的概念5.了解及初步掌握对电路进行计算机辅助分析的过程6.培养学生发现问题、分析问题的创新能力7.锻炼学生搜集资料、分析综合资料的能力二.实验原理:方波波信号发生器由四部分组成:计数器或地址发生器(这里选择6位)。

方波信号数据ROM(6位地址线、8位数据线),含有64个8位数据(一个周期)。

VHDL顶层设计。

8位D/A(实验中用DAC0832代替)。

图1所示的信号发生器结构框图中,顶层文件singt.vhd在FPGA中实现,包含两个部分:ROM的地址信号发生器,由6位计数器担任;一个方波数据ROM,由LPM_ROM模块构成。

LPM_ROM底层是FPGA中的EAB、ESB或M4K等模块。

地址发生器的时钟CLK的输入频率f0与每周期的波形数据点数(在此选择64点),以及D/A输出的频率f的关系是:f = f0/64。

图1 方波信号发生器结构框图三.实验内容:1.新建一个文件夹。

利用资源管理器,新建一个文件夹,如:e : \SIN_GNT 。

注意,文件夹名不能用中文。

2.输入源程序。

打开QuartusII,选择菜单“File” “New”,在New 窗中的“Device Design Files”中选择编译文件的语言类型,这里选“VHDL Files”。

然后在VHDL 文本编译窗中键入VHDL 程序:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity square isport(clk,clr:in std_logic;q:out integer range 0 to 255);end entity;architecture behav of square issignal a:bit;beginprocess(clk,clr) --计数分频variable cnt:integer range 0 to 32; beginif(clr='0') thena<='0';elsif clk'event and clk='1' thenif cnt<31 then --进行32分频cnt:=cnt+1;elsecnt:=0;a<=not a;end if;end if;end process;process(clk,a) --信号输出beginif clk'event and clk='1' thenif a='1' thenq<=255;elseq<=0;end if;end if;end process;end behav;3. 建立.mif格式文件首先选择ROM 数据文件编辑窗,即在File 菜单中选择“New”,并在New 窗中选择“Other files”项,并“Memory Initialization File”(图3-11),点击OK 后产生ROM 数据文件大小选择窗。

基于FPGA的DDS信号发生器设计分析

基于FPGA的DDS信号发生器设计分析

基于FPGA的DDS信号发生器设计分析摘要:随着现代电子技术的飞速发展,直接数字频率合成DDS 技术逐渐被广泛使用,DDS 是目前数据调度常用的数据分发技术,此技术能够有效结合数据服务质量要求,完成数据分发操作。

为此提出基于FPGA的DDS信号发生器设计,以提升信号发生器精度效果。

关键词:FPGA;DDS;信号发生器;设计;1 DDS数据分发模型设计网络层云服务器采用的DDS数据分发模型结构如图1所示。

DDS数据分发模型中,将数据库云平台中的数据发送端看作为发布者,数据写入者为数据采集端,而订阅者与读入者即为云平台中的数据接收端。

DDS数据分发模型的身份主要是通信数据库云平台中,通信网络的中间件,此模型能够为通信数据库云平台提供通信数据分发服务,让通信数据可以快速分发传输,从而避免出现数据拥塞问题。

图 1 基于 DDS 的通信数据库云平台2系统硬件设计2.1硬件整体方案函数信号发生器的硬件系统主要包括MCU控制电路,FPGA构成的DDS发生器、DAC转换和低通滤波电路,及一些用于输入输出的器件等。

按键输入和LCD输出显示主要由MCU负责控制,MCU然后将输入的信号运算处理后发送给FPGA,FPGA根据输入的各种参数在ROM表中寻址,同时输出对应控制的波形、频率和幅度的数字信号,最后经过DA转换为对应的模拟电压信号,在经过一个低通滤波器使得模拟电压信号变得平滑。

2.2硬件模块电路系统的硬件电路主要分为两个部分,一是系统主控电路,二是DDS信号发生器电路。

系统主控电路包括以STM32F103C8T6为主控的最小系统板、四路用户按键输入、OLED显示屏输出(SPI)、UART通信连接上位机、硬件SPI连接FPGA负责信号数据传输。

DDS信号发生器电路,其中的FPGA模块的核心芯片为LatticeLCMXO2-4000HC-4MG132,其模块上内置8路输出LED指示灯、4路按键输入、4路拨码输入和两位数码管输出灯资源。

基于FPGA的DDS信号发生器设计

基于FPGA的DDS信号发生器设计

基于FPGA的DDS信号发生器设计随着数字信号处理(DSP)技术的发展,直接数字频率合成器(DDS)逐渐取代了传统的频率合成器,成为一种高性能的信号发生器。

DDS信号发生器通过数字信号直接产生模拟信号,具有频率精度高、可编程性强和快速调频等优点。

本文将通过FPGA实现DDS信号发生器的设计。

首先,我们需要了解DDS信号发生器的基本原理。

DDS信号发生器的核心是相位累加器、查找表和数模转换器(DAC)。

通过累加器产生相位累积,将相位累积的结果通过查找表得到对应的振幅值,并经过数模转换器输出模拟信号。

1.确定需要生成的信号的参数,包括输出频率、相位步进精度、振幅等。

根据这些参数,计算累加器的增量值,即每个时钟周期累加器需要累加的值。

2.在FPGA中设计相位累加器。

相位累加器的宽度取决于相位步进精度,一般为32位或64位。

通过在每个时钟周期加上增量值,实现相位的累加。

3.设计查找表。

查找表的大小取决于数字信号的分辨率,一般为2^N 位。

通过输入相位值查找对应的振幅值。

4.设计数模转换器(DAC)。

通过DAC将数字信号转换为模拟信号输出。

5.在FPGA中实现控制逻辑,包括控制相位累加器和查找表的读写操作,使其按照设定的参数进行相位累加和振幅输出。

6.将设计好的FPGA模块进行综合、布局和时序约束,生成比特流文件。

通过以上步骤,基于FPGA的DDS信号发生器的设计就完成了。

设计好的FPGA模块可以实现高精度、高稳定性的信号发生器,广泛应用于通信、雷达、医疗设备等领域。

需要注意的是,在设计过程中需要考虑到FPGA的资源限制,包括LUT资源的利用、频率分辨率和输出频率的限制等。

此外,还可以通过增加相位累积周期、使用多路查找表和多路DAC等方法进一步优化设计。

综上所述,基于FPGA的DDS信号发生器设计是一个较为复杂的过程,需要对DDS原理有深入的理解,并结合FPGA的特点进行设计。

通过合理的设计和优化,可以实现高性能的DDS信号发生器。

(完整word版)基于FPGA的DDS信号发生器设计

(完整word版)基于FPGA的DDS信号发生器设计

基于FPGA的DDS信号发生器设计摘要:利用FPGA芯片及D/A转换器,采用直接数字频率合成技术,设计并实现了一个频率、幅值可调的信号发生器,同时阐述了该信号发生器的工作原理、电路结构及设计思路。

经过电路调试,输出波形达到技术要求,证明了该信号发生器的有效性和可靠性。

0 引言信号发生器作为一种基本电子设备广泛的应用于教学、科研中,因此从理论到工程对信号的发生进行深入研究,有着积极的意义.随着可编程逻辑器件(FPGA)的不断发展,直接频率合成(DDS)技术应用的愈加成熟,利用DDS原理在FPGA平台上开发高性能的多种波形信号发生器与基于DDS芯片的信号发生器相比,成本更低,操作更加灵活,而且还能根据要求在线更新配置,系统开发趋于软件化、自定义化。

本文研究了基于FPGA 的DDS信号发生器设计,实现了满足预定指标的多波形输出。

可产生不同频率、幅度的正弦波、三角波、矩形波信号,仿真和实测结果均证实了其灵活性和可靠性。

1 函数信号发生器的原理和设计1.1 函数信号发生器的结构图1为DDS信号发生器系统结构框图.系统以FPGA芯片为信息处理核心,主要完成数字频率合成、D/A转换、选择滤波、功率放大、LCD显示等功能。

频率控制字M送入32位的累加器进行累加运算,截取32位累加器的第24到第30位作为ROM的地址,ROM在累加器的控制下,输出8位的数字波形数据,经过DAC0832转换为模拟量,因为DAC0832输出的是电流的形式,所以通过电压转电流电路转换为电压形式的模拟波形,但其中还含有大量的高频成分,为了输出频率纯净的信号波形,再通过一个二阶的有源低通滤波器。

最后为了调节输出信号的峰峰值,再引入一个幅度调节电路。

根据直接数字频率合成理论将系统的频率分辨率及输出频率写为:其中fclk和N为系统时钟和位宽,M为频率控制字,利用信号相位与时间成线性关系的特性,直接对所需信号进行抽样、量化和映射,输出频率可调的信号波形。

基于FPGA的信号发生器设计

基于FPGA的信号发生器设计

基于FPGA的信号发生器设计1 引言电子产业瞬息万变,越来越多的设计开始以ASIC转向FPGA(现场可编程门阵列),FPGA正以各种电子产品的形式进入了我们日常生活的各个角落。

随着新一代FPGA芯片工艺和设计方法的进步及新的应用领域和市场需求的变化, EDA技术有了突飞猛进的发展,数字系统设计也有了革命性的变化。

芯片的复杂程度越来越高,人们对数万门乃至数百万门设计的需求也越来越多,采用硬件描述语言VHDL的设计方式就应运而生,设计工作从行为、功能级开始,并向着设计的高层次发展。

VHDL具有多层次描述系统硬件功能的能力,支持自顶向下和基于库的设计的特点,从系统设计入手,在顶层进行系统方框图的划分和结构设计,在方框图一级用VHDL对电路的行为进行描述,并进行仿真,然后在系统一级进行验证,最后再用逻辑综合优化工具生成具体的门级逻辑电路的网表,下载到具体的FPGA器件中去,可以实现可编程的专用集成电路(ASIC)的设计。

在电子技术飞速发展的今天,信号发生器在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,或者电路实验和设备检测中具有十分广泛的用途。

基于FPGA的信号发生器的设计,以简单、廉价的元器件构筑,能够产生高精度的正弦波、方波、三角波、锯齿波,同时可以实现波形自由选择。

本设计以花费小、集成度高、性能稳定、使用方便为指导,在功能上力求完善实用,同时兼顾商业价值与应用价值的体现。

2 设计方案2.1 方案介绍正弦波和方波使用MegaWizard Plug-In Manager定制宏功能模块,然后在顶层文件中例化。

锯齿波和三角波采用VHDL语言编程的文本输入方式。

使用分频器将输入的高频脉冲降频得到各模块所需的低频脉冲,使用四选一数据选择器选择波形的输出。

对程序进行编译仿真,成功后下载文件到FPGA实验箱来测试。

通过FPGA软件扫描方式将波形数据读出传输给DAC0832,通过外接示波器显示波形输出。

基于FPGA的信号发生器设计

基于FPGA的信号发生器设计

目录一、设计要求 (3)1. 基本要求 (3)二、设计方案 (3)三、系统基本原理 (4)3.1函数信号发生器的几种实现方式 (4)3.1.1程序控制输出方式 (4)3.1.2 DMA输出方式 (5)3.1.3可变时钟计数器寻址方式 (5)3.1.4直接数字频率合成方式 (6)3.2频率合成器简介 (6)3.2.1频率合成技术概述 (6)3.2.2频率合成器主要指标 (7)2.3 DDS原理 (8)3.3.1相位累加器 (8)3.3.2波形ROM (10)3.3.3 DDS频率合成器优缺点 (10)四、单元模块设计 (11)4.1系统框图 (11)4.2相位累加器与相位寄存器的设计 (12)4.3波形ROM的设计 (13)4.4频率控制模块的设计 (16)4.5 D/A转换器 (17)4.6滤波模块 (19)五、系统源程序 (19)5.1 Verilog HDL 源程序: (19)5.2 STM32 源程序: (23)摘要直接数字频率合成DDS(Direct Digital Synthesizer)是基于奈奎斯特抽样定理理论和现代器件生产技术发展的一种新的频率合成技术。

与第二代基于锁相环频率合成技术相比,DDS具有频率切换时间短、频率分辨率高、相位可连续变化和输出波形灵活等优点,因此,广泛应用于教学科研、通信、雷达、自动控制和电子测量等领域。

该技术的常用方法是利用性能优良的DDS专用器件,“搭积木”式设计电路,这种“搭积木”式设计电路方法虽然直观,但DDS专用器件价格较贵,输出波形单一,使用受到一定限制,特别不适合于输出波形多样化的应用场合。

随着高速可编程逻辑器件FPGA的发展,电子工程师可根据实际需求,在单一FPGA上开发出性能优良的具有任意波形的DDS系统,极大限度地简化设计过程并提高效率。

本文在讨论DDS的基础上,介绍利用FPGA设计的基于DDS 的信号发生器。

关键字:FPGA;DDS;函数信号发生器;一、设计要求1. 基本要求(1)信号发生器能产生正弦波、方波和三角波三种周期性波形;(2)将输出信号频率范围为10Hz ~10MHz ,输出信号频率可分段调节:在10Hz ~100kHz 范围内步进间隔为10Hz ;在100kHz ~1MHz范围内步进间隔为100Hz ;在1MHz ~10MHz 范围内步进间隔为1kHz 。

基于FPGA的信号发生器设计

基于FPGA的信号发生器设计

基于FPGA的函数信号发生器设计摘要在信号发生器的设计中,传统的用分立元件或通用数字电路元件设计电子线路的方法设计周期长,花费大,可移植性差。

本设计是利用EDA技术设计的电路,该信号发生器可以输出四种信号,分别是正玄波、方波、三角波、锯齿波,可以通过外部的按键选择波形并调节波形的幅度、相位和频率。

侧重叙述了用FPGA来完成直接数字频率合成器(DDS)的设计,通过调用四个ROM 里面的数据来实现,这里需要一个加法器和一个累加器来产生 ROM 的地址。

通过不断让地址累加,从而不断地从 ROM 中读取波形数据,然后将数据送往 DACTLC5615的驱动模块中,这样最终便输出模拟的波形,最后通过示波器演示仿真结果。

与传统的频率合成方法相比,DDS合成信号具有频率切换时间短、频率分辨率高、相位变化连续等诸多优点。

使用FPGA器件的高性能、高集成度相结合,可以克服传统DDS 设计中的不足,从而设计开发出性能优良的DDS系统。

关键词:FPGA;函数信号发生器;DDS;DAC;The design of function generator based on FPGAAbstractIn the signal generator design , the traditional method of using discrete long design cycle components or general purpose digital circuit component design of electronic circuits , expensive, poor portability . This design is the use of EDA technology designed circuit , the signal generator can output four signals , which are sine wave, square wave , triangle wave , sawtooth wave, you can select and adjust the waveform amplitude, phase and frequency of the waveform by an external button.Emphasis describes the use of FPGA to complete direct digital frequency synthesizer (DDS) design , by calling four ROM inside the data to achieve here need an adder and an accumulator to generate ROM address. By constantly make address accumulate, thereby continuously reads the waveform data from the ROM , and then the data is sent to DACTLC5615 drive module , so that the final output will be analog waveforms, and finally through the oscilloscope display simulation results.Compared with the conventional method of frequency synthesis , DDS frequency synthesized signal having a short switching time , high frequency resolution, and many other advantages of continuous phase change . FPGA devices using high-performance, highly integrated combination of design can overcome the shortcomings of traditional DDS , which designed and developed the excellent performance of the DDS system .Keywords: FPGA; function signal generator; DDS; DAC;目录第一章绪言 (1)1.1 课题背景 (1)1.2 课题研究的目的和意义 (1)1.3 国内外的研究状况 (2)1.3.1波形发生器的发展状况 (2)1.3.2 国内外波形发生器产品比较 (3)1.3.3 本课题在国内外的研究现状 (3)第二章信号发生器的方案设计 (4)2.1硬件组成部分 (4)2.1.1 FPGA实验板 (4)2.2外围电路 (6)2.2.1TLC5615芯片 (6)2.2.2 TLC5615工作原理 (8)2.3 RC低通滤波电路 (9)第三章直接数字合成技术(DDS) (11)3.1 直接数字合成技术(DDS) (11)3.2 DDS 的基本原理 (11)3.3 DDS 的性能分析 (12)3.3.1 DDS理想抽样频谱 (12)3.4 DDS 杂散频谱分析 (13)3.4.1相位截断对输出信号频谱的影响 (13)3.4.2 D/A 非理想特性及参考时钟相位噪声对输出信号频谱的影响 (13)3.5基于DDS的信号函数发生器 (14)3.5.1 整体框图及其说明 (14)3.5.2 按键消抖模块 (14)3.5.3 按键编码 (16)3.5.4 DDS 信号发生器 (18)3.5.5 RTL电路图 (20)第四章实验分析 (21)4.1 实验过程 (21)4.1.1 程序调试 (21)4.2 实验结果 (23)4.3 实验总结 (24)致谢 (24)参考文献 (25)第一章绪言1.1 课题背景在一些电子设备的电路板故障检测仪中,往往需要频率、幅度都能由计算机自动调节的信号源。

基于FPGA的多功能信号发生器的设计

基于FPGA的多功能信号发生器的设计

电子电路设计与方案0 前言现场可编程门阵列具有运行速度快,修改灵活方便,并自带大量的输入输出端口等优点,通过FPGA实现该信号发生器的核心部件DDS模块,可以灵活地对信号发生器的参数进行调整,另外通过单片机的配合实现对其他外设电路的控制,实现信号发生器显示、参数调节等辅助的功能,通过数模转换电路和波形处理电路实现所需信号波形的输出。

本设计的主要指标为:(1)频率范围:0~1MHz,可通过键盘任意设置频率,步进1Hz。

(2)频率精度:±1%。

(3)幅值范围:±5V,可通过键盘任意设置幅度,步进100mV。

(4)幅值精度:±5%。

(5)用液晶显示所选波形名称,频率,幅值。

1 系统硬件结构该信号发生器主要是由FPGA构成其最小系统,通过编程实现信号发生器的主要功能部件数字频率合成功能模块,并对其信号进行控制和处理,使得输出波形更加平滑、符合要求。

当然为了使电路能够实现人机对话、参数设置等功能,并设计了由单片机和外围电路构成的控制电路部分,实现对显示电路、输入电路的控制。

本系统通过单片机来识别按键所输入的指令,并根据其该指令,产生输出波形的参数要求,并将该数据送入FPGA 的ROM中,再由FPGA完成DDS数据处理功能(频率控制、移相等),将波形数据送入D/A转换器,并将波形参数(如频率、幅值等)送入到显示电路中显示,最后通过低通滤波电路滤波使输出的波形平滑。

系统硬件结构如图1所示。

本设计未采用专用DDS芯片,而是通Verilog HDL语言编程在目标芯片上来实现信号源的主要功能,可以根据实际设计的要求来增删DDS的功能,具有灵活、方便等特点,同时该DDS模块中的参数及子模块根据所用目标器件稍加调整,完全可用于其他需要DDS技术的应用场合,有很好的通用性。

图1 系统硬件结构图2 单元电路的设计整个硬件系统以FPGA为核心,配合外围电路控制参数实现波形的模拟输出。

外围电路主要包括控制电路及信号处理电路两部分。

基于FPGA的信号发生器设计

基于FPGA的信号发生器设计
制功 能 ; 利用 F G P A内嵌 3 2位 N i I o I 软核设计 了一种键 盘控制 L D显示 的处理器 ; / s C D A转换 及功率 放大模
块 主要采 用高速宽带运放 。整个系统稳定度高 , 制方便 , 控 可扩展性强 。
关 键词 : 现场可编程门阵列; 硬件描述语言;i I嵌入式系统; No I s 直接数字频率合成技术
c n r lmo u e, h CD d s ly mo u e a d te D/ o v r in a d p w rma n f d mo u e h e ee t c ls u c o t d l t e L ip a d l n h A c n e so n o e g i e d l .T lcr a o r e o i i
mo ues p l s5 v l frteF GA c i n ±1 otfrteDA hp d l u p e oto h P hp a d i v l o h C c i.W i 2 t VHD h Lf VHSC Had aeDec p I r w r sr — i
中 图分 类 号 :N 3 . 文献标 识码 : T 4 12 A
De i n o i n lGe e a o s d o sg f S g a n r t r Ba e n FPGA
WU J n a WEI ic u Z NG G io g un nh n J HO uy n
文章 编 号 :0 8— 2 5 2 0 )2—0 3 10 8 4 (0 8 0 0 4一o 4
基 于 F G 的信 号 发 生 器 设 计 木 PA
武军娜 魏金春 钟桂 勇
( 黄石理工学院 电气与电子信息工程学院, 湖北 黄石 450 ) 30 3

基于FPGA的信号发生器的设计

基于FPGA的信号发生器的设计

的飓 风 系列 cc n yl e可 编程 门 阵列 芯 片 和 A 公 司的 A 8 7D/ 转 换 器) 实现 了信 号发 生 器 的设 计 , 针 对 工 程 设 计 容 易 出现 的 问题 , 出 o D D74 ( A , 并 给 了解决 的 思路 。
【 关键词 l 现场 可编程逻辑 门阵列; 数模转换器
a h I t o to 8 t e GP O o c nr l AD9 4 s mp i g a d ta se . ih o l e d smp e h r wa e cr u ta d s me s fw r n tu to s 7 a l n r n f r n wh c n y n e i l a d r ic i n o ot a e i sr c in .
【 ywod ]P A; / Ke rsF G DA
0 引言
在 仪 表 着陆 系 统 ( s是 引 导 飞 机 自动 着 陆 的重 要 系 统 , 设计 机 i) t 为
FG P A传 送 此 幅 度 信 息 ;P A 中 的存 贮 着 1个 周 期 的复 合 信 号 的 波 FG
形 ,只 有 加 电 F G 即执 行 9 H PA 0 z正 弦 信 号 、5 H 10 z正 弦 信 号 生 成 程 序 , 别 通 过 D A网 络 1和 DA 网 络 3, 分 / / 将数 字量 变 成 模 拟 量 , 而 得 从 载设 备 , 对 地 面 信 号进 行 模 拟 , 必须 即模 拟 空 间 的 调 制 信 号 非 常关 键 , 到 9 H 0 z正 弦 信 号 、5 H 10 z正 弦 信 号 ,0 z正 弦 信 号 的 幅 度 控 制 由单 9H 为此 我 们 设 计 了 一 种基 于 F G 的复 合 信 号 发 生 器 , PA 利用 F G P A产 生 片 机控 制 DA 网络 2产 生 9 H 基 准 电 压而 实 现 ,5 Hz 弦信 号 的 / 0z 10 正 所 需 要 的 复合 调 制 信 号 。 幅 度 控 制 由 单 片 机 控 制 D A 网 络 4产 生 10 z基 准 电 压 而 实 现 ; / 5H

基于某FPGA的信号发生器的设计

基于某FPGA的信号发生器的设计

前言信号发生器是实验室的常用仪器之一,设计信号发生器具有实际应用的意义。

而采用FPGA的方法设计信号发生器可以产生频率比较高的信号,例如频率为几M的正弦波。

通常正弦波产生的方法是采用MCU+DDS的方法,但是由于DDS 的造价比较高,所以在指标要求不高的情况下,可以使用FPGA来实现DDS频率合成的原理来产生较高频率的正弦波,任意波形的信号也是如此。

课题《基于FPGA的信号发生器的设计》主要研究容为DDS基数及其FPGA 的实现。

其目的在于让设计者能掌握DDS的原理及其设计思路,具体的了解EDA 技术流程,熟悉硬件描述语言设计功能电路,并最终检验设计的设计能力。

随着我国的经济日益增长,社会对电子产品的需求量也就越来越大,目前,我国的电子产品市场正在迅速的壮大,市场前景广阔。

FPGA(Field Programmable Gate Array,现场可编程门阵列)在现代数字电路设计中发挥着越来越重要的作用。

FPGA/CPLD(Complex Programmable Logic Device)所具有的静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改,这样就极大地提高了电子系统设计的灵活性和通用性,缩短了产品的上市时间并降低可电子系统的开发成本,且可以毫不夸地讲,FPGA/CPLD能完成任何数字器件的功能,从简单的74电路到高性能的CPU。

它的影响毫不亚于20世纪70年代单片机的发明和使用。

现在随着电子技术的发展,产品的技术含量越来越高,使得芯片的复杂程度越来越高,人们对数万门乃至数百万门设计的需求也越来越多,特别是专用集成电路(ASIC)设计技术的日趋进步和完善,推动了数字系统设计的迅速发展。

仅靠原理图输入方式已不能满足要求,采用硬件描述语言VHDL的设计方式应运而生,解决了传统用电路原理图设计大系统工程时的诸多不便,成为电子电路设计人员的最得力助手。

设计工作从行为、功能级开始,并向着设计的高层次发展。

基于FPGA的DDS信号发生器设计

基于FPGA的DDS信号发生器设计

基于FPGA的DDS信号发生器设计随着现代科技的不断发展,数字信号发生器(DDS)已成为各种电子设备中常用的一种功能模块。

使用DDS技术可以生成高质量、高稳定性的各种频率和波形的信号。

而FPGA(Field Programmable Gate Array)作为一种可编程逻辑器件,具有高集成度、高速度和灵活性等优势,逐渐成为了实现DDS信号发生器的主要选择之一一、DDS技术概述DDS(Direct Digital Synthesis)技术是一种基于数字直接合成的方法,通过计算机算法精确地合成期望的波形。

它的工作原理是将时钟信号分频得到一系列的离散相位值,再通过查表和插值的方法得到对应的幅值,最后通过一个DAC(Digital to Analog Converter)将数字信号转换为模拟信号输出。

二、基于FPGA的DDS信号发生器设计步骤1.系统架构设计根据DDS信号发生器的要求,确定所需的系统架构。

一般包括时钟模块、相位累加器、查找表、插值器、DAC和控制逻辑等模块。

2.时钟模块使用FPGA内部的资源或外部时钟源生成所需的系统时钟信号。

可以通过时钟分频和PLL(Phase-Locked Loop)锁相环技术来实现对系统时钟的精确控制。

3.相位累加器利用FPGA的寄存器或分频模块实现相位累加功能。

通过周期性地累加相位增量,可以得到DDS信号的相位。

4.查找表利用FPGA内部的RAM(Random Access Memory)存储相位对应的幅值。

根据相位的大小来查找对应的幅值,存储在RAM中。

5.插值器可以通过线性插值或差值的方法对相位查找表的输出进行插值,以提高输出信号的精度和稳定性。

6.DAC将插值器输出的数字信号转换为模拟信号,通过FPGA的IO端口或专用的DAC芯片输出到外部电路。

7.控制逻辑设计合适的控制逻辑,可以通过外部接口或FPGA内部的控制模块来控制DDS信号发生器的频率、幅值、相位偏移等参数。

基于FPGA的信号发生器的设计_课程设计

基于FPGA的信号发生器的设计_课程设计

郑州轻工业学院电子技术课程设计题目基于FPGA的信号发生器设计基于FPGA的函数发生器设计主要内容、基本要求、主要参考资料等:主要内容:要求学生使用硬件描述语言设计信号发生器的FPGA源程序,实现如下功能:设计智能信号发生器,要求实现正弦波、方波、三角波、递增、递减斜波和阶梯波六种波形。

基本要求:1、掌握FPGA 的程序设计方法。

2、掌握硬件描述语言语法。

3、程序设计完成后要求在软件中实现功能仿真。

主要参考资料:1、姜雪松,吴钰淳.VHDL设计实例与仿真.机械工业出版社, 2007.2、黄志伟.FPGA系统设计与实践[M].北京:电子工业出版社,2005.完成期限:2013.6.21—2013.6.25指导教师签名:课程负责人签名:2013年6月18日目录摘要 (I)1 题目分析 (1)2 方案选择 (2)2.1 波形函数发生方案对比选择 (2)2.2 波形函数输出控制方式选择 (2)3 系统细化框图 (4)4 各模块程序设计及仿真 (5)4.1 递增斜波模块 (5)4.2 递减斜波模块 (6)4.3 三角波模块 (7)4.4 阶梯波模块 (8)4.5 正弦波模块 (10)4.6 方波模块 (11)4.7 输出波形选择模块 (12)5 系统联调测试分析 (14)6 设计总结 (16)参考文献 (17)附录 (1)基于FPGA的函数发生器设计摘要随着基于CPLD的EDA技术的发展和应用领域的扩大与深入,EDA技术在电子信息、通信、自动控制及计算机等领域的重要性日益突出。

作为一个学电子信息专业的学生,我们必须不断地去了解更多的新产品信息,这就更加要求我们对EDA有个全面的认识。

信号发生器在我们的日常中有很重要的应用,用VHDL语言去实现设计将会使我们对本学科知识可以更好地掌握。

函数发生器是一种多波形的信号源,它可以产生方波、三角波、锯齿波,甚至任意波形。

本设计是一个基于VHDL的采用自顶向下设计方法实现的信号发生器,该设计方法具有外围电路简单,程序修改灵活和调试容易等特点,并通过计算机仿真和实验证明了设计的正确性。

基于FPGA的信号发生器的设计

基于FPGA的信号发生器的设计

目录(修改过)任务书………………………………………………………………………………….Ⅰ开题报告………………………………………………………………………………。

Ⅱ指导教师审查意见……………………………………………………………………。

Ⅲ评阅教师评语………………………………………………………………………….Ⅳ答辩会议记录…………………………………………………………………………Ⅴ中文摘要……………………………………………………………………………….Ⅵ外文摘要………………………………………………………………………………。

Ⅶ1引言 (5)1。

1 课题来源 (5)1。

2课题研究的研究背景 (5)1.3国内外的发展现状、发展趋势及存在的主要问题 (5)1.4课题研究的指导思想与技术路线 (6)2 FPGA的信号发生器设计指标 (7)3 FPGA信号发生器设计方案选择4 主要器件介绍(包括FPGA、DAC、运放等)5 信号发生器硬件设计5.1 总体设计框图(包括FPGA 、DAC、信号放大等)5。

2 基于FPGA的DDS设计原理5。

3 LPF低通滤波5.4 VGA电路及PA电路6信号发生器软件设计6。

1 顶层原理图6.2 正弦波产生模块6.3 三角波产生模块6.4 方波产生模块 (7)7 波形仿真结果 (19)8 总结 (24)致谢 (26)前言信号发生器是实验室的常用仪器之一,设计信号发生器具有实际应用的意义。

而采用FPGA的方法设计信号发生器可以产生频率比较高的信号,例如频率为几M的正弦波。

通常正弦波产生的方法是采用MCU+DDS的方法,但是由于DDS的造价比较高,所以在指标要求不高的情况下,可以使用FPGA 来实现DDS频率合成的原理来产生较高频率的正弦波,任意波形的信号也是如此。

课题《基于FPGA的信号发生器的设计》主要研究内容为DDS基数及其FPGA 的实现.其目的在于让设计者能掌握DDS的原理及其设计思路,具体的了解EDA技术流程,熟悉硬件描述语言设计功能电路,并最终检验设计的设计能力.随着我国的经济日益增长,社会对电子产品的需求量也就越来越大,目前,我国的电子产品市场正在迅速的壮大,市场前景广阔。

基于FPGA的DDS信号发生器设计

基于FPGA的DDS信号发生器设计

基于FPGA的DDS信号发生器设计一、引言随着科技的不断发展,数字信号处理(Digital Signal Processing,简称DSP)在各个领域得到广泛应用。

其中,一种常见的应用是通过数字直接合成(Digital Direct Synthesis,简称DDS)来生成各种信号。

DDS信号发生器能够快速准确地产生高质量的信号,被广泛应用于通信、电子测量、医疗器械等领域。

本文将阐述基于现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)的DDS信号发生器设计。

二、FPGA的简介FPGA是一种可编程的逻辑器件,其内部包含了大量可编程的逻辑单元和存储单元。

FPGA具有灵活性高、可重构性强等特点,可以根据设计者的需求,灵活地实现各种数字电路。

因此,FPGA成为DDS信号发生器设计的理想平台。

三、DDS技术原理DDS技术通过数字控制相位累加器和振荡器来实现信号的直接合成。

其中,相位累加器用于控制振荡器输出频率的连续调节,振荡器则根据相位累加器的输出产生正弦波。

DDS信号发生器的主要步骤如下:1. 初始化相位累加器:将初始相位值存入相位累加器。

2. 累加相位值:相位累加器根据设定的增量值不断累加,得到一个新的相位值。

3. 查表获得振荡器的输出值:通过查表法,根据相位值获得振荡器的输出幅度。

4. 输出信号:根据振荡器的输出幅度,形成DDS信号。

四、1. 系统架构设计:本设计采用基于FPGA的硬件逻辑实现DDS信号发生器。

系统由相位累加器、振荡器、幅度调节模块和输出模块组成。

其中,相位累加器使用FPGA中的计数器实现,振荡器采用三角函数计算逼近的方式实现,幅度调节模块用于调节振荡器的输出幅度,输出模块将DDS信号输出到外部。

2. 相位累加器设计:相位累加器是DDS信号发生器的核心模块。

本设计采用基于FPGA的计数器实现相位累加器,通过控制计数器的计数速度来调节信号的频率。

基于FPGA的信号发生器设计

基于FPGA的信号发生器设计

基于FPGA的信号发生器设计 以FPGA 芯片为载体,通过QuartusII 的LPM_ROM 模块和VHDL 语言为核心设计一个多功能信号发生器,根据输入信号的选择可以输出递增锯齿波、递减锯齿波、三角波、阶梯波和方波等5 种信号,通过QuartusII 软件进行波形仿真、定时分析,仿真正确后,利用实验板提供的资源,下载到芯片中实现预定功能。

信号发生器又称为波形发生器,是一种常用的信号源,广泛应用于电子电路、通信、控制和教学实验等领域。

它是科研及工程实践中最重要的仪器之一,以往多用硬件组成,系统结构比较复杂,可维护性和可操作性不佳。

随着计算机技术的发展,信号发生器的设计制作越来越多的是用计算机技术,种类繁多,价格、性能差异很大。

用FPGA 或CPLD 来实现,它的优点是可以进行功能仿真,而且FPGA 和CPLD 的片内资源丰富,设计的流程简单。

用FPGA 所构成的系统来产生波形信号,这个系统既能和主机系统相连,用相应的上层软件展示波形信号,又方便程序的编写,而且还有A/D0809接口可以产生模拟信号的输出和外面的示波器相连。

1 正弦信号发生器的LPM 定制 正弦信号发生器由计数器或地址发生器(6 位)、正弦信号数据ROM (6 位地址线,8 位数据线,含有64 个8 位数据,一个周期)、原理图顶层设计和8 位D/A (实验中用DAC0832 代替)。

其框图如图1 所示。

其中信号产生模块将产生所需的各种信号,这些信号的产生可以有多种方式,如用计数器直接产生信号输出,或者用计数器产生存储器的地址,在存储器中存放信号输出的数据。

信号发生器的控制模块可以用数据选择器实现,用8 选1 数据选择器实现对5 种信号的选择。

 图1 信号发生器结构框图 最后将波形数据送入D/A 转换器,将数字信号转换为模拟信号输出。

用示波器测试D/A 转换器的输出,可以观测到5 种信号的输出。

1.1 定制初始化数据文件 QuartusII 能接受的LPM_ROM 模块中的初始化数据文件的格式有两种:。

基于FPGA的多功能信号发生器设计

基于FPGA的多功能信号发生器设计

三角波的实现 输入的选择信号等于3时,信号发生器顶层电路的仿 真波形如图所示,此时输出波形是三角波。
阶梯波的实现 输入的选择信号等于4时,信号发生器顶层电路的仿 真波形如图所示,此时输5时,信号发生器顶层电路的仿 真波形如图所示,此时输出的波形是方波。输出的数字信 号为周期性的全0或全1。
基于FPGA的多功能信号发生器设计 论文答辩
指导老师: 学生: 学号:
论文框架
1、系统任务 2、课题背景 3、方案论证 4、信号发生器的设计过程 5、波形仿真 6、结论
系统任务
通过运用所学知识,查阅相关资料,在 老师的细心指导下,一定能在规定的时间内 完成课题的要求, 用VHDL语言结合原理图 设计实现一个多功能信号发生器 。
信号发生器的设计过程
设计规划 根据设计思路,信号发生器的结构框图如图所示。它 由信号产生,信号控制,D/A转换三部分组成。
时钟信 号 选择信 号
信 号 产 生 信 号 控 制 D/A 转 换 器 输 出 信 号
递增锯齿波模块 其生成的元器件如图
递减锯齿波模块 其生成的元器件如图
三角波模块 其生成的元器件如图
选择方案
综合以上原因,从实现难易,误差大小以及最终结果等各 方面考虑,选择方案二。 根据方案二中多功能信号发生器的设计原理,本次方案运 用VHDL编程实现多波形数字输出,然后再通过DAC0832实 现数模转换,通过示波器观察到模拟波形输出,完成实验。 由于程序各个模块独立,思路清晰,比较简单,容易及时 修改,验证和仿真;简单易行。实现了多功能信号发生器 各个波形的成功输出。
结论
EDA技术是电子设计的发展趋势,利用EDA工具可 以代替设计者完成电子系统设计中的大部分工作EDA工 具从数字系统设计的单一领域,发展到今天,应用范围己 涉及模拟、微波等多个领域,可以实现各个领域电子系统 设计的测试、设计仿真和布局布线等。通过使用quartus Ⅱ这个完全集成化、易学易用的可编程逻辑设计环境,利 用VHDL语言设计的多功能信号发生器,较成功的完成了 预期的效果,能够正确的输出递增锯齿波、递减锯齿波、 三角波、方波以及阶梯波,并能够有选择、有规律的输出。 但在实际硬件实施过程中器件本身所存在的误差,导致波 形有些失真。由于时间关系,我们没有及时消除,但不影 响测试结果。系统功能实现不够完善,这些都需要不断的 改进和补充。本设计基于FPGA的高精度数字式多功能波 信号发生器,采用文本和原理图结合的方法设计,提高开 发效率,缩短研发周期,而且系统的调试方便,修改容易。 实验表明系统产生的波形比较稳定,抗干扰能力强,有一 定的开发及生产价值。

基于FPGA的信号发生器设计

基于FPGA的信号发生器设计

引言信号发生器是一种常用的信号源,广泛应用于电子电路、自动控制和科学试验等领域。

传统的信号发生器一般基于模拟技术,但基于模拟技术的传统信号发生器能生成的信号类型比较有限,一般只能生成少数的规则波形信号。

如果需要生成较复杂的波形信号,电路的复杂度以及设计难度都将大大增加。

任意波形发生器就是为了解决这个问题而去研究的,任意波形发生器是利用DDS(直接数字频率合成)技术,通过在波形存储器内存储待输出信号的波形采样数据,并对波形存储器进行顺序的循环寻址来合成波形。

只要改变波形存储器中的波形采样数据,就可以方便的得到需要波形的信号。

因此任意波形发生器不仅能产生正弦、余弦、方波、三角波和锯齿波等常见信号,还可以通过各种编辑手段生成任意的波形采样数据,方便的合成传统信号发生器所不能生成的任意波形信号,从而满足各种测试和实验的需要。

当今时代微电子技术的进步以及各应用领域多样化的要求,促使集成电路向高速、高集成度、低功耗的系统集成方向发展。

在单芯片上集成嵌入式CPU、DSP、存储器和其他功能的片上系统(SOC)正处于高速发展中。

Altera公司提出的片上可编程系统(SOPC)解决方案,使得FPGA在嵌入式系统设计领域中的地位越来越重要。

SOPC(System On Programmable Chip可编程片上系统)是一种特殊的嵌入式微处理器系统。

首先,它是片上系统(SOC, System On Chip),即由单个芯片完成整个系统的主要逻辑功能;其次,它是可编程系统,以FPGA为硬件基础,具有灵活的设计方式,可裁减、可扩充、可升级,并具备软硬件系统在线可编程的功能。

本设计就是采用SOPC方案,以DDS技术为核心技术构建了波形发生器的整个系统,这样可以避免了传统信号发生器的缺点,方便地实现了信号的产生。

1 总体设计概述FPGA(现场可编程门阵列)是一项非常前沿和有发展前景的技术。

FPGA的芯片实际上就是一片已经制造好的大规模集成电路芯片。

基于FPGA的函数信号发生器设计

基于FPGA的函数信号发生器设计

基于FPGA的函数信号发生器设计函数信号发生器是一种能够产生不同类型信号的测试设备,通常在电子电路实验中使用。

基于FPGA的函数信号发生器设计利用可编程逻辑器件FPGA,可以实现更高的灵活性和可定制性,同时减少了硬件开发成本。

本文将详细介绍基于FPGA的函数信号发生器的设计原理、主要模块和实现方法。

一、设计原理二、主要模块1.时钟生成器模块:时钟信号是产生各种信号波形的基础,因此需要设计一个时钟生成器模块来产生稳定的时钟信号。

可以使用FPGA内部的锁相环(PLL)或计数器来实现。

2.波形选择模块:为了产生不同类型的信号波形,需要设计一个波形选择模块。

通过该模块,用户可以选择所需的信号波形,如正弦波、方波、三角波等。

3. 波形生成模块:根据用户的选择,使用FPGA内部的逻辑门电路来实现不同类型的信号波形的生成。

可以利用查找表(Look-Up Table,简称LUT)来存储不同波形的采样点数据,并通过控制逻辑将这些数据输出为相应的信号波形。

4.频率控制模块:通过频率控制模块,可以对信号波形的频率进行控制。

可以根据用户的输入,通过改变时钟信号的频率或改变波形采样点的间隔来实现频率的调节。

5.幅值控制模块:通过幅值控制模块,可以对信号波形的幅值进行控制。

可以通过改变逻辑门的阈值电压或者改变DAC(数字模拟转换器)的输出电平来实现幅值的调节。

三、实现方法2.硬件设计:根据设计需求,选择合适的FPGA芯片、外部时钟源、AD/DA转换器等外部器件。

根据电路原理图,进行相应的电路布局和连线。

在确认电路无误后,进行焊接和组装工作。

在软件和硬件设计完成后,可以通过控制板上的按钮、旋钮等输入设备来调节信号波形的频率、幅值等参数,从而实现不同类型的信号波形的生成。

总结:基于FPGA的函数信号发生器设计利用FPGA的可编程特性,可以实现信号波形的灵活生成和控制。

通过设计合适的模块,可以产生多种类型的信号波形,并对其频率、幅值等参数进行调节。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h a d t h e c h a r a c t e is r t i c s o f h i g h e r a c c u r a c y ,s t r o n g l o a d c a p a c i t y, s t a b l e o p e r a t i o n .
2 7 ( 3 ) : 8 8 ~ 9 1
J u n . 2 0 1 5
6月
d o i : 1 0 . 3 9 6 9 6 . i s s n . 1 0 0 2 — 2 0 9 0 . 2 0 1 5 . 0 3 . 0 2 0
基于 F P GA 的信 号发 生器设 计
刘英楠 。 衣淑 娟 , 宫龙江
s q u a r e w a v e , t i r a n g l e w a v e a n d s a w t o o t h w a v e o f a d j u s t a b l e f r e q u e n c y . T h r o u g h t h e h a r d w a r e t e s t , t h e r e s u l t s s h o w e d t h a t t h e s y s t e m
( 1 . 黑龙江八一农垦大学信息技术 学院 , 大庆 1 6 3 3 1 9 ; 2 . 东北石油大学党委宣传部 ) 摘 要: 作为调试设 备 , 数字信号发生器是数字信号处理 中不可缺少 的一部分 , 广泛的应用在生产生活 当中。 由于 F P G A集密
度高 , 功耗低 , 体积小以及可靠性高等优点于一身 , 所 以采用 A h e r a 公 司生产 的 F P G A实现数字 信号发生器 的设计 , 该数 字信 号发生器能够产生可调频率 的正弦波 、 方波 、 三角 波和锯齿波 。通过硬件 系统测试 , 结果表 明: 系统精度较高 、 带负载 能力较
第 2 7卷 第 3期
2 0 1 5 年
黑 龙 江 八 一 农 垦 大 学 学 报
J o u r n a l o f H e i l o n g j i a n g B a y i A g r i c u l t u r a l U n i v e r s i t y
p r o d u c t i o n a n d l i f e . S i n c e F P GA a d v a n t a g e o f h i g h d e n s i t y ,l o w p o we r c o n s u mp t i o n,s ma l l v o l u me a n d h i g h r e l i a b i l i t y, F P GA o f Al t e r a c o mp a n y wa s u s e d t o r e li a z e he t d e s i g n o f d i g i t a l s i g n a l g e n e r a t o r , a n d t h e d i g i t a l s i g n a l g e n e r a t o r c o u l d g e n e r a t e s i n e wa v e ,
Ke y wo r d s : s i g n a l g e n e r a t o r ; D / A c o n v e r s i o n; F P GA
如今 , 现代电子技术迅猛发展 , 电子测量工作对 信号发生器的正弦信号源、 脉冲信号源 、 函数信号源 以及 高频 信 号 源等 性能 方 面有 了更 严 格 ,更 具体 的 要求。传统 的信号发生器具有成本高 , 操作不灵活等 缺点 已经远 远 满足 不 了现 代 电子测 量 的需 要 退 出 了
强、 运行稳 定。
关键词 : 信号发生器 ; D / A转换 ; F P G A
中 图分 类 号 : T P 2 7 3 文 献 标 识码 : A 文章编号 : 1 0 0 2 — 2 0 9 0 ( 2 0 1 5 ) 0 3 — 0 0 8 8 — 0 4
De s i g n o f S i g n a l Ge n e r a t o r Ba s e d o n FPGA
L i u Yi n g n a n 1 , Yi S h u j u a n 1 , Go n g L o n g j i a n g 2
( 1 . C o l l e g e o f I n f o r ma t i o Байду номын сангаас a n d T e c h n o l o g y , H e i l o n g j i a n g B a y i A g r i c u l t u r a l U n i v e si r t y , D a q i n g 1 6 3 3 1 9 ;
2 . P r o p a g a n d a D e p a r t m e n t , N o r t h e a s t P e t r o l e u m U n i v e si r t y )
Ab s t r a c t : As d e b u g g i n g e q u i p me n t , t h e d i g i t a l s i g n a l g e n e r a t o r wa s a n i n d i s p e n s a b l e p a r t i n d i g i t a l s i g n a l p r o c e s s i n g , a n d wa s u s e d i n
相关文档
最新文档