经典算法-0-1背包-最有装载

合集下载

动态规划与回溯法解决0-1背包问题

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。

但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。

贪心算法-01背包问题

贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。

2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。

若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。

显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。

3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。

由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。

此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题一、问题描述给定n种物品和容量为C的背包。

物品i的重量是wi,其价值为vi。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、知识表示1、状态表示(1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。

(2)基因:染色体的每一个比特。

(3)种群:解的集合。

(4)适应度:衡量个体优劣的函数值。

2、控制参数(1)种群规模:解的个数。

(2)最大遗传的代数(3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。

(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。

3、算法描述(1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;(2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1;(3)计算S中每个个体的适应度f() ;(4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。

(5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;(6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;(7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;(8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。

三、算法实现1、主要的数据结构染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。

种群:用二维数组表示,每一行表示一个染色体。

浅谈0-1背包问题的常用算法

浅谈0-1背包问题的常用算法
消 费 电子 Байду номын сангаас
2 0 1 3年 1 0月下 C o n s u me r E l e c t r o n i c s Ma g a z i n e 技 术 交 流
浅谈 0 - 1 背包问题的常用算法
汤赫 男
( 吉林工商学院信息工程学院,长春 1 3 0 0 6 2) 摘 要 :0 -1 背 包问题是典型的 NP ~完全问题 ,无论从 理论 上还是 实践上都有一定的研究意义。本文综述 了几 种0 — 1背包问题的 常用算法 ,分析算法的优劣 ,预 测 0 - 1背包问题的发展方向。 关键 词 :0 — 1背包问题 ;动 态规划法 ;贪心法 ;分支界限法


∑w ,
l {
㈠ { “ } m a x ∑
{ j
二 、常用 的 0 - 1 背 包问题算法 ( 一) 蛮力法。 蛮 力法又称穷举法或枚举法,是一种简单、 直接、有效的方法,是初学者入 门的方法 。蛮力法要求遍历所 有可能情 况一次且仅一次 ,筛选 出符合要求 的解。应用蛮力法 求解 0 - 1 背包 问题, 需要考虑给定的 n 个物品集合的所有子集, 找出所有总重量不超过背包容量的子集 ,计算每个可能子集的 总价值,然后找 出价值最大的子集 。对于一个具有 n个元素的 集合 ,其子集数量是 2 “,所 以,不论生成子集 的算法效率有 多高 ,蛮力法求解 0 - 1 背包 问题都会导致一个 Q ( 2 n )的算法 。 ( 二 )动 态规划法。动态规划 法是一种通用 的算 法设计 技术用来求解 多阶段决策最优 化问题。这类 问题都满 足最优 性原理,即原 问题 的最优 性包含着子 问题 的最优性 。 应用 动态规划法 求解 0 - 1 背包 问题 ,可 以将 0 — 1背包 问 题看 作一个 多阶段决策最 优化 问题 。n个物 品集合 的所 有子 集可 以看 作该 问题 的所有 可行解;这些可行解 都是满足约束 条件 的,可行解可能不止一个,通过 目标 函数找到最优解 。 动态 规划 法求解 0 - 1 背包 问题 的算法描述 : 设V ( n , C )表 示将 n个 物 品装入 容量 为 C的背 包获 得 的 最大价值 。 初 始 状 态 :V ( i , 0 ) = V ( 0 , j ) = 0 , 0≤ i ≤n , 0≤ j≤ C 则V ( i , j )表示 将前 i 个 物 品装入 容量 为 j的背 包获 得

0_1背包问题的多种解法

0_1背包问题的多种解法

页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

汽车 装箱问题的算法研究

汽车 装箱问题的算法研究

汽车装箱问题的算法研究汽车装箱问题是一个经典的组合优化问题,广泛应用于物流配送、工业生产等领域。

该问题涉及到将一组不同大小的物品装入有限容量的汽车中,使得装载的物品数量最大化或装载的空间利用率最优化。

本文将对汽车装箱问题的算法研究进行概述和分析。

一、问题描述与建模汽车装箱问题可以描述为:给定一组物品,每个物品具有不同的大小和重量,以及一个有限容量的汽车,要求将尽可能多的物品装入汽车中,使得装载的物品数量最大化或装载的空间利用率最优化。

为了解决这个问题,通常需要建立一个数学模型。

一种常用的模型是0-1背包模型,将每个物品是否装入汽车作为决策变量,通过目标函数和约束条件来描述问题的优化目标和限制条件。

二、经典算法研究针对汽车装箱问题,研究者们提出了许多经典的算法。

其中,贪心算法是一种简单而有效的解决方案。

该算法按照物品的大小或重量进行排序,然后逐个选择物品装入汽车,直到汽车容量达到上限或所有物品装载完毕。

虽然贪心算法具有较低的时间复杂度,但其解的质量往往较差,无法保证得到最优解。

另一种经典算法是动态规划算法。

该算法通过状态转移方程逐步计算每个物品是否装入汽车的最优解,并最终得到问题的最优解。

动态规划算法能够得到全局最优解,但其时间复杂度较高,在处理大规模问题时存在困难。

三、启发式算法研究为了克服经典算法的局限性,研究者们进一步探索了启发式算法在汽车装箱问题中的应用。

启发式算法通过引入启发式信息和局部搜索策略,能够在较短的时间内得到较优的解。

一种常见的启发式算法是遗传算法。

该算法借鉴了生物进化中的遗传机制,通过种群演化、选择、交叉和变异等操作,不断生成新的解,并在搜索过程中保持解的多样性。

遗传算法具有较强的全局搜索能力,但参数的设置对算法性能影响较大。

另一种启发式算法是模拟退火算法。

该算法模拟了物理系统中的退火过程,通过引入随机性和温度参数,在搜索过程中跳出局部最优解,以寻找全局最优解。

模拟退火算法对于解决具有大规模和复杂约束的汽车装箱问题具有一定优势,但其收敛速度较慢。

01背包问题动态规划算法

01背包问题动态规划算法

01背包问题动态规划算法
01背包问题是求在限定条件下,在一定的容量内最优装载物品,使得总价值最大。

动态规划算法是一种用于解决多阶段决策问题的途径,其特点是将原问题划分成若干子问题,每个子问题只求解一次,保存子问题的解,避免了重复计算。

01背包问题动态规划算法的步骤如下:
1、确定状态:物品的种数i (i=1,2,…n),背包的容量j (j=0,1,2,…V)。

2、确定状态转移方程:f[i][j]=max{f[i-1][j],f[i-1][j-wi]+vi}。

3、确定初始状态:f[i][0]=0,f[0][j]=0。

4、确定输出:最后f[n][V]即为最优解。

5、根据状态转移方程从左到右,从上到下进行迭代计算。

贪心算法之背包问题

贪心算法之背包问题

贪⼼算法之背包问题贪⼼算法之背包问题1.与动态规划的区别通过研究解决经典的组合优化问题,来说明⼆者的差别。

即0-1背包问题与背包问题0-1背包问题:给定n中物品和⼀个背包。

物品i的重量为W i,其价值为V i,背包的容量为C。

应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?对于每种物品i只有俩种选择,即装⼊背包或不装⼊背包背包问题:与0-1背包问题类似,不同在于选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包,1≤i≤n。

这2类问题都具有最优⼦结构性质,极为相似。

背包问题可以⽤贪⼼算法求最优解,0-1背包不能使⽤贪⼼求解。

2.贪⼼解决背包问题步骤贪⼼策略:每次选择单位重量价值最⾼的物品装⼊背包计算每种物品单位重量的价值V iW i,按单位重量的价值从⼤到⼩将n中物品排序。

以排序后的次序依次将物品装⼊背包。

直⾄全部物品都装⼊或者因背包容量不⾜不能装⼊为⽌如果背包尚有容量,将最后不能完全装⼊物品切割⼀部分装满背包算法结束3.代码实现/*** n 物品数* M 背包容量* v[] 物品价值数组* w[] 物品重量数组* x[] 保存最优解路径数组,为1则表⽰该物品完全装⼊,否则装⼊该物品的⼀部分**/void Knapsack(int n, float M, float v[], float w[], float x[]) {// 按照物品单位重量的价值递减排序Sort(n, v, w);int i;for (i = 1; i <= n; i++)x[i] = 0;float c = M;for (i = 1; i <= n; i++) {if (w[i] > c)break;x[i] = 1;c -= w[i];}if (i <= n)x[i] = c / w[i];}Processing math: 100%。

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。

0-1背包问题的近似算法

0-1背包问题的近似算法

0-1背包问题的近似算法0-1背包问题的近似算法对问题特点和算法思想做一些整理如下:这类问题其实很有意思,做数学和做计算机的人都会研究,而且我这里将要提到的论文都是做计算机的人所写的。

问题简述0-1 Knapsack Problem (0-1背包问题,下面简称KP)和Subset Sum Problem (子集合加总问题,下面简称SSP)是经典的NP完全问题。

两个问题简要描述如下:KP:有n个物品要放入背包,第i个物品的价值为ci,占据体积为vi,背包的总容积为V,要选择一部分物品放入背包,使得他们的总价值最大。

对应的优化问题是maxxi∑ci∗xis.t.∑vi∗xi≤V,xi∈{0,1}这里xi代表是否选取第i个物品进背包,等于1就代表放入背包,等于0代表不放入背包。

SSP: 给一个集合{c1,c2,…,cn},还有一个目标值V,问能否选出一个子集,使得子集中元素求和刚好等于V。

我们一般考虑的是他的另一种表述方式:选出一个子集,使得子集中元素求和不超过V,且尽量大。

对应的优化问题是maxxi∑ci∗xis.t.∑ci∗xi≤V,xi∈{0,1}这里xi代表是否选入子集,等于1就是选入子集,等于0就是不选入子集。

SSP是KP的特殊情况,也即当ci=vi的时候,KP退化为SSP,从问题式子上看,也完全一样了。

尽管如此,研究了KP不代表就不用研究SSP了,后面会说明这一点。

精确算法与近似算法这两个问题都有很简单的动态规划算法可以精确求解,但可惜算法的时间复杂度是伪多项式的,也即和V相关,但V不是问题输入数据的规模,n才是。

在ACM竞赛等算法比赛中,经常会遇到一些问题属于KP的变种,而伪多项式算法也就足够了。

由于网上资料很多,而且难度不大,这里就不详细介绍了。

如果你不知道,请你搜索“动态规划求解0-1背包问题”。

这里我们更关心多项式近似算法,也即PTAS(Polynomial Time Approximation Scheme),也即对任意给定的ϵ,算法可以在关于n的多项式时间内求得一个解,且该解和真实最优解的最多相差ϵ倍。

0-1背包问题(回溯法)

0-1背包问题(回溯法)

0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。

物品i 的重量是w i ,其价值为v i ,背包的容量为C 。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。

不能将物品装入背包多次,也不能只装入部分的物品。

三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。

2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。

3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。

关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。

背包问题 启发算法

背包问题 启发算法

背包问题启发算法
背包问题是一种常见的优化问题,通常用于解决资源分配、决策制定等方面的问题。

启发式算法是一种常用的求解背包问题的策略,其基本思想是通过经验或直观来构造一个可行的解决方案,然后不断迭代优化这个方案,直到满足终止条件。

以下是一个简单的0-1背包问题的启发式算法:
1. 初始化:选择一个初始解,通常是一个空解或者随机解。

2. 迭代优化:在每次迭代中,尝试对当前解进行改进。

具体步骤如下:
a. 对于每个物品,计算将其添加到背包中的收益,即物品的重量与价值的乘积。

b. 选取收益最大的物品,将其添加到背包中。

c. 重复步骤b,直到背包满载或者没有剩余的物品。

3. 终止条件:当达到指定的迭代次数或者背包价值达到最大值时,停止迭代。

4. 输出结果:返回最终的背包解。

需要注意的是,启发式算法只能得到近似最优解,而不是最优解。

因此,在某些情况下,启发式算法可能无法得到最优解,但对于许多实际问题,启发式算法可以提供足够好的解决方案,并且计算效率较高。

0-1背包问题求解方法综述

0-1背包问题求解方法综述

算法分析与设计大作业实验题目:0-1背包问题求解方法综述组员:班级:指导老师:0-1背包问题求解方法综述【摘要】:0-1背包问题是一个经典的NP-hard组合优化问题,现实生活中的很多问题都可以以它为模型。

本文首先对背包问题做了阐述,然后用蛮力解法、动态规划算法、贪心算法和回溯解法对背包问题进行求解,分析了0-1背包问题的数学模型,刻划了最优解的结构特征,建立了求最优值的递归关系式。

最后对四种算法从不同角度进行了对比和总结。

【关键词】:0-1背包问题;蛮力解法;动态规划算法;贪心算法;回溯解法。

0.引言0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量wi(i=1,2,…,n),再给定一个背包,其容量为W。

要求从n个物品中选出一部分物品装入背包,这部分物品的重量之和不超过背包的容量,且价值之和最大。

单个物品要么装入,要么不装入。

很多问题都可以抽象成该问题模型,如配载问题、物资调运[1]问题等,因此研究该问题具有较高的实际应用价值。

目前,解决0-1背包问题的方法有很多,主要有动态规划法、回溯法、分支限界法、遗传算法、粒子群算法、人工鱼群算法、蚁群算法、模拟退火算法、蜂群算法、禁忌搜索算法等。

其中动态规划、回溯法、分支限界法时间复杂性比较高,计算智能算法可能出现局部收敛,不一定能找出问题的最优解。

文中在动态规划法的基础上进行了改进,提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解,是确定性算法,算法的时间复杂性最坏可能为O(2n)。

1.0-1背包问题描述0-1背包问题(KP01)是一个著名的组合优化问题。

它应用在许多实际领域,如项目选择、资源分布、投资决策等。

背包问题得名于如何选择最合适的物品放置于给定背包中。

本文主要研究背包问题中最基础的0/1背包问题的一些解决方法。

为解决背包问题,大量学者在过去的几十年中提出了很多解决方法。

解决背包问题的算法有最优算法和启发式算法[2],最优算法包括穷举法、动态规划法、分支定界法、图论法等,启发式算法包括贪心算法、遗传算法、蚁群算法、粒子算法等一些智能算法。

分支限界法经典案例算法分析

分支限界法经典案例算法分析

3. 算法的改进
6.3 装载问题
// 检查左儿子结点 Type wt = Ew + w[i]; // 左儿子结点的重量 if (wt <= c) { // 可行结点 提前更新 if (wt > bestw) bestw = wt; bestw // 加入活结点队列 if (i < n) Q.Add(wt); } 右儿子剪枝 // 检查右儿子结点 if (Ew + r > bestw && i < n) Q.Add(Ew); // 可能含最优解 Q.Delete(Ew); // 取下一扩展结点
6.3 装载问题
1. 问题描述
有一批共个集装箱要装上2艘载重量分别为C1和C2的轮船, 其中集装箱i的重量为Wi,且 n
w
i 1
i
c1 c2
装载问题要求确定是否有一个合理的装载方案可将这个 集装箱装上这2艘轮船。如果有,找出一种装载方案。 容易证明:如果一个给定装载问题有解,则采用下面的 策略可得到最优装载方案。 (1)首先将第一艘轮船尽可能装满; (2)将剩余的集装箱装上第二艘轮船。
定义移动方向 的相对位移
设置边界的围 墙 for (int i = 0; i <= m+1; i++) grid[0][i] = grid[n+1][i] = 1; // 顶部和底部 for (int i = 0; i <= n+1; i++) grid[i][0] = grid[i][m+1] = 1; // 左翼和右翼
6.3 装载问题
将第一艘轮船尽可能装满等 价于选取全体集装箱的一个 子集,使该子集中集装箱重 量之和最接近。由此可知, 装载问题等价于以下特殊的 0-1背包问题。 例如:

0-1背包问题的递归方法

0-1背包问题的递归方法

0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。

定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。

递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。

1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。

代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。

《背包问题详解》课件

《背包问题详解》课件

VS
约束条件
背包的容量有限,每个物品的数量和重量 、价值是已知的,目标是最大化背包中物 品的总价值。
多重背包问题的最优解法
贪心算法
按照物品单位重量的价值进行排序,优先选择单位重量价值最高的物品,直到背包满或者无法再放入更多物品。
动态规划
将问题分解为子问题,通过解决子问题的最优解来得到原问题的最优解。具体来说,对于多重背包问题,可以将 问题分解为多个一维背包问题,然后分别求解每个一维背包问题的最优解,最后取最优解中的最大值。
02
背包问题通常涉及到多个约束条 件,如物品的重量、价值、体积 等,以及一个目标函数,如背包 中物品的总价值或总重量。
背包问题的分类
根据物品能否分割,背包问题可以分为可分割问题和不可分 割问题。在可分割问题中,物品可以被切割成任意大小,而 在不可分割问题中,物品只能以完整的形式装入背包。
根据是否考虑时间因素,背包问题可以分为静态问题和动态 问题。在静态问题中,所有物品的属性和背包的容量都是固 定的,而在动态问题中,物品的属性和背包的容量可能会随 着时间变化。
完全背包问题的最优解法
最优解法通常采用贪心算法,即每次选择单位重量价值最高的物品,直到背包容量用完为止。这种方 法能够得到最优解,但并不是所有情况下都能找到最优解。
在某些情况下,贪心算法可能会错过最优解,因为它的选择是基于当前的最优选择,而不是全局的最 优选择。
完全背包问题的动态规划解法
动态规划是解决完全背包问题的另一 种方法,它通过将问题分解为更小的 子问题来求解。对于完全背包问题, 动态规划的思路是先解决子问题,再 根据子问题的解来解决原问题。
《背包问题详解》ppt 课件
目录
• 背包问题的定义与分类 • 0-1背包问题详解 • 多重背包问题详解 • 完全背包问题详解 • 变种背包问题详解

背包问题----完全背包(最优方案总数分析及实现)

背包问题----完全背包(最优方案总数分析及实现)

背包问题----完全背包(最优⽅案总数分析及实现)本⼈博⽂》中已详细谈过完全背包问题,同时在博⽂》中也总结过01背包的最优⽅案总数的实现。

这⾥我们模仿01背包最优⽅案总数⽅法给出完全背包的最优⽅案求解⽅法。

重写完全背包的动态规划的状态及状态⽅程:完全背包是在N种物品中选取若⼲件(同⼀种物品可多次选取)放在空间为V的背包⾥,每种物品的体积为C1,C2,…,C n,与之相对应的价值为W1,W2,…,W n.求解怎么装物品可使背包⾥物品总价值最⼤。

设物品种类为N,背包容量为V,每种物品的体积为C[i],价值为W[i]。

⼦问题定义:F[i][j]表⽰前i种物品中选取若⼲件物品放⼊剩余空间为j的背包中所能得到的最⼤价值。

状态⽅程为:(2-2)在⽂章》中曾定义G[i][j]代表F[i][j]的⽅案总数。

这⾥我们也做相同的定义,那么最终的结果应该为G[N][V]。

由01背包转变到完全背包后G[i][j]该怎么求?对于01背包来说,G[i][j]求法如下(摘⾃:》):如果F[i][j]=F[i-1][j]且F[i][j]!=F[i-1][j-C[i]]+W[i]说明在状态[i][j]时只有前i-1件物品的放⼊才会使价值最⼤,所以第i件物品不放⼊,那么到状态[i][j]的⽅案数应该等于[i-1][j]状态的⽅案数即G[i][j]=G[i-1][j];如果F[i][j]=F[i-1][j-C[i]]+W[i] 且F[i][j]!=F[i-1][j]说明在状态[i][j]时只有第i件物品的加⼊才会使总价值最⼤,那么⽅案数应该等于[i-1][j-C[i]]的⽅案数,即G[i] [j]=G[i-1][j-C[i]];如果F[i][j]=F[i-1][j-C[i]]+W[i] 且F[i][j]=F[i-1][j]则说明即可以通过状态[i-1][j]在不加⼊第i件物品情况下到达状态[i][j],⼜可以通过状态[i-1][j-C[i]]在加⼊第i件物品的情况下到达状态[i][j],并且这两种情况都使得价值最⼤且这两种情况是互斥的,所以⽅案总数为G[i][j]=G[i-1][j-C[i]]+ G[i-1][j]。

背包问题的各种求解方法

背包问题的各种求解方法

背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。

因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。

则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。

如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。

这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。

1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。

则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。

由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。

因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。

分支限界法(三)——0-1背包问题(转)

分支限界法(三)——0-1背包问题(转)

分⽀限界法(三)——0-1背包问题(转)0-1背包问题问题描述给定n种物品和⼀背包。

物品i的重量是wi,其价值为pi,背包的容量为C。

问应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?0-1背包问题是⼀个特殊的整数规划问题。

例如:最优解为:(1,0,1)此时的价值为:6算法的思想⾸先,要对输⼊数据进⾏预处理,将各物品依其单位重量价值从⼤到⼩进⾏排列。

在下⾯描述的优先队列分⽀限界法中,节点的优先级由已装袋的物品价值加上剩下的最⼤单位重量价值的物品装满剩余容量的价值和。

算法⾸先检查当前扩展结点的左⼉⼦结点的可⾏性。

如果该左⼉⼦结点是可⾏结点,则将它加⼊到⼦集树和活结点优先队列中。

当前扩展结点的右⼉⼦结点⼀定是可⾏结点,仅当右⼉⼦结点满⾜上界约束时才将它加⼊⼦集树和活结点优先队列。

当扩展到叶节点时为问题的最优值。

上界函数b = cp; // 初始化为⽬前背包的重量// n表⽰物品总数,cleft为剩余空间while (i <= n && w[i] <= cleft) {cleft -= w[i]; // w[i]表⽰i所占空间b += p[i]; // p[i]表⽰i的价值i ++;}if (i <= n)b += p[i] / w[i] * cleft; // 装填剩余容量装满背包return b; // b为上界函数主算法循环体while (i != n+1) { // ⾮叶结点// 检查当前扩展结点的左⼉⼦结点Typew wt = cw + w[i];if (wt <= c) { // 左⼉⼦结点为可⾏结点if (cp+p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], true, i+1);}up = Bound(i+1);// 检查当前扩展结点的右⼉⼦结点if (up >= bestp) // 右⼦树可能含最优解AddLiveNode(up, cp, cw, false, i+1); // 取下⼀个扩展节点(略)}实现(略)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

int main(void) {
int *num = new int[N]; float maxValue = 0; float curWeight = 0; memset(isChoose,0,N);
//cout<<"输入"<<N<<"件货物的重量:" ; for(int i=0;i<N;i++) {
//cin>>w[i]; num[i] = i+1; } /* cout<<"输入"<<N<<"件货物的价值:" ; for(int i=0;i<N;i++) { cin>>v[i]; }*/
Knapsack(N,ALLW,v,w,num); cout<<"被选择的背包序号有:"; for(int i=0;i<N;i++) {
#include <iostream> #include <Cstring> using namespace std;
0-1背包问题Biblioteka txtvoid Knapsack(int n,float M,float v[],float w[],int num[]); template<class Type> void sortSelect(int n,Type v[],Type w[],int num[]); #define N 8 #define ALLW 100 float v[N] = {40,80,50,120,100,70,60,90};//{0}; float w[N] = {10,20,20,40,40,60,70,80};//{0}; bool isChoose[N];
第1页
0-1背包问题.txt isChoose[i] = true; M -= w[i]; } } template<class Type> void sortSelect(int n,Type v[],Type w[],int num[]) { Type temp; for(int i=0;i<n;i++) for(int j=i+1;j<n;j++) {
if(isChoose[i] == true) {
maxValue += v[i]; curWeight += w[i]; cout<<num[i]<<" "; } } cout<<endl<<"装入后最大的价值为:"<<maxValue<<endl; cout<<endl<<"装入后的当前重量为:"<<curWeight<<endl; delete num; return 0; } void Knapsack(int n,float M,float v[],float w[],int num[]) { sortSelect(n,v,w,num); for(int i=0;i<n;i++) { if(w[i] > M) continue;
if(v[j] > v[i]) {
temp = v[i]; v[i] = v[j]; v[j] = temp; temp = w[i]; w[i] = w[j]; w[j] = temp; temp = num[i]; num[i] = num[j]; num[j] = temp; } } }
第2页
相关文档
最新文档