初一数学(上)难题百道与问题详解
(完整)初一数学(上)难题百道及答案
![(完整)初一数学(上)难题百道及答案](https://img.taocdn.com/s3/m/eed477805fbfc77da269b187.png)
45、如果()1233m xy m xy x ---+为四次三项式,则m =________。
46、观察代数式223a b c 和32a y ,把它们的共同点填写在下列横线上,⑴都是_______式,⑵都是_________。
47、如果2231,27A m m B m m =-+=--,且0A B C -+=,那么C=_______。
48、把多项式:()()()544322354563x x y xy x y x y y --+--++-去括号后按字母x 的降幂排列为________________________。
49、关于a 、b 的单项式,2x yy a b +与()213x x y a b +-+是同类项,它们的合并结果为_____________。
50、p-[q+2p-( )]=3p-2q 。
51、如果关于x 、y 的多项式,存在下列关系()()2222223433xkxy y mx xy yxxy ny -+-+-=-+则m=______,n=_____,k=_______。
52、如果()2120a a b +++=,那么()()()()()5432a b a b a b a b a b +++++++++=____________。
53、已知15,6mn n m mn -=-=,那么m n -=_________,2mn m n -++=_________。
54、如果3,2xx y z ==,那么x y z x y z -+=++__________。
55、一船在顺水中的速度为a 千米/小时,水速为b 千米/小时,(a>2b ),则此船在相距S 千米的两码头间往返一次需用时间为__________小时。
56、如图是2004年月10月份的日历,现在用一矩形在日历中任意框出9个数 ,用e 表示出这9个数的和为_________。
57、在代数式21215,5,,,,,233x y zx y a x y xyz y π+---+-中有 A 、5个整式 B 、4个单项,3个多项式C 、6个整式,4个单项式D 、6个整式,单项式与多项式个数相同58、如果21213n x y --与823x y 是同类项,那么代数式()2003200359114n n ⎛⎫-⋅- ⎪⎝⎭的值为( )A 、0B 、-1C 、+1D 、±159、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于( )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N60、将代数式()()a b c d a b c d -+-+--写成()()M N M N +-的形式正确的是( )A 、()()a b c d a b c d -+-+--⎡⎤⎡⎤⎣⎦⎣⎦B 、()()a b d c a b d c -+++--⎡⎤⎡⎤⎣⎦⎣⎦C 、()()()()a d c b a d c b -+--+-⎡⎤⎡⎤⎣⎦⎣⎦D 、()()()()a b c d a b c d -+-+--⎡⎤⎡⎤⎣⎦⎣⎦ 61、如果22x x -+的值为7,则211522x x -++的值为( )A 、52 B 、32 C 、152D 、答案不惟一 62、如果2a b -=,3c a -=,则()()234b c b c ---+的值为( )A 、14B 、2C 、44D 、不能确定63、a bca b c++的值是( )A 、±3B 、±1C 、±1或±3D 、不能确定 64、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,那么八月份该款书包的营业额比七月份增加( )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元 65、一件工作,甲单独做x 天完成,乙单独做y 天完成。
初一上册数学 难题
![初一上册数学 难题](https://img.taocdn.com/s3/m/48b2b264443610661ed9ad51f01dc281e53a568b.png)
初一上册数学的难题涉及以下几个方面:
1. 代数部分:
•解一元一次方程组,例如:求解两个未知数的线性方程组。
•简单的一次不等式的解法及其在实际问题中的应用。
示例题目:已知方程组2x + 3y = 7 和4x - y = 5,求解x 和y 的值。
2. 几何部分:
•计算平面图形的周长和面积,如矩形、三角形、平行四边形等,并可能涉及到复杂组合图形的面积计算。
•探究直角三角形的勾股定理及其应用。
示例题目:一个直角三角形的两条直角边分别为3cm和4cm,求斜边长度以及该三角形的面积。
3. 数论初步:
•最大公约数与最小公倍数的计算方法,如辗转相除法(欧几里得算法)。
•整除性判断和带余除法定理。
示例题目:求180和288的最大公约数和最小公倍数。
4. 应用题:
•时间、速度、路程问题,包括相遇问题和追及问题。
•工作效率问题,比如甲乙两人合作完成一项工作需要的时间计算。
示例题目:一辆车以每小时60公里的速度从A地出发前往B地,
若另一辆车以每小时40公里的速度同时从B地出发前往A地,两车相向而行,问经过多长时间两车相遇?
以上是一些初一上册数学中可能遇到的难题类型,具体题目难度会根据教材版本和地区教育要求有所不同。
对于学生来说,掌握好基础知识并加强逻辑思维训练是解决这类问题的关键。
七年级上册数学难题100题
![七年级上册数学难题100题](https://img.taocdn.com/s3/m/d45ad4acbdeb19e8b8f67c1cfad6195f312be8e6.png)
七年级上册数学难题100题一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.B.1C.-2D.-10.方程│3x│=18的解的景遇是().A.有一个解是6B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3B.a=,b=-3C.a≠,b=-3D.a=,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某阛阓在统计本年第一季度的销售额时发觉,仲春份比一月份增长了10%,三月份比仲春份削减了10%,则三月份的销售额比一月份的销售额().A.增长10%B.削减10%C.不增也不减D.削减1%15.在梯形面积公式S=(a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1B.5C.3D.416.甲组有28人,乙组有20人,则以下分配办法中,能使一组人数为另外一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的划定规矩为胜一场得3分,平一场得1分,负一场是分,•一个队打了14场比赛,负了5场,共得19分,那末这个队胜了()场.A.3B.4C.5D.618.如下图,在甲图中的左盘大将2个物品取下一个,则在乙图中右盘上取下几个砝码才干使天平仍旧均衡?()A.3个B.4个C.5个D.6个3、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)初中数学19.解方程:-9.5.20.解方程:(x-1)-(3x+2)= -(x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序倒置后,所得的三位数与原三位数的和是1171,求这个三位数.初中数学23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名ABCDEF G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果正确到1元).(2)游客XXX乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到XXX手中的票价是66元,马上说下一站就到了.请问XXX是在哪一站下的车(要求写出解答进程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:1、1.32.-3(点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=-,得x=)4.x+3x=2x-65.y= - x6.525(点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4[点拨:设需x天完成,则x(+)=1,解得x=4]初中数学二、9.D10.B(点拨:用分类会商法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故此题应选B)11.D(点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a=,b+3≠0,b≠-3,故本题应选D.)12.B(点拨;在变形的进程中,使用分式的性子将分式的份子、•分母同时扩展或缩小不异的倍数,将小数方程变成整数方程)13.C(点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B(点拨:由公式S=(a+b)h,得b= -3=5厘米)16.D17.C18.A(点拨:按照等式的性子2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,按照图意和题意,得5x=3(x+10),解得x=15以是需配正方形图片的边长为15-10=5(厘米)答:需求配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由可得=0.12A站至H站的实践里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以XXX是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元免费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种景遇:①若乙班少于或即是50人,设乙班有x人,则甲班有(103-x)人,依题意,得初中数学5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,按照题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这类景遇不存在.故甲班为58人,乙班为45人.============================================ ==========================3.2解一元一次方程(一)——合并同类项与移项【知能点分类锻炼】知能点1归并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8;(2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x=双方同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2-两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.归并以下式子,把结果写在横线上.(1)x-2x+4x=__________;(2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.初中数学(1)6x=3x-7(2)5=7+2x(3)y- = y-2(4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.假如关于y的方程3y+4=4a和y-5=a有不异解,则a 的值是________.知能点2用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明天天早上7:50从家动身,到距家1000米的黉舍上学,•天天的行走速率为80米/分.一天XXX从家动身5分后,爸爸以180米/分的速率去追XXX,•并且在途中追上了他.(1)爸爸追上XXX用了多长时间?(2)追上XXX时间隔黉舍有多远?【综合应用提高】初中数学12.y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2?(2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意得当一元一次方程;(2)所编应用题完全,问题分明,且吻合实践糊口.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示企图,其中B,C,D为风景点,E为两条路的交织点,图中数据为响应两点间的旅程(单元:千米).一学生从A处动身,以2千米/时的速率步行游玩,每个景点的勾留工夫均为.5小时.(1)当他沿路线XXX游玩回到A处时,共用了3小时,求CE的长.(2)若此学生计划从A处动身,步行速率与各景点的勾留工夫坚持稳定,且在最短工夫内看完三个景点返回到A处,请你为他设想一条步行路线,•并申明这样设想的来由(不斟酌其他身分).答案:1.(1)题纰谬,-8从等号的左边移到右边应当改动符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x=,两边同除以,得x=)3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x(2)4y(3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=-.(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+,归并,得y=-,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,归并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.初中数学7.k=3 [点拨:解方程3x+4=0,得x=-,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶华夏有油7公斤.[点拨:还有其他列法]10.解:设应当从盘A内拿出盐x克,可列出表格:盘A盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则按照题意,得50-x=45+x.解这个方程,得x=2.5,经检验,吻合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上XXX时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上XXX用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上XXX时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ] 13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)。
七年级上册数学难题100题
![七年级上册数学难题100题](https://img.taocdn.com/s3/m/2f39de2aaef8941ea66e0517.png)
一、填空题.(每小题3分,共24分)1.已知4x2n5+5=0是关于x的一元一次方程,则n=_______.2.若x=1是方程2x3a=7的解,则a=_______.3.当x=______时,代数式 x1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x1=2x+1有相同的解,则m的值为(). A.0B.1 C.2 D.10.方程│3x│=18的解的情况是(). A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax3=5x+b 无解,则a,b应满足().A.a≠ ,b≠3B.a= ,b=3C.a≠ ,b=3 D.a= ,b≠312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米. A.1B.5 C.3D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是(). A.从甲组调12人去乙组 B.从乙组调4人去甲组 C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场. A.3B.4 C.5D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:9.5.20.解方程:(x1)(3x+2)= (x1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A 站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H 各站至H站里程数(米)1500 1130 910 622 402 219 72 0 例如:要确定从B站至E 站火车票价,其票价为=87.36≈87(元).(1)求A站至F 站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.3 (点拨:将x=1代入方程2x3a=7,得23a=7,得a=3)3.(点拨:解方程x1= ,得x= )4.x+3x=2x6 5.y= x6.525 (点拨:设标价为x 元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,3=18,∴x=6故本题应选B)11. D (点拨:由2ax3=5x+b,得(2a5)x=b+3,欲使方程无解,必须使2a5=0,a= ,b+3≠0,b≠3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= 3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为 200(23y)4.5= 9.5 ∴400600y4.5=1100y9.5500y=404 ∴y= 20.解:去分母,得 15(x1)8(3x+2)=230(x1)∴21x=63∴x =321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15 所以需配正方形图片的边长为1510=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x2,百位上的数字为x+1,故 100(x+1)+10x+(3x2)+100(3x2)+10x+(x+1)=1171 解得x=3 答:原三位数是437.23.解:(1)由已知可得 =0.12 A站至H站的实际里程数为1500219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66 解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103x)人,依题意,得5x+4.5(103x)=486 解得x=45,∴10345=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103x)人,根据题意,得 4.5x+4.5(103x)=486 ∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.=========================== =============================== ============3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x8=2,得到3x=28; (2)从3x=x6,得到3xx=6. 2.下列变形中:①由方程=2去分母,得x12=10; ②由方程x= 两边同除以,得x=1; ③由方程6x4=x+4移项,得7x=0; ④由方程 2 两边同乘以6,得12x5=3(x+3). 错误变形的个数是()个.A.4 B.3 C.2 D.1 3.若式子5x7与4x+9的值相等,则x的值等于().A. 2 B.16 C. D.4.合并下列式子,把结果写在横线上.(1)x2x+4x=__________; (2)5y+3y4y=_________; (3)4y2.5y3.5y=__________.5.解下列方程.(1)6x=3x7 (2)5=7+2x (3)y = y2 (4)7y+6=4y3 6.根据下列条件求x的值: (1)25与x的差是8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y5=a有相同解,则a 的值是________.知能点 2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重 4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B 内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=62x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5? 13.已知关于x的方程 x=2的根比关于x的方程5x2a=0的根大2,求关于x的方程15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图32是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案: 1.(1)题不对,8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,6在等号右边没有移项,不应该改变符号,应改为3xx=6.2.B [点拨:方程 x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x7=4x+9,解得x=16)4.(1)3x (2)4y (3)2y 5.(1)6x=3x7,移项,得6x3x=7,合并,得3x=7,系数化为1,得x= .(2)5=7+2x,即7+2x=5,移项,合并,得2x=2,系数化为1,得x=1.(3)y = y2,移项,得y y=2+ ,合并,得y= ,系数化为1,得y=3.(4)7y+6=4y3,移项,得7y4y=36,合并同类项,得3y=9,系数化为1,得y=3.6.(1)根据题意可得方程:25x=8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得 x=28,合并,得 x=6,系数化为1,得x=10.7.k=3 [点拨:解方程3x+4=0,得x= ,把它代入3x+4k=8,得4+4k=8,解得k=3] 8.19 [点拨:∵3y+4=4a,y5=a是同解方程,∴y= =5+a,解得a=19] 9.解:设桶中原有油x 千克,那么取掉一半油后,余下部分色拉油的毛重为(80.5x)千克,由已知条件知,余下的色拉油的毛重为 4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程80.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法] 10.解:设应该从盘A内拿出盐x克,可列出表格:盘 A 盘B 原有盐(克) 50 45 现有盐(克) 50x 45+x 设应从盘A内拿出盐x克放在盘B内,则根据题意,得50x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐 2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000720=280(米).所以追上小明时,距离学校还有280米.12.(1)x= [点拨:由题意可列方程2x+8=62x,解得x= ] (2)x= [点拨:由题意可列方程62x(2x+8)=5,解得x= ] 13.解:∵ x=2,∴x=4.∵方程 x=2的根比方程5x2a=0的根大2,∴方程5x2a=0的根为6.∴5×(6)2a=0,∴a=15.∴ 15=0.∴x=225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得 1.6+1+x+1=2(32×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为( 1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)欧阳学文。
(完整)初一数学(上)难题百道及答案.doc
![(完整)初一数学(上)难题百道及答案.doc](https://img.taocdn.com/s3/m/912e1c8f26fff705cc170a6f.png)
45、如果x m 1y2m 3 xy 3x 为四次三项式,则m________。
46、观察代数式3a2b2c 和 a3 y2,把它们的共同点填写在下列横线上,⑴都是 _______ 式,⑵都是 _________。
47、如果A 3m2 m 1,B 2m2 m 7 ,且A B C 0,那么C=_______。
48、把多项式:x5 4x4 y 5xy4 6 x3 y 2 x2 y3 3y5 去括号后按字母x 的降幂排列为 ________________________ 。
49、关于a、b的单项式,a x 2 y b y 与x y a2x 1b3是同类项,它们的合并结果为_____________。
50、 p-[q+2p-( )]=3p-2q 。
51 、如果关于x 、y 的多项式,存在下列关系3x2 kxy 4 y2 mx2 3xy 3y 2 x2 xy ny2 则m=______ , n=_____ ,k=_______。
52、如果a 1 2a b 20 ,那么 a b5a4a3 2bb b a ba=____________。
53 、已知mn n 15, m mn 6 ,那么m n _________ ,2mn m n _________。
54、如果xx,那么x y z__________。
3 y, zx y z255、一船在顺水中的速度为 a 千米 / 小时,水速为 b 千米 / 小时,( a>2b),则此船在相距 S 千米的两码头间往返一次需用时间为__________小时。
56、如图是2004 年月 10 月份的日历,现在用一矩形在日历中任意框出9 个数,用 e 表示出这 9 个数的和为 _________。
57、在代数式1x y,5 a, x2 y2,1, xyz, 5 , x yz中有2 3 y 3A、 5 个整式 B 、 4 个单项, 3 个多项式C、 6 个整式, 4 个单项式 D 、 6 个整式,单项式与多项式个数相同1 2003 59200358、如果x2n 1 y2与 3x8 y2是同类项,那么代数式 1 n n 的值为3 14()A、 0 B 、 -1 C 、 +1 D 、± 159、如果M 3x2 2xy 4y2 , N 4x2 5xy y2,则 8x2 13xy 15 y2等于()A、 2M-N B 、 2M-3N C 、 3M-2N D 、 4M-N60、将代数式 a b c d a b c d 写成 M N M N 的形式正确的是()A、a b c d a b c dB、 a b d c a b d cC、 a d c b a d c bD、 a b c d a b c d61、如果x2 x 2 的值为7,则 1 x2 1 x 5 的值为()2 2A 、5B、3C、 15D、答案不惟一22262、如果 a b2 , c a3 ,则 b c24 的值为()3 b c A 、 14B、 2 C 、 44D、不能确定a b c )63、b的值是(acA 、± 3B 、± 1C 、± 1 或± 3D 、不能确定 64、商场七月份售出一种新款书包 a 只,每只 b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,那么八月份该款书包的营业额比七月份增加() A 、 1.4c 元B、 2.4c 元C、 3.4c 元D、 4.4c 元65、一件工作,甲单独做 x 天完成,乙单独做 y 天完成。
七年级上学期数学难题难度训练含答案解析
![七年级上学期数学难题难度训练含答案解析](https://img.taocdn.com/s3/m/ae7cee190166f5335a8102d276a20029bd64638b.png)
七年级上学期数学难题难度训练含答案解析七年级上数学难题训练1一.主观题(共12小题,每题1分)1.为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况,并将所得数据进行了统计,结果如图所示。
1)求在这次调查中,一共抽查了多少名学生?2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数。
3)若该校有n名学生,请估计该校参加“美术”活动项目的人数。
2.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整)。
请你根据图中所给的信息解答下列问题:1)请将以上两幅统计图补充完整。
2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有x人达标。
3)若该校学生有y人,请你估计此次测试中,全校达标的学生有多少人?3.下列调查中,哪些用的是普查方式,哪些用的是抽样调查方式?1)了解一批空调的使用寿命。
2)出版社审查书稿的错别字的个数。
3)调查全省全民健身情况。
4.为了了解家庭日常生活消费情况,XXX记录了他家一年中7周的日常生活消费费用。
数据如下(单位:元):230 195 180 250 270 455 170请你估算一下XXX家平均每年(每年按52周计算)的日常生活消费总费用。
5.某班有学生50人,根据全班学生的课外活动情况绘制的统计图(如图),求参加其他活动的人数。
6.将一批工业最新动态信息输入管理储存网络,甲单独做需要6小时,乙单独做需要4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?7.有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少。
8.XXX收购了一批质量为x的该种山货,质量比粗加工的质量倍还多,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量为y,求粗加工的该种山货质量。
(完整)初一数学(上)难题百道及答案.doc
![(完整)初一数学(上)难题百道及答案.doc](https://img.taocdn.com/s3/m/912e1c8f26fff705cc170a6f.png)
45、如果x m 1y2m 3 xy 3x 为四次三项式,则m________。
46、观察代数式3a2b2c 和 a3 y2,把它们的共同点填写在下列横线上,⑴都是 _______ 式,⑵都是 _________。
47、如果A 3m2 m 1,B 2m2 m 7 ,且A B C 0,那么C=_______。
48、把多项式:x5 4x4 y 5xy4 6 x3 y 2 x2 y3 3y5 去括号后按字母x 的降幂排列为 ________________________ 。
49、关于a、b的单项式,a x 2 y b y 与x y a2x 1b3是同类项,它们的合并结果为_____________。
50、 p-[q+2p-( )]=3p-2q 。
51 、如果关于x 、y 的多项式,存在下列关系3x2 kxy 4 y2 mx2 3xy 3y 2 x2 xy ny2 则m=______ , n=_____ ,k=_______。
52、如果a 1 2a b 20 ,那么 a b5a4a3 2bb b a ba=____________。
53 、已知mn n 15, m mn 6 ,那么m n _________ ,2mn m n _________。
54、如果xx,那么x y z__________。
3 y, zx y z255、一船在顺水中的速度为 a 千米 / 小时,水速为 b 千米 / 小时,( a>2b),则此船在相距 S 千米的两码头间往返一次需用时间为__________小时。
56、如图是2004 年月 10 月份的日历,现在用一矩形在日历中任意框出9 个数,用 e 表示出这 9 个数的和为 _________。
57、在代数式1x y,5 a, x2 y2,1, xyz, 5 , x yz中有2 3 y 3A、 5 个整式 B 、 4 个单项, 3 个多项式C、 6 个整式, 4 个单项式 D 、 6 个整式,单项式与多项式个数相同1 2003 59200358、如果x2n 1 y2与 3x8 y2是同类项,那么代数式 1 n n 的值为3 14()A、 0 B 、 -1 C 、 +1 D 、± 159、如果M 3x2 2xy 4y2 , N 4x2 5xy y2,则 8x2 13xy 15 y2等于()A、 2M-N B 、 2M-3N C 、 3M-2N D 、 4M-N60、将代数式 a b c d a b c d 写成 M N M N 的形式正确的是()A、a b c d a b c dB、 a b d c a b d cC、 a d c b a d c bD、 a b c d a b c d61、如果x2 x 2 的值为7,则 1 x2 1 x 5 的值为()2 2A 、5B、3C、 15D、答案不惟一22262、如果 a b2 , c a3 ,则 b c24 的值为()3 b c A 、 14B、 2 C 、 44D、不能确定a b c )63、b的值是(acA 、± 3B 、± 1C 、± 1 或± 3D 、不能确定 64、商场七月份售出一种新款书包 a 只,每只 b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,那么八月份该款书包的营业额比七月份增加() A 、 1.4c 元B、 2.4c 元C、 3.4c 元D、 4.4c 元65、一件工作,甲单独做 x 天完成,乙单独做 y 天完成。
七年级数学上册难题汇总(含答案),月考前赶紧练习!
![七年级数学上册难题汇总(含答案),月考前赶紧练习!](https://img.taocdn.com/s3/m/bcab2637a9114431b90d6c85ec3a87c240288a84.png)
初一数学上册难题和答案1.若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8乘以-1,不等号改向-8<4x-28<0加上2820<4x<28除以45<x<7x是整数所以x=64x+20=44所以有6间宿舍,44人2.甲对乙说:“你给我100元,我的钱将比你多1倍。
”乙对甲说:“你只要给我10元,我的钱将比你多5倍。
”问甲乙两人各有多少元钱?设甲原有x元,乙原有y元.x+100=2*(y-100)6*(x-10)=y+10x=40y=1703.小王和小李从A B两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x设路程为单位1,则:80(1\2x+x)=1解得x=1\120所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。
猫每秒跑7米,用了10秒追上老鼠。
老鼠每秒跑多少米?解:设老鼠每秒跑X米7*10=10X+2010X=70-20X=5答:老鼠每秒跑5米。
5.一项工程,甲单独做10天完成,乙单独做6天完成。
先由甲先做2天,然后甲乙合作,问:甲乙合作还需要多少天完成工作?设甲乙合作一起还需要x天完成总工程为1甲先做了2天他完成了总工程的2*1/10=1/5那么此时还剩下为1-1/5=4/5那么就有了(1/10+1/6)*x=4/5解得x=3即一起工作3天完成整个工作思路:主要是看每个完成的工作量跟整个的相对关系的。
初一数学上册难题和答案
![初一数学上册难题和答案](https://img.taocdn.com/s3/m/d18baa6e14791711cd791714.png)
初一数学上册难题和答案:1.若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8乘以-1,不等号改向-8<4x-28<0加上2820<4x<28除以45<x<7x是整数所以x=64x+20=44所以有6间宿舍,44人2.甲对乙说:“你给我100元,我的钱将比你多1倍。
”乙对甲说:“你只要给我10元,我的钱将比你多5倍。
”问甲乙两人各有多少元钱?设甲原有x元,乙原有y元.x+100=2*(y-100)6*(x-10)=y+10x=40y=1703.小王和小李从AB两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x设路程为单位1,则:80(1\2x+x)=1解得x=1\120所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。
猫每秒跑7米,用了10秒追上老鼠。
老鼠每秒跑多少米?解:设老鼠每秒跑X米7*10=10X+2010X=70-20X=5答:老鼠每秒跑5米。
5.一项工程,甲队做需要10天完成,乙队需要20 天完成,两队共同做了3天后,甲队采用新技术,工作效率提高了3分之1,求自甲队采用心技术后,两队还需合作多少天才能完成这项工程?由已知得甲队每天做1/10,乙队每天做1/20,甲队采用新技术后每天做1/10(1+1/3)=2/15,设还需要合作x天,列方程如下:(1/10+1/20)*3+(2/15+1/20)x=1,解方程得x=3天所以还需要3天完成。
七年级上册数学难题(集萃)
![七年级上册数学难题(集萃)](https://img.taocdn.com/s3/m/ea6d27d22cc58bd63186bd1e.png)
七年级上册数学难题集萃1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?答案1.设甲、乙一起做还需x小时才能完成工作.根据题意,得×+(+ )x=1解这个方程,得x==2小时12分答:甲、乙一起做还需2小时12分才能完成工作.2.设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x18+2x=15+x,2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.设圆柱形水桶的高为x毫米,依题意,得·()2x=300×300×80x≈229.3答:圆柱形水桶的高约为229.3毫米.4.设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为分.过完第二铁桥所需的时间为分.依题意,可列出方程+ =解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米.5.设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.6.设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.7.(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算, 设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A 种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750 故为了获利最多,选择第二种方案.。
一元一次方程应用题100道(带问题详解)
![一元一次方程应用题100道(带问题详解)](https://img.taocdn.com/s3/m/1910c0796529647d2628520b.png)
初一数学上册一元一次方程运用题100道问题弥补:第3章一元一次方程全章分解测试(时光90分钟,满分100分)一.填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式暗示y,则y=________.6.某商品的进价为300元,按标价的六折发卖时,利润率为5%,则商品的标价为____元.7.已知三个持续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲.乙一路做,•则需________天完成.二.选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有雷同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有很多个解11.若方程2ax-3=5x+b无解,则a,b应知足().A.a≠ ,b≠3 B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地.同时.同向起跑,t分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计本年第一季度的发卖额时发明,二月份比一月份增长了10%,三月份比二月份削减了10%,则三月份的发卖额比一月份的发卖额().A.增长10% B.削减10% C.不增也不减 D.削减1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配办法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规矩为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘大将2个物品取下一个,则在乙图中右盘上取下几个砝码才干使天平仍然均衡?()A.3个 B.4个 C.5个 D.6个三.解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)-(3x+2)= - (x-1).21.如图所示,在一块展现牌上整洁地贴着很多材料卡片,•这些卡片的大小雷同,卡片之间露出了三块正方形的空白,在图顶用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来弥补空白,须要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字次序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据懂得,火车票价按“”的办法来肯定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0≈87(元).(1)求A站至F站的火车票价(成果准确到1元).(2)搭客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,立时说下一站就到了.请问王大妈是在哪一站下的车(请求写出解答进程).24.某公园的门票价钱划定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲.乙两班共103人(个中甲班人数多于乙班人数)去游该公园,假如两班都以班为单位分离购票,则一共需付486元.(1)假如两班结合起来,作为一个集团购票,则可以勤俭若干钱?(2)两班各有若干逻辑学生?(提醒:本题应分情况评论辩论)答案: 一.1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二.9.D10.B (点拨:用分类评论辩论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B(点拨;在变形的进程中,运用分式的性质将分式的分子.•分母同时扩展或缩小雷同的倍数,将小数方程变成整数方程)13.C(点拨:当甲.乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三.19.解:原方程变形为∴500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63 ∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:须要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.A站至H站的现实里程数为1500-219=1281(千米)×≈154(元)(2)设王大妈现实乘车里程数为x千米,根据题意,得=66解得x=550,对比表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节俭486-412=74(元)(2)∵甲.乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情况:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超出50人,设乙班x人,则甲班有(103-x)人, 根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不消失.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要仔细,慢慢做,要做对.3.2 解一元一次方程(一)——归并同类项与移项【知能点分类练习】知能点1 归并与移项1.下面解一元一次方程的变形对不合错误?假如不合错误,指出错在哪里,并纠正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程 =2去分母,得x-12=10;②由方程 x= 双方同除以 ,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 双方同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C. D.4.归并下列式子,把成果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x 3)y- = y-2 (4)7y+6=4y-36.根据下列前提求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.假如方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.假如关于y的方程3y+4=4a和y-5=a有雷同解,则a的值是________.知能点2 用一元一次方程剖析息争决现实问题9.一桶色拉油毛重8千克,从桶中掏出一半油后,毛重4.5千克,•桶华夏有油若干千克?10.如图所示,天平的两个盘内分离盛有50克,45克盐,问应当从盘A内拿出若干盐放到盘B内,才干使两盘内所盛盐的质量相等.11.小明天天早上7:50从家动身,到距家1000米的黉舍上学,•天天的行走速度为80米/分.一天小明从家动身5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时光?(2)追上小明时距离黉舍有多远?【分解运用进步】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.【凋谢摸索创新】14.编写一道运用题,使它知足下列请求:(1)题意合适一元一次方程 ;(2)所编运用题完全,标题清晰,且相符现实生涯.【中考真题实战】15.(江西)如图3-2是某景致区的旅游路线示意图,个中B,C,D为景致点,E为两条路的交叉点,图中数据为响应两点间的旅程(单位:千米).一学生从A处动身,以2千米/时的速度步行游览,每个景点的勾留时光均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处动身,步行速度与各景点的勾留时光保持不变,且在最短时光内看完三个景点返回到A处,请你为他设计一条步行路线,•并解释如许设计的来由(不斟酌其他身分).答: 案1.(1)题不合错误,-8从等号的左边移到右边应当转变符号,应改为3x=2+8.(2)题不合错误,-6在等号右边没有移项,不该该转变符号,应改为3x-x=-6.2.B [点拨:方程 x= ,双方同除以 ,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,归并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,归并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,归并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6, 归并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,归并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,归并,得 x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶华夏有油x千克,那么取失落一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知前提知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶华夏有油7千克.[点拨:还有其他列法]10.解:设应当从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克) 50 45现有盐(克) 50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经磨练,相符题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离黉舍还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ] 13.解:∵ x=-2,∴x=-4.∵方程 x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴ -15=0.∴x=-225.14.本题凋谢,答案不独一.15.解:(1)设CE的长为x千米,根据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时光为( 1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A), ×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—1.7(2x-1)-3(4x-1)=4(3x+2)-12.(5y+1)+ (1-y)= (9y+1)+ (1-3y)3.[ (- 2)-4 ]=x+24.20%+(1-20%)(320-x)=320×40%5.2(x-2)+2=x+16.2(x-2)-3(4x-1)=9(1-x)7.11x+64-2x=100-9x8.15-(8-5x)=7x+(4-3x)9.3(x-7)-2[9-4(2-x)]=2210.3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2)(5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2)(x-y)2-(x-y)2-[(x-y)2-(x-y)2](2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b5b+2c-7b+4z-3z3b+3c-6a+8b-7c-2a3c-7b+5z-7b+4a-6n+8b-3v+9n-7v。
七年级上册数学难题第一单元
![七年级上册数学难题第一单元](https://img.taocdn.com/s3/m/93f51dd9bdeb19e8b8f67c1cfad6195f312be8d3.png)
七年级上册数学难题第一单元一、有理数的概念与分类相关。
1. 把下列各数分别填入相应的集合里:- - 5,- 2.626626662·s(每两个2之间依次多1个6),0,π,-(7)/(4),0.12,| - 6|。
- 有理数集合:{-5,0,-(7)/(4),0.12,| - 6|};- 无理数集合:{-2.626626662·s(每两个2之间依次多1个6),π}。
- 解析:有理数是整数和分数的统称,包括有限小数和无限循环小数;无理数是无限不循环小数。
-5是整数,属于有理数;-2.626626662·s是无限不循环小数,是无理数;0是整数,是有理数;π是无理数;-(7)/(4)是分数,是有理数;0.12是有限小数,是有理数;| - 6|=6,是整数,是有理数。
2. 下列说法正确的是()- A. 有理数都是有限小数。
- B. 无理数都是无限不循环小数。
- C. 带根号的数都是无理数。
- D. 数轴上的点表示的数都是有理数。
- 答案:B。
- 解析:A选项,有理数包括有限小数和无限循环小数,所以A错误;B选项,无理数的定义就是无限不循环小数,所以B正确;C选项,比如√(4) = 2是有理数,所以C错误;D选项,数轴上的点表示的数既有有理数也有无理数,所以D错误。
二、数轴相关。
3. 在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有()- A. 0个。
- B. 1个。
- C. 2个。
- D. 3个。
- 答案:C。
- 解析:在数轴上,原点右边的数是正数。
5和2是正数,所以在原点右边的数有2个。
4. 已知数轴上点A表示的数为-2,点B与点A的距离为3,则点B表示的数为____。
- 答案:1或-5。
- 解析:当点B在点A右侧时,点B表示的数为-2 + 3=1;当点B在点A左侧时,点B表示的数为-2-3=-5。
三、相反数与绝对值相关。
5. 若| a| = 5,则a=____。
七年级上册数学难题100题
![七年级上册数学难题100题](https://img.taocdn.com/s3/m/3a3057aef12d2af90342e66a.png)
一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.- 10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3 B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1% 15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.6 18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)=∴=500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故 100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得 =A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为×1281=≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得+(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.======================================================================解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程 =2去分母,得x-12=10;②由方程 x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C. D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重千克,•桶中原有油多少千克10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间(2)追上小明时距离学校有多远【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2 (2)当x取何值时,y1比y2小513.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案:1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程 x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为()千克,由已知条件知,余下的色拉油的毛重为千克,因为余下的色拉油的毛重是一个定值,所以可列方程=.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克) 50 45现有盐(克) 50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=,经检验,符合题意.答:应从盘A内拿出盐克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]13.解:∵ x=-2,∴x=-4.∵方程 x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴ -15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得+1+x+1=2(3-2×)解得x=,即CE的长为千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•+1+++1)+3×=(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(+1++×2+1)+3×=(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)。
七年级上册数学难题100题
![七年级上册数学难题100题](https://img.taocdn.com/s3/m/f3f547c784868762caaed5d9.png)
一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-?10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3 B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().?13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)=∴=500y=404∴y=?20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为×1281=≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得+(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.======================================================================解一元一次方程(一)?——合并同类项与移项?【知能点分类训练】?知能点1 合并与移项?1.下面解一元一次方程的变形对不对如果不对,指出错在哪里,并改正.?(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.?2.下列变形中:?①由方程=2去分母,得x-12=10;?②由方程x= 两边同除以,得x=1;?③由方程6x-4=x+4移项,得7x=0;?④由方程2- 两边同乘以6,得12-x-5=3(x+3).?错误变形的个数是()个.?A.4 B.3 C.2 D.1?3.若式子5x-7与4x+9的值相等,则x的值等于().?A.2 B.16 C.D.?4.合并下列式子,把结果写在横线上.?(1)x-2x+4x=__________; (2)5y+3y-4y=_________;?(3)5.解下列方程.?(1)6x=3x-7 (2)5=7+2x?(3)y- = y-2 (4)7y+6=4y-3?6.根据下列条件求x的值:?(1)25与x的差是-8.(2)x的与8的和是2.?7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.?8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.?知能点2 用一元一次方程分析和解决实际问题?9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.?11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.?(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】?12.已知y1=2x+8,y2=6-2x.?(1)当x取何值时,y1=y2 (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.?【开放探索创新】?14.编写一道应用题,使它满足下列要求:?(1)题意适合一元一次方程;?(2)所编应用题完整,题目清楚,且符合实际生活.?【中考真题实战】?15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.?(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.?(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).?答案:?1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.?(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.?2.B [点拨:方程x= ,两边同除以,得x= )?3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)?4.(1)3x (2)4y (3)-2y?5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .?(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.?(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.?(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,?系数化为1,得y=-3.?6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.?(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,?系数化为1,得x=-10.?7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]?8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]?9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为()千克,由已知条件知,余下的色拉油的毛重为千克,因为余下的色拉油的毛重是一个定值,所以可列方程=.?解这个方程,得x=7.?答:桶中原有油7千克.?[点拨:还有其他列法]?10.解:设应该从盘A内拿出盐x克,可列出表格:?盘A 盘B?原有盐(克)50 45?现有盐(克)50-x 45+x?设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.?解这个方程,得x=,经检验,符合题意.?答:应从盘A内拿出盐克放入到盘B内.?11.解:(1)设爸爸追上小明时,用了x分,由题意,得?180x=80x+80×5,?移项,得100x=400.?系数化为1,得x=4.?所以爸爸追上小明用时4分钟.?(2)180×4=720(米),1000-720=280(米).?所以追上小明时,距离学校还有280米.?12.(1)x=-?[点拨:由题意可列方程2x+8=6-2x,解得x=- ]?(2)x=-?[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]?13.解:∵x=-2,∴x=-4.?∵方程x=-2的根比方程5x-2a=0的根大2,?∴方程5x-2a=0的根为-6.?∴5×(-6)-2a=0,∴a=-15.?∴-15=0.?∴x=-225.?14.本题开放,答案不唯一.?15.解:(1)设CE的长为x千米,依据题意得?+1+x+1=2(3-2×)?解得x=,即CE的长为千米.?(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),?则所用时间为(•+1+++1)+3×=(小时);?若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),?则所用时间为(+1++×2+1)+3×=(小时).?故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)。
初一数学难题及答案
![初一数学难题及答案](https://img.taocdn.com/s3/m/2ac5f511ee06eff9aef8072c.png)
初一数学难题及答案【篇一:初中数学经典几何难题及答案】、已知:如图,o是半圆的圆心,c、e是圆上的两点,cd⊥ab,ef⊥ab,eg⊥co.求证:cd=gf.(初二)dofbea2、已知:如图,p是正方形abcd内点,∠pad=∠pda=150.求证:△pbc是正三角形.(初二)bcad3、如图,已知四边形abcd、a1b1c1d1都是正方形,a2、b2、c2、d2分别是aa1、bb1、cc1、dd1的中点.求证:四边形a2b2c2d2是正方形.(初二)a2a11cb22c d4、已知:如图,在四边形abcd中,ad=bc,m、n分别是ab、cd的中点,ad、bc的延长线交mn于e、f.求证:∠den=∠f.第 1 页共 15 页b1、已知:△abc中,h为垂心(各边高线的交点),o(1)求证:ah=2om;(2)若∠bac=60,求证:ah=ao.(初二)2、设mn是圆o外一直线,过o作oa⊥mn于a,自a引圆的两条直线,交圆于b、c及d、e,直线eb及cd分别交mn于p、q.求证:ap=aq.(初二)3、如果上题把直线mn由圆外平移至圆内,则由此可得以下命题:设mn是圆o的弦,过mn的中点a任作两弦bc、de,设cd、eb分别交mn于p、q.求证:ap=aq.(初二)4、如图,分别以△abc的ac和bc为一边,在△abc的外侧作正方形acde和正方形cbfg,点p是ef的中点.求证:点p到边ab的距离等于ab的一半.第 2 页共 15 页f1、如图,四边形abcd为正方形,de∥ac,ae=ac,ae与cd相交于f.求证:ce=cf.(初二)2、如图,四边形abcd为正方形,de∥ac,且ce=ca,直线ec交da延长线于f.求证:ae=af.(初二)3、设p是正方形abcd一边bc上的任一点,pf⊥ap,cf平分∠dce.求证:pa=pf.(初二)4、如图,pc切圆o于c,ac为圆的直径,pef为圆的割线,ae、af与直线po相交于b、d.求证:ab=dc,bc=ad.(初三)第 3 页共 15 页1、已知:△abc是正三角形,p是三角形内一点,pa=3,pb=4,pc=5.求:∠apb的度数.(初二)2、设p是平行四边形abcd内部的一点,且∠pba=∠pda.求证:∠pab=∠pcb.(初二)4、平行四边形abcd中,设e、f分别是bc、ab上的一点,ae与cf相交于p,且ae=cf.求证:∠dpa=∠dpc.(初二)第 4 页共 15 页经典难题(五)1、设p是边长为1的正△abc内任一点,l=pa+pb+pc,求证:≤l<2.2、已知:p是边长为1的正方形abcd内的一点,求pa+pb+pc的最小值.3、p为正方形abcd内的一点,并且pa=a,pb=2a,pc=3a,求正方形的边长.4、如图,△abc中,∠abc=∠acb=800,d、e分别是ab、ac0,∠eba=20,求∠bed的度数.第 5 页共 15 页【篇二:初中数学经典难题参考答案(第二版)】t>一、选择题1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,为(c) 66632、若112m?3mn?2n?=3,的值是(b) mnm?2mn?n(第4题图)则k37a、1.5b、c、-2 d、553、判断下列真命题有(c)4、如图,矩形abcd中,已知ab=5,ad=12,p是ad上的动点,pe⊥ac,e,pf⊥bd于f,则pe+pf=(b)602455a、5b、c、d、135125、在直角坐标系中,已知两点a(-8,3)、b(-4,5)以及动点c (0,n)、d(m,0),则当四m边形abcd的周长最小时,比值为 =(b)n2333a、- b、- c、- d、3244二、填空题1|x|3?x26、当x= 负数时,与互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45、如果()1233m xy m xy x ---+为四次三项式,则m =________。
46、观察代数式223a b c 和32a y ,把它们的共同点填写在下列横线上,⑴都是_______式,⑵都是_________。
47、如果2231,27A m m B m m =-+=--,且0A B C -+=,那么C=_______。
48、把多项式:()()()544322354563x x y xy x y x y y --+--++-去括号后按字母x 的降幂排列为________________________。
49、关于a 、b 的单项式,2x yy a b +与()213x x y a b +-+是同类项,它们的合并结果为_____________。
50、p-[q+2p-( )]=3p-2q 。
51、如果关于x 、y 的多项式,存在下列关系()()2222223433xkxy y mx xy yxxy ny -+-+-=-+则m=______,n=_____,k=_______。
52、如果()2120a a b +++=,那么()()()()()5432a b a b a b a b a b +++++++++=____________。
53、已知15,6mn n m mn -=-=,那么m n -=_________,2mn m n -++=_________。
54、如果3,2xx y z ==,那么x y z x y z -+=++__________。
55、一船在顺水中的速度为a 千米/小时,水速为b 千米/小时,(a>2b ),则此船在相距S 千米的两码头间往返一次需用时间为__________小时。
56、如图是2004年月10月份的日历,现在用一矩形在日历中任意框出9个数 ,用e 表示出这9个数的和为_________。
57、在代数式21215,5,,,,,233x y zx y a x y xyz y π+---+-中有 A 、5个整式 B 、4个单项,3个多项式C 、6个整式,4个单项式D 、6个整式,单项式与多项式个数相同58、如果21213n x y --与823x y 是同类项,那么代数式()2003200359114n n ⎛⎫-⋅- ⎪⎝⎭的值为( )A 、0B 、-1C 、+1D 、±159、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于( )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N60、将代数式()()a b c d a b c d -+-+--写成()()M N M N +-的形式正确的是( )A 、()()a b c d a b c d -+-+--⎡⎤⎡⎤⎣⎦⎣⎦B 、()()a b d c a b d c -+++--⎡⎤⎡⎤⎣⎦⎣⎦C 、()()()()a d c b a d c b -+--+-⎡⎤⎡⎤⎣⎦⎣⎦D 、()()()()a b c d a b c d -+-+--⎡⎤⎡⎤⎣⎦⎣⎦61、如果22x x -+的值为7,则211522x x -++的值为( ) A 、52 B 、32 C 、152D 、答案不惟一62、如果2a b -=,3c a -=,则()()234b c b c ---+的值为( )A 、14B 、2C 、44D 、不能确定 63、a b cabc++的值是( ) A 、±3 B 、±1 C 、±1或±3 D 、不能确定 64、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,那么八月份该款书包的营业额比七月份增加( )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元 65、一件工作,甲单独做x 天完成,乙单独做y 天完成。
如果两人合作,各自可提高工作效率20%,那么两人合作完成这件工作的时间为( )A 、120%11x y ++ B 、120%11x y-+C 、()()1120%x y ++ D 、()111120%x y ⎛⎫+⋅+ ⎪⎝⎭66、如图,M 、N 是表示两个曲边形的面积,那么( )A 、M>NB 、M<NC 、M=ND 、无法确定 67、()()11232n n n n n x x x x x +++-----68、()()()22222234232x yxxy y x xy y ⎡⎤⎡⎤-+-------⎣⎦⎣⎦69、()(){}233286x z x z y x y z -----+-⎡⎤⎣⎦70、()(){}222223243453x y xyz xyz x z x z x y xyz x z xyz ⎡⎤----+---⎣⎦71、()222221557472x y xy x y xy xy x y xy xy ⎧⎫⎡⎤⎛⎫+--+-+-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭,其中14x =-,16y =-。
72、2222424,363,A x xy y B x xy y =-+=-+且23,16,1,x y x y ==+=求()()423A A B A B +--+⎡⎤⎣⎦的值。
73、如果340m n -+=,求:()()233237321m n m m n m n -+---+()33232m m n m n n +-+310m m --的值。
74、定义一种运算,观察下列式子。
1⊙3=1×2+3=5 3⊙1=3×2+1=7 3⊙4=3×2+4=10 4⊙3=4×2+3=11 ……⑴请你猜想:a ⊙b=___________,b ⊙a=_________;若a ≠b ,那么a ⊙b______b ⊙a (填“=”或“≠”) ⑵计算:()()3x y x y x +-⎡⎤⎣⎦e e75、阅读下列材料:111111111111;,13233523557257⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭Q …… 11111111111113355723235257⎛⎫⎛⎫⎛⎫∴++=-+-+- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭11111111311233557277⎡⎤⎛⎫=-+-+-=-= ⎪⎢⎥⎣⎦⎝⎭ 解答问题:⑴111133557+++⨯⨯⨯…()()12121n n -+⑵模仿上面的解法,计算111266101014+++⨯⨯⨯ (1)3842+⨯76、某科技馆对学生参观实行优惠,个人票每6元,团体票每10人45元。
⑴如果参观的学生人数36人,至少应付多少元? ⑵如果参观的学生人数为48人,至少应付多少元?⑶如果参观的学生人数为一个两位数ab ,用含a 、b 的代数式表示应付给科技馆的总金额。
77.某商人一次卖出两件商品。
一件赚了15%,一件赔了15%,卖价都是1955元,在这次买卖过程中,商人( )A 、赔了90元;B 、赚了90元;C 、赚了100元;D 、不赔不赚。
78.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是( )A.10岁B.15岁C.20岁D.30岁AC MA DBN79.若代数式22x +3y -7的值为8,则代数式42x +6y +10的值为( ) A.40 B.30 C.15 D.2580.收割一块小麦,第一组需要5小时收割完,第二组需要7小时收割完。
第一组收割1小时后再增加第二组一起收割,两组共同收割完用了x 小时列方程得:________________81.某地上网有两种收费方式,用户可以任选其一:(A )记时制:2.8元/小时,(B )包月制:60元/月。
此外,每一种上网方式都加收通讯费1.2元/小时。
(1)某用户上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(1个月),选用哪种上网方式比较合算? (3)请你为用户设计一个方案,使用户能合理地选择上网方式。
82. 如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm , 此时木桶中水的深度是________cm.83. 惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:若第n 年小慧家仍需还款,则第n 年应还款 万元(n >1)84. 为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶? (2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?85.如图,已知AB=8,AP=5,OB=6,则OP 的长是( ) A.2 B.3 C.4 D.586.由两个角的和组成的角与这两个角的差组成的角互补,则这两个角( ) A.一个是锐角,一个是钝角; B.都是钝角; C.都是直角; D.必有一个是直角 87.已知1条直线能将平面分成两部分,2条直线能将平面分成3和4部分,则3 条直线最多能将平面分成( )A.4部分B.6部分C.7部分D.8部分88.从一点O 引三条直线,以O 为顶点且小于平角的角在图中有( )C F AHED BGA.5个B.10个C.12个D.18个 89.如图,若AB ∥CD,则∠A+∠M+∠N+∠C=( ) A.180° B.360° C.540° D.720°90.用一平面去截一正方体,得到的截面的图形可能是以下图形中的( ) (1)三角形;(2)四边形;(3)五边形;(4)六边形.A.(1)(2)(3)B.(1)(2)(4);C.(1)(3)(4)D.(1)(2)(3)(4) 91.若平行直线EF,GH 与相交直线AB,CD 相交成如图所示的图形, 则共得同旁角( )A.4对B.8对C.12对D.16对92.一个角的补角减去这个角的余角,所得的角等于__________. 93.如图,其中共有_______个三角形.第9题AE D第11题CAEDB第12题CAEDB94.一个角余角的2倍和它的补角的12互为补角,则这个角的度数为______. 95.如图,已知AB ∥CD,E 在AB 和CD 之间,且∠B=40°,∠D=20°,则∠BED=____. 96.如图,已知∠ABC+∠BCD+∠EDC=360°,则AB 和ED 的位置关系是_______. 97.如果一条直线和两条平行线中的一条垂直,那么这条直线和另一条直线的位置关系是__________.98.如图,C,D,E 将线段AB 分成四部分,且AC:CD:DE:EB=2:3:4:5,M,P,Q,N 分别是AC,CD,DE,EB 的中点,且MN=21cm,求PQ 的长.M P N99.如图,在△ABC 中,DE ∥BC,CD 是∠ACB 的平分线,∠B=70°,∠A=56°,求∠BDC 的度数.100.过点O 任意作四条直线,求证:以O 为顶点的角中至少有一个不大于45°.答案: 一、84.B 2.D 3.C 4.C 5.C 6.D 7.C 提示:5.过M,N 分别作AB 的平行线. 二、8.90° 9.10 10.36° 11.60° 提示:过E 作EF ∥AB. 12.平行提示:过C 作CG ∥AB. 13.垂直 三、14.PQ=7(cm) 15.∠BDC=83°99.证明:如答图,实际上只需证8个角中至少有一个不大于45°即可. 所以假设∠1,∠2,…,∠8都大于45°,EC AD B则∠1+∠2+…+∠8>45°×8=360°,而由周角定义可知∠1+∠2+…+∠8=360°, 这与上式矛盾. 所以结论成立.87654321参考答案一、45、1m =- 2、⑴单项 ⑵5次3、28m -- 4、543223466x x y x y x y ++-4553xy y --5、1137a b - 6、4p q - 7、2,7,2m n k ===- 8、5 9、21,-9 10、71111、2s s a a b+- 12、9e二、1、D 2、B 3、D 4、C 5、A 6、C 7、C 8、A 9、D 10、C 三、1、132n n xx +-+ 2、2254x y - 3、46x y z -+ 4、222xyz x z -四、1、原式2142xy x y =-,当14x =-,16y =-时,原式=62、先化简()()42334A A B A B A B +⋅--+=-⎡⎤⎣⎦,把2222424,363A x xy y B x xy y =-+=-+代入3418A B xy -=。