实验四 2FSK调制

合集下载

2FSK调制与解调仿真

2FSK调制与解调仿真

实验4 2FSK调制与解调仿真一、实验目的1. 掌握2FSK的调制原理和Matlab Simulink仿真方法2. 掌握2FSK的解调原理和Matlab Simulink仿真方法二、实验原理1、2FSK调制原理2FSK信号是利用数字基带信号控制载波的频率来传送信息。

例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。

故其表达式为φ2FSK(t)={Acos(ω1t+θ1)发送“1”时Acos(ω2t+θ2)发送‘0’时式中,假设码元的初始相位分别为θ1和θ2,ω1和ω2为两个不同的角频率,幅度A是一个常数,表示码元的包络为矩形脉冲。

2、2FSK解调原理2FSK信号常用的解调方法是采用如图所示的相干解调和非相干解调,其调制原理是将2FSK信号分解为上下两路信号分别解调,然后进行判决。

这里的抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限。

判决规定与调制规定相呼应,调制时若规定“1”符号对应载波频率f1,则接受时上支路的样值较大,应判为“1”;反之则判为“0”。

设频率f1代表数字信号1;f2代表数字信号0,则抽样判决器的判决准则:x1-x2>0 判决输入为f1信号x1-x2<0 判决输入为f2信号式中x1和x2分别为抽样判决时刻两个包络检波器的输出值。

3、2FSK 键控法调制、包络检波解调框图三、实验步骤1、2FSK调制方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器②调制后信号输出与原始载波信号有相同之处,并且呈周期性变化。

当信号传送“1”的时候,2FSK信号与Sine Wave的输入波形一致;当信号传送“0”的时候,2FSK信号与Sine Wave1的输入波形一致。

所谓一致,就是周期和幅度都一样。

2、2FSK解调方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①解调器②解调后周期和频率都不变,幅度也不变。

FSK调制解调实验

FSK调制解调实验

实验报告册课程:通信系统原理教程实验:FSK调制解调实验班级:姓名:学号:指导老师:日期:实验四:FSK 调制解调实验一、实验目的:1、了解对FSK 信号调制解调原理;2、根据其原理设计出2FSK 信号的调制解调电路,在对电路进行仿真,观察 其波形,从而检验设计出的调制解调器是否符合要求。

二、实验原理:2FSK 信号调制:又称数字调频,它是用两种不同的载频1ω ,2ω来代表脉冲调制信号1 和0,而载波的振幅和相位不变。

如果载波信号采用正弦型波,则FSK 信号可表示为:2FSK 信号()t S 分解为信号()t S 1与()t S 2之和,则有:()()()t S t S t S 21+= 其中:()()()t U t S m 11cos ω=,代表数字码元“1”()()()t U t S m 22cos ω=,代表数字码元“0”2FSK 信号调制器模型如下图:如上图,两个独立的振荡器产生不同频率的载波信号,当输入基带信号()1=t S 时,调制器输出频率为f1的载波信号,当()0=t S 时,反相器的输出()t S 调制器输出频率为f2的载波信号。

f1和f2都取码元速率的整数倍。

2FSK 信号的带宽为:B f f B FSK 221+-=其中:f 1为对应脉冲调制信号1的载波频率;f 2为对应脉冲调制信号0的载波频率。

2FSK 信号解调:是调试的相反过程。

由于移频键控调制是将脉冲调制信号“1”用FSK 信号()t S 1,而“0”用()t S 2表示,那么在接收端,可从FSK 信号中恢复出其基带信号。

本设计采用了普通鉴频法进行解调,将()t S 1恢复成码元1,把()t S 2恢复成码元0 。

2FSK 信号的解调可以采用相干解调,也可以采用包络解调。

实验中采用相干解调,解调器模型如下图:)22cos(2)(2t fbT t πφ=号号调制器在2FSK解调器中,2FSK信号进入带通滤波器抑制掉干扰,接着把FSK信号与相干载波相乘,把两种不同频率的FSK信号变成两种不同的电压信号,然后送低通滤波器滤除高频分量,最后通过抽样比较器得到最终的解调波形。

实验四 2FSK调制与解调

实验四 2FSK调制与解调

实验四2FSK调制与解调一. 实验目的1.掌握2FSK调制与解调原理;2.进一步熟悉SystemView的使用;3.进一步掌握滤波器的用法;4.进一步掌握抽样判决的实现方法。

二.实验要求1. 使用SystemView设计一个2FSK调制与解调系统,要求键控法调制(此部分图幅可以选自专业库),包络法解调;2. 基带调制信号是振幅为1V,频率10Hz,初相0的二进制NRZ双极性方波序列;3. 载波1是振幅为1V,频率65Hz,初相0的正弦波;载波2是振幅为1V,频率95Hz,初相0的正弦波;4. 不考虑信道噪声;5. 安装下列步骤环节来完成实验并书写实验报告。

三.设计方案由于FSK信号是用载波频率的变化来传递数字信息,被调载波的频率随二进制序列0/1状态而变化,我们可以把FSK信号看成两个不同载频2ASK信号的叠加,所以2FSK接收机由两个并联的2ASK接收机组成。

从原理上讲,数字调频可用模拟调频法来实现,也可以用键控法实现。

本次实验采用键控法实现,键控法产生2FSK信号,原理示意图如图1所示;2FSK信号的解调可采用包络检波和相干解调法,本次实验采用包络检波法实现,原理方框图如图2所示;图2四.系统实现系统模块大致可分为调制部分与解调部分,调制部分仿真图在System View 上的仿真图如图3所示:图3本模块由两个不同频率的输入载波(载波1是振幅为1V,频率65Hz,初相0的正弦波;载波2是振幅为1V,频率95Hz,初相0的正弦波;)通过单刀双掷开关控制基带模拟信号(振幅为1V,频率10Hz,初相0的二进制NRZ双极性方波序列)的输出,从而得到2FSK信号,即为调制信号。

解调模块在System View上的仿真图如图4所示:图4Token 5、7,即带通滤波器,滤出2FSK两路信号的包络,其设置参数如图5、6所示:图5图6将从带通滤波器出来的信号通过全波整流器,使信号的下半部分翻转到上半部分,具体设置如图7:图7将从全波整流器出来的信号通过低通滤波器,滤出两路调制信号包络,低通滤波器的设置如图8所示:图8从低通滤波器出来的是基带信号包络,要经抽样、判决后将码元再生,方可恢复出数字序列。

实验四2FSK调制与解调实验

实验四2FSK调制与解调实验

实验四2FSK调制与解调实验【实验目的】使学生了解2FSK的调制与解调原理;能够通过MATLAB对其进行调制和解调;比较解调前后功率谱密度的差别。

【实验器材】装有MATLAB软件的计算机一台【实验原理】1.数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。

数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。

2FSK信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。

2.实验中采用压控振荡器实现2FSK的调制;压控振荡器指输出频率与输入控制电压有对应关系的振荡电路(VCO),频率是输入信号电压的函数的振荡器VCO,振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。

3.控制序列采用的是双极性不归零信号,信号‘0’和信号‘1’分别对应-1V和+1V,控制压控振荡器时就可以通过输入的电压不同而产生不同的频率,压控振荡器的中心频率为6KHz,频偏为2kHZ / V,那么产生的频率就是6KHz+2KHz。

示意图:【实验内容与步骤】1、路径设置成指向comm2文件夹;2、产生一组任意的二进制序列:>> b = [1 0 0 1 0 binary(495)];3、由序列b 得到双极性不归零信号xf;>> xf = wave_gen(b,'polar_nrz') ;4、用该双极性脉冲xf作为VCO(压控振荡器)的输入,在该实验中VCO的中心频率为6kHZ,频偏为2kHZ / V;>>sf = vco(xf);5、设置时间,并显示相应波形。

>> tt = [1:500];>> subplot(211),waveplot(xf(tt))>> subplot(212),waveplot(sf(tt))6、再把它们在频率范围0~20kHZ 内的功率谱密度显示出来。

2FSK调制解调原理及设计

2FSK调制解调原理及设计

2FSK调制解调原理及设计2FSK调制解调技术通常用于调制两个离散频率(频移)来表示二进制数据流中的0和1、其中一个频率用于表示0,另一个频率用于表示1、在调制过程中,将基带数字信号转换为模拟信号,并将其移频到所需的频率。

解调过程则通过检测输入信号的频率来还原原始的二进制数据流。

1.调制器设计:调制器将二进制数据流转换为模拟信号,并在不同的频率上调制这些信号。

常见的调制器设计包括频率锁相环(PLL)和直接数字频率合成(DDS)。

PLL使用反馈回路来产生一个输出信号,其频率与输入信号的相位差很小。

DDS则使用数字信号直接合成所需的频率。

2.频率选择器:频率选择器用于选择调制信号的频率。

通过控制频率选择器的开关或滤波器,可以选择不同的频率来代表0和1、频率选择器可以是可编程的,以便在需要时切换不同的调制频率。

3.解调器设计:解调器将传输信号转换为数字信号,使数据能够被读取和处理。

解调器通常包括一个带通滤波器和一个判决器。

带通滤波器用于滤除不需要的频率成分,使解调信号只包含所需的频率分量。

判决器则用于将接收到的信号映射到二进制数据流中的0和14.错误检测和纠正:在接收端,通常还需要实施错误检测和纠正机制来提高数据传输的可靠性。

常见的错误检测和纠正方法包括奇偶校验、循环冗余检测(CRC)和海明码。

2FSK调制解调技术在数字通信系统中得到了广泛的应用,特别是在无线通信领域。

它具有简单可靠的特点,适用于低复杂度的通信系统。

同时,2FSK调制解调技术也可以扩展为多级FSK调制解调技术,以提高数据传输速率和信号带宽利用率。

总之,2FSK调制解调是一种常见且有效的数字调制解调技术,其原理和设计涉及调制器设计、频率选择器、解调器设计以及错误检测和纠正等关键步骤。

这种技术在数字通信系统中具有广泛的应用,并且可以根据需要进行扩展和优化。

2FSK调制与解调实验

2FSK调制与解调实验

广州大学学生实验报告“FSK判决电压调节”单稳1相加单稳2LPF 抽样判决调制输入解调输出电压判决BS输入单稳输出1单稳输出2过零检测滤波输出判压输出旋转电位器图14-32FSK 解调过零检测法原理框图2FSK 信号的过零点数随不同载频而异, 故检出过零点数可以得到关于频率的差异。

“单稳输出1”和“单稳输出2”两波形相加, 得“过零检测”信号, 即对应2FSK 已调信号全部的过零点有一个尖脉冲。

“过零检测”信号经二阶低通滤波器滤除高频分量, 得“滤波输出”信号。

“滤波输出”信号再经电压比较器判决, 得“判压输出”信号。

用来作比较的判决电压电平可通过“FSK判决电压调节”旋转电位器来调节。

最后“判压输出”信号经位同步抽样判决, 得“解调输出”信号。

过零检测判压输出判决电平解调输出NRZ码调制输入滤波输出单稳输出1单稳输出211100111000011001图14-4 2FSK 解调各测试点波形四、实验步骤1.将信号源模块、数字调制模块、数字解调模块小心地固定在主机箱中, 确保电源接触良好。

2、插上电源线, 打开主机箱右侧的交流开关, 再分别按下三个模块中的电源开关, 对应的发光二极管灯亮, 三个模块均开始工作。

3.信号源模块设置 (1)“码速率选择”拨码开关设置为8分频, 即拨为00000000 00001000。

24位“NRZ 码型选择”拨码开关任意设置。

(2)调节“384K 调幅”旋转电位器, 使“384K 正弦载波”输出幅度与“192K 正弦载波”输出幅度相等, 为3.6V 左右。

4.2FSK 调制(1)实验连线如下:信号源模块 数字调制模块NRZ ———————— NRZ 输入(数字键控法调制) 384K 正弦载波————载波1输入(数字键控法调制) 192K 正弦载波————载波2输入(数字键控法调制)(2)数字调制模块“键控调制类型选择”拨码开关拨成1010, 即选择2FSK 调制方式。

FSK调制实验报告

FSK调制实验报告

2FSK 调制信号一、实验目的:(1)熟悉2FSK 调制原理。

(2)学会运用Matlab 编写2FSK 调制程序。

(3)会画出原信号和调制信号的波形图。

(4)掌握数字通信的2FSK 的调制方式。

二、实验原理分析二进制频移键控(2FSK )二进制频移键控信号码元的“1”和“0”分别用两个不同频率的正弦波形来传送,而其振幅和初始相位不变。

故其表达式为:=)(s t ⎪⎩⎪⎨⎧++时发送“”时发送“"0),cos(1),cos 21(ϕωϕωn n t A t A图4 2FSK信号时间波形由图可见,2FSK信号的波形(a)可以分解为波形(b)和波形(c),也就是说,一个2FSK信号可以看成是两个不同载频的2ASK信号的叠加。

2FSK信号的调制方法主要有两种。

第一种是用二进制基带矩形脉冲信号去调制一个调频器,使其能够输出两个不同频率的码元。

第二种方法是用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出。

2FSK信号的接收也分为相关和非相关接收两类。

相关接收根据已调信号由两个载波f1、f2调制而成,则先用两个分别对f1、f2带通的滤波器对已调信号进行滤波,然后再分别将滤波后的信号与相应的载波f1、f2相乘进行相干解调,再分别低通滤波、用抽样信号进行抽样判决器即可。

原理图如下:非相关接收经过调制后的2FSK数字信号通过两个频率不同的带通滤波器f1、f2滤出不需要的信号,然后再将这两种经过滤波的信号分别通过包络检波器检波,最后将两种信号同时输入到抽样判决器同时外加抽样脉冲,最后解调出来的信号就是调制前的输入信号。

其原理图如下图所示:三、仿真源程序和代码clear;clc;%b = input('Enter the Bit stream \n ');b = [0 1 0 1 1 1 0];n = length(b);t = 0:.01:n;x = 1:1:(n+1)*100;for i = 1:nif (b(i) == 0)b_p(i) = -1;elseb_p(i) = 1;endfor j = i:.1:i+1bw(x(i*100:(i+1)*100)) = b_p(i);endendbw = bw(100:end);sint = sin(2*pi*t);st = bw.*sint;subplot(3,1,1)plot(t,bw)grid on ; axis([0 n -2 +2])subplot(3,1,2)plot(t,sint)grid on ; axis([0 n -2 +2])subplot(3,1,3)plot(t,st)grid on ; axis([0 n -2 +2])四:实验结果。

2FSK调制解调电路设计

2FSK调制解调电路设计

2FSK调制解调电路设计引言:频移键控调制(Frequency Shift Keying, FSK)是一种数字调制方式,通过改变载波频率的方式来传输信号。

2FSK(2 Frequency Shift Keying)是一种常见的FSK调制方式,其基本原理是通过输入的数字信号决定载波频率的两个离散状态,从而实现数字信息的传输。

在本文中,我们将介绍2FSK调制解调电路的设计。

一、2FSK调制电路设计:1.信号波形产生器:首先,我们需要设计一个信号波形产生器来生成数字信号。

该数字信号表示要传输的信息,通常是基带信号。

可以使用微处理器、FPGA或其他数字电路来实现波形产生器。

2.带通滤波器:接下来,我们需要设计一个带通滤波器来选择一个特定频率范围内的频率。

2FSK调制需要选择两个离散频率用于传输数据,所以我们需要设计一个可以在这两个频率范围内切换的带通滤波器。

3.频率切换电路:在2FSK调制中,我们需要能够在两种不同的频率之间切换的载波信号。

为了实现这一点,我们可以使用一个开关电路,根据输入的数字信号来选择不同的频率。

4.调制电路:最后,我们将基带信号和切换后的载波信号相乘,利用频谱合并来实现2FSK调制。

这个乘法操作可以通过模拟乘法器或数字乘法器来实现。

二、2FSK解调电路设计:1.频谱分离电路:为了将调制信号中的两个频率分离开来,我们需要设计一个频谱分离电路。

这个电路可以通过使用带通滤波器和差分器来实现,带通滤波器选择一个频率范围内的信号,差分器可以根据输入信号的相位差来判断频率是高频还是低频。

2. 相位检测电路:在2FSK解调中,我们需要检测信号的相位来确定接收到的信号是1还是0。

相位检测电路可以使用锁相环(Phase Locked Loop, PLL)或其他相位检测技术来实现。

3.信号解码器:最后,我们需要设计一个信号解码器来将解调得到的数字信号转化为原始信息。

这个解码器可以通过使用微处理器或其他数字电路来实现。

2fsk调制原理

2fsk调制原理

2fsk调制原理
2FSK调制是一种频移键控调制技术,用于在数字通信系统中传输二进制数据。

在2FSK调制中,两个不同的离散载波频率被用来表示二进制数据的两个不同状态。

具体来说,2FSK调制使用两个离散的载波频率来表示数字数据位的0和1。

当数字数据位为0时,一个固定的载波频率被发送;而当数字数据位为1时,另一个固定的载波频率被发送。

这种方法可以通过在不同的频率上进行频率切换来实现。

在2FSK调制中,调制信号可以通过以下公式进行表示:
s(t) = A * cos(2πf1t) ,当发送的数字数据位为0时
s(t) = A * cos(2πf2t) ,当发送的数字数据位为1时
其中,s(t)是调制信号,A是振幅,f1和f2是两个离散的载波频率,t是时间。

在接收端,通过对接收到的信号进行解调,可以将每个离散载波频率映射回对应的数字数据位。

最常用的解调方法是使用相干解调器,它通过与已知的载波频率相乘并进行低通滤波来提取原始数字信号。

2FSK调制的优点之一是它的抗干扰能力较强。

由于使用了两个离散的载波频率,2FSK调制可以在一定程度上抵抗频率选择性衰落等干扰。

此外,2FSK调制还具有较高的频谱效率,因为每个数字数据位只需要表示为两个不同的频率之一。

总结起来,2FSK调制是一种数字通信系统中常用的调制技术,通过使用两个离散的载波频率来表示二进制数据的不同状态。

它具有较强的抗干扰能力和较高的频谱效率,并且可以通过相干解调器来解调接收到的信号。

2FSK调制解调电路的设计

2FSK调制解调电路的设计

2FSK调制解调电路的设计引言:调频键控(Frequency Shift Keying, FSK)是一种常见的数字调制解调技术,其原理是通过改变载波频率来传输数字信号。

二进制FSK(2FSK)是最基本的FSK调制方式,其中两个不同的频率代表了二进制中的0和1、本文将介绍2FSK调制解调电路的设计。

一、2FSK调制电路1.频率可调的带通滤波器频率可调的带通滤波器用于接收输入信号,并将频率转换为两个不同的预设频率。

该滤波器通常由一个带可调中心频率的VoltageControlled Oscillator (VCO)和一个窄带滤波器组成。

输入信号经过一级放大后进入VCO,VCO将输入信号频率转换为预设频率。

滤波器用于滤除不需要的频率成分,只保留希望传输的频率分量。

2.相位锁定环路(PLL)相位锁定环路是2FSK调制电路的核心。

它由一个相频比较器(Phase-Frequency Detector, PFD)、一个环路滤波器(Loop Filter)、一个VCO和一个除频器(Divider)组成。

相频比较器用于比较参考信号和VCO输出信号的相位差,产生一个频率和相位误差的输出。

这个输出信号经过环路滤波器后,将调整VCO的输出频率,使其与参考信号的相位差最小化。

除频器将VCO输出的频率除以一个预设的常数,得到一个比输入信号低的频率,在输入信号的两种频率之间切换。

二、2FSK解调电路2FSK解调电路主要由一个鉴频器和一个比较器组成。

1.鉴频器鉴频器用于提取输入信号中的频率信息,并将其转换为与输入信号频率相同的模拟信号。

鉴频器通常由一个窄带滤波器和一个包络检波器组成。

窄带滤波器用于滤除不需要的频率成分,只保留输入信号中的目标频率分量。

包络检波器将滤波后的信号变为其包络信号,将其转换为模拟信号。

2.比较器比较器用于将模拟信号转换为数字信号,实现2FSK信号的解调。

比较器通常由一个阈值电路和一个数字信号输出端口组成。

2FSK调制解调(硬件)

2FSK调制解调(硬件)

2FSK调制与非相干解调
一、实验目的:根据2FSK调制器与解调器的组成原理设计实现方
案;理顺低通滤波器3db带宽与基带信号传输速率间的关系,两个载频间隔和基带信号速率间的关系;着眼于时间、频率、频谱、频带,观察2FSK信号。

在时域,观察单元电路各点的波形、眼图、误码;在频域,观察已调信号、调制信号的频谱,测算传输带宽;
二、实验器材:非门,示波器,D触发器,与非门,JK触发器,电
阻,可变电阻,二极管,电容等。

三、实验原理与设计电路设计:
解调器原理为:
以上为设计的总原理框图,实际中各模块设计如下:
由以上可得到2FSK信号;
解调方案:
从前面原理的介绍中,我们知道2FSK调制信号的解调用非相干过零检测法,由图3可见,必须有六个单元模块来完成。

考虑到2FSK信号的产生和解调集于同一面包板内,已调信号未经信道传输,没有畸变、没有信道的干扰,因而采用数字电路完成限幅、微分、整流和脉冲形成四大功能是较简单的,解调器的解调框图如图9所示。

为了获得良好的幅频特性,相加器输出端所接的低通滤波器的带外衰减应很快,达40dB/十倍频程。

实验中采用巴特沃斯低通滤波器,其电路如图11所示。

四、实验结果:
各个模块设计结果:。

2fsk调制解调实验报告

2fsk调制解调实验报告

2fsk调制解调实验报告FSK(ASK)调制解调实验报告实验6FSK(ASK)调制解调实验一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器:1.信道编码与ASK.FSK.PSK.QPSK 调制模块,位号:A,B 位 2.FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号:G 位4.100M 双踪示波器三、实验内容:观测m序列(1,0,0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。

观测基带数字和FSK(ASK)调制信号的频谱。

改变信噪比(S/N),观察解调信号波形。

四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。

由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。

(一)FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成ASK,FSK 调制,还可以完成PSK,DPSK,QPSK,OQPSK 等调制方式。

不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。

在学习ASK,FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。

下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。

基带数据时钟和数据,通过JCLK 和JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成ASK 或FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。

2FSK调制解调系统设计

2FSK调制解调系统设计

2FSK调制解调系统设计2FSK(2 Frequency Shift Keying)调制解调系统是一种常见的数字调制技术,用于将数字信号转换为模拟信号进行传输和解调。

本文将重点介绍2FSK调制解调系统的设计,包括系统框图、原理以及实现过程。

一、2FSK调制解调系统框图1.调制部分:调制部分的主要功能是将数字信号转换为模拟信号。

常见的2FSK调制方法是通过选择两个不同频率的正弦波信号,分别对应数字信号的0和1、将数字信号经过调制电路进行调制后,输出模拟信号。

2.解调部分:解调部分的主要功能是将模拟信号转换为数字信号。

解调部分通常需要实现两个不同的带通滤波器,分别对应调制信号的两个频率。

对接收到的模拟信号进行滤波后,判断输出信号对应的频率,得到数字信号的0和1二、2FSK调制解调系统原理1.调制原理:2.解调原理:2FSK解调是通过判断接收到的模拟信号的频率来确定数字信号的0和1、解调时需要接收到的模拟信号经过一个带通滤波器,分别与f1和f2对应的滤波器进行滤波,得到两个对应的滤波输出信号。

根据输出信号的幅度比较,判断数字信号是0还是1三、2FSK调制解调系统设计实现过程1.调制部分设计:(1)选择载波频率:确定两个载波频率,分别对应数字信号的0和1(2)数字信号转换:将数字信号进行编码,将0对应的频率设为f1,1对应的频率设为f2(3)调制电路设计:设计调制电路将数字信号转换为模拟信号。

常见的调制电路包括震荡电路、混频电路等。

2.解调部分设计:(1)带通滤波器设计:设计两个带通滤波器,分别对应f1和f2的频率范围。

滤波器的设计可以采用数字滤波器或者模拟滤波器。

(2)滤波输出比较:将接收到的模拟信号依次通过两个滤波器进行滤波,得到两个滤波输出信号。

比较两个输出信号的幅度大小,判断数字信号是0还是13.系统参数调整和优化:对于2FSK调制解调系统,可以根据具体的要求进行参数调整和系统优化。

例如,调制信号的频率范围选择、滤波器的带宽设计等。

2FSK调制解调原理及设计

2FSK调制解调原理及设计

一.2FSK调制原理:1、2FSK信号的产生:2FSK是利用数字基带信号控制在波的频率来传送信息。

例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。

故其表示式为{)cos()cos(21122)(θωθωϕ++=tAtAFSKt时发送时发送"1"""式中,假设码元的初始相位分别为1θ和2θ;112fπ=ω和222fπ=ω为两个不同的码元的角频率;幅度为A为一常数,表示码元的包络为矩形脉冲。

2FSK信号的产生方法有两种:(1)](2)模拟法,即用数字基带信号作为调制信号进行调频。

如图1-1(a)所示。

(3)键控法,用数字基带信号)(tg及其反)(tg相分别控制两个开关门电路,以此对两个载波发生器进行选通。

如图1-1(b)所示。

这两种方法产生的2FSK信号的波形基本相同,只有一点差异,即由调频器产生的2FSK信号在相邻码元之间的相位是连续的,而键控法产生的2FSK信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。

(a) (b)…2FSK信号产生原理图由键控法产生原理可知,一位相位离散的2FSK信号可看成不同频率交替发送的两个2ASK信号之和,即)cos(])([)cos(])([)cos(·)()cos()()(221122112θωθωθωθωϕ+-++-=+++=∑∑∞-∞=∞-∞=tnTtgatnTtgattgttgtnsnnsnFSK其中)(tg 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。

({P,0P 11概率,概率-=n a {P 1,0P 1-=概率,概率n a其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。

2、2FSK 信号的频谱特性:由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即)]()()()([]|)(||)(||)(||)([|)()()(2211161222221211622221f f f f f f f f T f f Sa T f f Sa T f f Sa T f f Sa f S f S f S S S S S TASK ASK FSK S ++-+++-+++-+++-=+=δδδδππππ,2FSK 信号带宽为 s s FSK R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。

2FSK调制与解调系统设计

2FSK调制与解调系统设计

2FSK调制与解调系统设计引言:频移键控(FSK)是一种基于频率变化来传输信息的调制技术,它在很多应用中被广泛使用,如无线通信、数据传输等。

本文将介绍2FSK调制与解调系统设计的原理和实现。

1.系统设计要求:设计一个2FSK调制解调系统,满足以下要求:-使用两个信号频率(f1和f2)进行二进制调制,其中f1表示二进制‘0’,f2表示二进制‘1’。

-采用正弦波作为调制波形,调制指数保持为1-采用相干解调方式进行解调。

2.系统设计步骤:(1)调制设计:然后,使用正弦波产生器生成对应信号频率的正弦波。

将正弦波与二进制码序列进行调制,可以通过调制电路(如倍频器,可变频率的振荡器等)完成。

最后,得到调制信号。

(2)解调设计:采用相干解调方式进行解调。

相干解调是通过与已知频率的正弦波进行相乘,在经过低通滤波器之后,得到原始信号的解调结果。

首先,设计一个频率锁定环路(PLL),用于锁定接收信号的频率,确定解调时所采用的解调频率。

然后,通过解调电路对接收的信号进行解调。

解调电路的关键在于使用与PLL锁定频率相同的正弦波对接收信号进行相乘。

相乘之后,经过低通滤波器,得到解调信号。

最后,通过解调信号恢复原始的二进制码序列。

3.系统实现:(1)调制实现:根据系统设计要求,选择两个信号频率(f1和f2)。

通过正弦波产生器生成这两个频率的正弦波。

将正弦波与二进制码序列进行调制,采用合适的调制电路完成调制。

根据调制原理,可以得到调制信号。

(2)解调实现:设计一个频率锁定环路(PLL),用于锁定接收信号的频率。

频率锁定环路通常包括相位锁定环和频率鉴别器。

通过解调电路对接收的信号进行解调。

解调电路采用与PLL锁定频率相同的正弦波进行相乘,经过低通滤波器得到解调信号。

通过解调信号恢复原始的二进制码序列。

4.总结:本文介绍了2FSK调制解调系统的设计原理和实现步骤。

调制部分使用两个信号频率对应二进制码,采用正弦波进行调制;解调部分采用相干解调方式,通过与PLL锁定频率相同的正弦波进行相乘,经过低通滤波器得到解调信号。

2FSK的调制和解调(键控调制 相干解调)

2FSK的调制和解调(键控调制 相干解调)

用SYSTEMVIEW实现2FSK键控调制与相干解调实验报告01091036 贺冰涛01091037 罗名川用SystemView仿真实现2FSK键控的调制1、实验目的:(1)了解2FSK系统的电路组成、工作原理和特点;(2)分别从时域、频域视角观测2DPSK系统中的基带信号、载波及已调信号;(3)熟悉系统中信号功率谱的特点。

2、实验内容:以PN码作为系统输入信号,码速率Rb=20kbit/s。

(1)采用键控法实现2FSK的调制;分别观测绝对码序列、差分编码序列,比较两序列的波形;观察调制信号、载波及2FSK等信号的波形。

(2)获取主要信号的功率谱密度。

3、实验原理:数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。

2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。

2FSK键控法利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通。

键控法的特点是转换速度快、波形好、稳定度高且易于实现,故应用广泛。

2FSK信号的产生方法及波形示例如图所示。

图中s(t)为代表信息的二进制矩形脉冲序列,即是2FSK信号。

abcde 2FSK信号ttttt二进制移频键控信号的时间波形根据以上2FSK 信号的产生原理,已调信号的数字表达式可以表示为(5-1)其中,s(t)为单极性非归零矩形脉冲序列(5-2)(5-3)g(t)是持续时间为、高度为1的门函数;为对s(t)逐码元取反而形成的脉冲序列,即(5-4)是的反码,即若 =0,则 =1;若=l,则 =0,于是(5-5)分别是第n个信号码元的初相位。

一般说来,键控法得到的与序号n无关,反映在上,仅表现出当与改变时其相位是不连续的;而用模拟调频法时,由于与改变时的相位是连续的,故不仅与第n 个信号码元有关,而且之间也应保持一定的关系。

由式(5-1)可以看出,一个2FSK信号可视为两路2ASK信号的合成,其中一路以s(t)为基带信号、为载频,另一路以为基带信号、为载频。

设计性实验——2FSK调制、解调

设计性实验——2FSK调制、解调

设计性实验2FSK调制、解调实验一、实验目的1.掌握用移频键控法产生2FSK信号的原理及硬件实现方法;2.掌握用过零点检测法解调2FSK信号的原理及硬件实现方法;3.加深对位同步信号提取原理的理解,了解其硬件实现方法;4.了解锁相环对消除相位抖动的原理及作用。

二、实验内容1.2FSK调制(发送)实验。

2.2FSK解调(接收)实验。

3.位同步提取实验。

4.眼图、奈奎斯特准则实验。

5.归零码与位定时实验。

6.眼图与判决时间选取实验。

三、实验仪器及设备1.20MHZ双踪示波器 GOS-6021 1台2.函数信号发生器/计数器 SP1641bB 1台3.直流稳压电源 GPS-X303/C 1台4.万用表 1块5.2FSK调制解调实验箱 1个四、实验原理及电路(一)实验原理实现数字频率调制的方法很多,总括起来有两类:直接调频法和移频键控法。

本实验使用的是移频键控法,它便于用数字集成电路来实现。

移频键控,或称数字频率调制,是数字通信中使用较早的一种调制方式。

数字频率调制的基本原理是利用载波的频率变化来传递数字信息。

在数字通信系统中,这种频率的变化不是连续的,而是离散的。

比如,在二进制的数字频率调制系统中,可用两个不同的载频来传递数字信息,故移频键控常写作2FSK(Frequency Shift Keying)。

2FSK广泛应用于低速数据传输设备中,根据国际电报和电话咨询委员会(CCITT)的建议,传输速率为1200波特以下设备一般采用2FSK。

2FSK方法简单、易于实现,解调不需要恢复本地载波,可以异步传输,抗噪声和抗衰落性能也较强。

因此,2FSK已成为在模拟电话网上利用调制解调制器来传输数据的低速、低成本的一种主要调制方式。

在一个2FSK系统中,发端把基带信号的变化规则转换成对应的载频变化,而在收端则完成与发端相反的转换。

由于2FSK信号的信道中传输的是两个载频的切换,那么其频谱是否就是这两个载频的线谱呢?或者说信道的频带只是这两个载频之差呢?答案是否定的。

2FSKFSK通信系统调制解调综合实验电路设计

2FSKFSK通信系统调制解调综合实验电路设计

2FSKFSK通信系统调制解调综合实验电路设计以下是一个关于2FSK/FSK通信系统调制解调综合实验电路设计的文本,并附有示意图,共计1200字以上:引言:2FSK(双频调制)和FSK(频移键控)是一种常用的数字调制技术,广泛应用于通信系统中。

本实验旨在设计一个基于2FSK/FSK调制解调的通信系统电路。

1.系统概述本系统由两部分组成:调制器和解调器。

调制器负责将数字信号转换为2FSK/FSK信号,解调器负责将接收到的2FSK/FSK信号转换为数字信号。

2.调制器设计调制器的设计包括以下步骤:-数字信号生成:生成一个长度为N的数字信号序列,表示待传输的信息。

-符号映射:将数字信号映射为对应的2FSK/FSK调制信号。

例如,可以将“0”映射为低频信号,将“1”映射为高频信号。

-调制信号生成:使用相应的调制技术,将映射后的2FSK/FSK信号生成为模拟信号。

例如,对于2FSK调制,可以使用两个不同的频率来表示“0”和“1”;对于FSK调制,可以使用频率的变化来表示“0”和“1”。

-输出:将调制后的信号输出至发送端。

3.解调器设计解调器的设计包括以下步骤:-信号接收:接收从发送端发送的调制信号。

-频率检测:检测接收到的信号的频率变化,判断其对应的数字信号。

-符号还原:根据频率的变化,将接收到的频率信号还原为对应的数字信号。

-输出:将还原后的数字信号输出至接收端。

4.电路设计根据调制器和解调器的设计要求,可以设计以下电路模块:-时钟模块:用于生成系统所需的时钟信号。

-数字信号生成模块:负责生成数字信号序列。

-符号映射模块:根据数字信号将其映射为2FSK/FSK信号。

-调制信号生成模块:根据2FSK/FSK信号生成调制信号。

-信号接收模块:接收从发送端发送的调制信号。

-频率检测模块:检测接收到的信号的频率变化。

-符号还原模块:根据频率变化将接收到的信号还原为数字信号。

-输出模块:负责将数字信号输出至接收端。

FSK调制系统实验报告

FSK调制系统实验报告

实验四 FSK 调制系统一、实验仪器:PC 机一台,JQ-NIOS-2C35实验箱一台及辅助软件(DSP Builder 、Matlab/Simulink 、Quartus II 、Modelsim )二、实验目的: 1. 初步了解JQ-NIOS-2C35实验箱的基本结构。

2、学习和熟悉基于DSP Builder 开发数字信号处理实验的流程。

3、理解FSK 设计的原理和方法。

三、实验原理:正弦载波的频率随二进制基带信号在f1和f2两个频率点间变化,则产生二进制移频键控信号(2FSK 信号)。

二进制移频键控信号可以看成是两个不同载波的二进制振幅键控信号的叠加。

若二进制基带信号的1符号对应于载波频率1f ,0符号对应于载波频率2f ,则二进制移频键控信号的时域表达式为:)cos(])([)cos(])([)(210n ns n n ns n t nT t g a t nT t g a t e θωω+-+Φ+-=∑∑ (4-13)二进制数字频率调制(2FSK )是利用二进制数字基带信号控制载波进行频谱变换的过程。

在发生端,产生不同频率的载波振荡来传输数字信息“1”或“0”,在接收端,把不同频率的载波振荡还原成相应的数字基带信号。

相邻两个振荡波形的相位可能是连续的,也可能是不连续的。

FSK 调制的方法:1、直接调频法。

用数字基带矩形脉冲控制一个振荡器的某些参数,直接改变振荡频率,输出不同频率的信号。

2、频率键控法。

用数字矩形脉冲控制电子开关在两个振荡器之间进行转换,从而输出不同频率的信号。

四、实验步骤:一)、Simulink仿真波形按照下表进行操作,建立文件,找到各个模块并设置参数:位置对象参数桌面Matlab 工作目录设为Matlab安装目录下的work文件夹File->New->Model Matlab->simulinkFile->Save 命名为FSKAltera DSP Builder Blockset-> IO&Bus AltbusBus Type设置为Signed Integer,number of Bits设置为24Altera DSP BuilderBlockset-> IO&BusAltbus number of Bits设置为16,命名为“Altbus1”Altera DSP BuilderBlockset-> IO&BusAltbus number of Bits为26,命名为“AltBus26bit”Altera DSP BuilderBlockset-> IO&BusAltbus 设置number of Bits为10,命名为“AltBus10bit”Altera DSP Builder Blockset-> IO&Bus Bus conversioBus Type设置为Signed Integer,Input设置为16,output设置为8,Input Bit Connected to OutputLSB设置为8Altera DSP Builder Blockset->Storage LUTData Type设置为Signed Integer;number of bits设置为10;LUT Address Width设置为10;MATLAB Array设为511*sin([0:2*pi/(2^10):2*pi])Altera DSP Builder Blockset->Storage LUTData Type设置为Signed Integer;number of bits设置为24;LUT Address Width设置为1;MATLAB Array设置为[2^20 2^19] 命名:LUT1Altera DSP Builder Blockset->Storage LUTData Type设置为Signed Integer;number of bits设置为10;LUT Address Width设置为1;MATLAB Array查找表中存储数据的内容,设置为[0 800 命名:LUT2Altera DSP Builder Blockset->Storage LUTData Type设置为Signed Integer;number of bits设置为16;LUT Address Width设置为8;MATLAB Array查找表中存储数据的内容设置为random('unid',1,[1 64]) 命名:LUT3Altera DSP Builder Blockset->Storage LUTData Type设置为Signed Integer;number of bits设置为24;LUT Address Width设置为1;MATLAB Array查找表中存储数据的内容设置为[2^22 2^21] 命名:LUT4Altera DSP Builder Blockset-> IO&Bus InputBus Type为Signed Integer;设置[number ofbits].[]为1;勾选Specify Clock,并在Clock下写入“Clock”命名为“PhaseWords”Altera DSP BuilderBlockset-> IO&BusInput 命名为“FreqWords1”Altera DSP BuilderBlockset-> IO&BusInput 命名为“FreqWords2”Altera DSP Builder Blockset-> IO&Bus OutputBus Type为Signed Integer;设置[number ofbits].[]为10Altera DSP BuilderBlockset->Gate&ControlMultiplexer Number of Input Data Lines设置为2Altera DSP Builder Blockset->Arithmetic IncrementDecrementBus Type为Signed Integer;设置[number ofbits].[]为8;勾选Specify Clock,并在Clock下写入“Clock”Altera DSP BuilderBlockset-> IO&BusGNDSimulink->Sources Constant Constant value1设置为0Simulink->Sources Constant Constant value1设置为0 命名Constant2 Simulink->Sources Constant Constant value1设置为1 命名Constant3Altera DSP Builder Blockset->Arithmetic Parallel AdderSubtractorNumber of Inputs改为2命名为“Freq Adder26bit”Altera DSP Builder Blockset->Arithmetic Parallel AdderSubtractor总线宽度改为10bit命名为“Phase Adder10bit”Altera DSP Builder Blockset->AltLab Signal CompilerAltera DSP BuilderBlockset->AltLabTestBenchAltera DSP BuilderBlockset->Rate ChangeClock Simulink Sample Time设置为1e-8 Simulink->Sinks Scope选取上表中的几个相应模块,按下图进行连接:连接好后,全选连接的所有模块,单击右键选Creat Subsystem进行封装,并命名子模块为“DDS”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ⅰ.实验题目
基于Matlab 的2FSK 调制及仿真
Ⅱ.实验原理
数字频率调制又称频移键控,记作FSK ;二进制频移键控记作2FSK 。

2FSK 数字调制原理:
1、2FSK 信号的产生:
2FSK 是利用数字基带信号控制在波的频率来传送信息。

例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。

故其表示式为
{
)c o s ()
c o s (21122)(θωθωϕ++=t A t A F S K t

发送时
发送"1""0"
式中,假设码元的初始相位分别为1θ和2θ;112f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。

2FSK 信号的产生方法有两种:
(1)模拟法,即用数字基带信号作为调制信号进行调频。

如图1-1(a )所示。

(2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。

如图1-1(b )所示。

这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。

(a) (b)
图1-1 2FSK 信号产生原理图
由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即
)
c o s (])([
)c o s (])([
)
c o s (·)()c o s ()()(221122112θωθωθωθωϕ+-++-=+++=∑∑∞
-∞
=∞
-∞
=t nT t g a
t nT t g a
t t g t t g t n s n
n s n
FSK
其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。

{
P ,0P
11概率,概率-=
n a
{
P 1,0P
1-=
概率,概率n a
其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。

2、2FSK 信号的频谱特性:
由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即
)]
()()()([]|)(||)(||)(||)([|)
()()(221116
12
22221211622221f f f f f f f f T f f Sa T f f Sa T f f Sa T f f Sa f S f S f S S S S S T ASK ASK FSK S ++-+++-+++-+++-=
+=δδδδππππ
2FSK 信号带宽为 s s F S K R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。

Ⅲ.实现方法
1、Simulink 仿真实现:
2FSK
调制仿真系统原理图:
本设计产生2FSK信号的方法采用的是键控法
各个模块具体参数设置:
正弦波发生器1:正弦波发生器2:
开关设置:
示波器设置:
2、Matlab实现:
源程序代码:
clear all
close all
i=10;%基带信号码元数
j=5000;
a=round(rand(1,i));%产生随机序列
t=linspace(0,5,j);
f1=10;%载波1频率
f2=5;%载波2频率
fm=i/5;%基带信号频率
B1=2*f1;%载波1带宽
B2=2*f2;%载波2带宽%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%产生基带信号
st1=t;
for n=1:10
if a(n)<1;
for m=j/i*(n-1)+1:j/i*n
st1(m)=0;
end
else
for m=j/i*(n-1)+1:j/i*n
st1(m)=1;
end
end
end
st2=t;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%基带信号求反for n=1:j;
if st1(n)>=1;
st2(n)=0;
else
st2(n)=1;
end
end;
figure(1);
subplot(411);
plot(t,st1);
title('基带信号');
axis([0,5,-1,2]);
subplot(412);
plot(t,st2);
title('基带信号反码');
axis([0,5,-1,2]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%载波信号
s1=cos(2*pi*f1*t);
s2=cos(2*pi*f2*t);
subplot(413)
plot(s1);
title('载波信号1');
subplot(414),
plot(s2);
title('载波信号2');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%调制F1=st1.*s1;%加入载波1
F2=st2.*s2;%加入载波2
figure(2);
subplot(311);
plot(t,F1);
title('s1*st1');
subplot(312);
plot(t,F2);
title('s2*st2');
e_fsk=F1+F2;
subplot(313);
plot(t,e_fsk);
title('2FSK信号')
Ⅳ.实验要求
1、Simulink仿真结果:
2、Matlab程序运行结果:。

相关文档
最新文档