物理电磁场与电磁波基础

合集下载

初中物理电磁场与电磁波

初中物理电磁场与电磁波

初中物理电磁场与电磁波在我们的初中物理学习中,电磁场与电磁波是一个既神秘又充满趣味的领域。

它看似抽象,但却与我们的日常生活息息相关。

首先,让我们来了解一下什么是电磁场。

简单来说,电磁场是由电场和磁场组成的一个统一体。

电荷会产生电场,而电流会产生磁场。

当电荷运动时,电场和磁场就会相互影响、相互作用。

想象一下,就像两个好朋友,手拉手一起变化、一起玩耍。

电场就像是一个力的场,它能够对处在其中的电荷施加力的作用。

比如,我们用梳子在头发上摩擦,梳子就带上了电荷,能够吸引小纸屑,这就是电场在起作用。

而磁场呢,则像是一个“无形的手”,会对运动的电荷或者电流产生力的作用。

比如,我们常见的磁悬浮列车,就是利用磁场的力量让列车悬浮起来,减少摩擦,从而实现高速运行。

那么,电磁波又是什么呢?电磁波其实是电磁场的一种运动形态。

它是由同相且互相垂直的电场与磁场在空间中以波的形式移动,传播着能量和动量。

电磁波的发现是物理学史上的一个重要里程碑。

麦克斯韦通过理论研究,预言了电磁波的存在。

后来,赫兹通过实验成功地产生和检测到了电磁波,证实了麦克斯韦的理论。

电磁波的种类繁多,按照波长或者频率的不同,可以分为无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。

无线电波在我们的生活中应用广泛,比如广播、电视、手机通信等。

微波常用于微波炉加热食物。

红外线在遥控器、夜视仪中发挥着重要作用。

可见光就是我们能够看到的各种颜色的光,赤橙黄绿青蓝紫,它们的波长不同,让我们感受到了丰富多彩的世界。

紫外线能够杀菌消毒,但过多的紫外线照射会对人体造成伤害。

X射线可以用于医学上的透视和检查。

伽马射线则具有很强的穿透力,在工业探伤等领域有应用。

电磁波的传播不需要介质,可以在真空中传播。

这一点和机械波有很大的不同。

比如,声音是一种机械波,它需要通过介质(如空气、水等)来传播。

但电磁波,即使在没有任何物质的真空中,也能照样传播。

在现代社会中,电磁波的应用几乎无处不在。

电磁场与电磁波公式总结谢处方版

电磁场与电磁波公式总结谢处方版

电磁场与电磁波公式总结谢处方版电磁场与电磁波是物理学中非常重要的一个分支,它描述了电磁波的传播、散射、反射等行为。

谢处方版的《电磁场与电磁波》是一本非常经典的教材,下面是该教材中一些常用的公式总结。

1.麦克斯韦方程组这是电磁场与电磁波理论的基础,包括了四个基本方程:(1)curl E = - grad(Div) B + div(rot) A - jωμμ04πrotA, curl H = grad(Div) D + rot(rot) B - jωεε04πrotE. (2)div E = ρ/ε0, div H = 0. (3)rot E = 0, rot H = -jωμμ04πD. (4)其中E和H分别代表电场强度和磁场强度,D和B分别代表电位移和磁感应强度,A代表矢势,ρ代表电荷密度,j代表虚数单位,ω代表角频率,μ代表磁导率,ε代表介电常数。

2.波动方程描述电磁波在空间中传播的方程为:∂2E∂t2−div(rotH)=ρ∂2ρ∂t2div(rotE)=0∂2H∂t2+curl(curlE)=0其中E和H分别代表电场强度和磁场强度,ρ代表电荷密度。

3.坡印廷定理坡印廷定理描述了电磁场能量流动密度和矢量场的旋度的关系,对于一个封闭的体积元V内的电磁场,能量流量密度(功率密度)可用以下公式表示:W=12Re(E⋅JD)dV=12Re(H⋅JB)dV=12Re(E⋅J+c2H⋅B)dV其中W代表功率流密度,E和H分别代表电场强度和磁场强度,J代表电流密度,B代表磁感应强度。

该公式告诉我们,在时变电磁场中,电磁场能量沿闭合曲面S向外流动的功率等于曲面S内电磁场能量增加率。

4.洛伦兹力公式对于一个带电粒子在磁场中所受的洛伦兹力,可以用以下公式表示:F=qv×B其中F代表洛伦兹力,q代表带电粒子的电量,v代表带电粒子的速度,B代表磁感应强度。

该公式告诉我们,带电粒子在磁场中所受的力垂直于磁场方向和速度方向。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是物理学中重要的概念,它们对于我们理解和应用电磁现象具有重要意义。

本文将介绍电磁场和电磁波的基本概念,阐述它们之间的关系,以及它们在日常生活和科学研究中的应用。

一、电磁场的概念和特性电磁场是指由电荷或电流产生的空间中的物理场。

电磁场可分为静电场和磁场两种。

静电场是由静止电荷产生的场,其特点是强度随距离的增加而减小,并且与电荷的性质有关。

磁场是由电流或者变化的电场产生的场,其特点是有磁感应强度和磁场线的方向。

电磁场具有几个重要特性。

首先,电磁场是无穷远的,即电荷或电流所产生的电磁场可以传播到无穷远的地方。

其次,电磁场具有向外辐射的特点,就像水波一样,可以向周围传播。

第三,电磁场是叠加的,即不同的电荷或电流所产生的电磁场可以在同一点上叠加,形成合成场。

二、电磁波的概念和特性电磁波是由电磁场的振荡传播产生的波动现象。

电磁波包括了电场和磁场的变化,是以光速传播的横波。

根据波长的不同,电磁波可以分为不同的频段,包括无线电波、微波、红外线、可见光、紫外线、X 射线和γ射线。

其中,可见光是人眼能够感知的电磁波。

电磁波具有几个重要特性。

首先,电磁波能够传播在真空中,其速度与真空中的光速相等,约为3×10^8米/秒。

其次,不同频段的电磁波具有不同的波长和能量,频率越高,波长越短,能量越大。

第三,电磁波可以被反射、折射、散射和吸收等现象。

这些特性使得电磁波在通信、遥感、医学影像等领域有着广泛的应用。

三、电磁场和电磁波的关系电磁场和电磁波之间存在着密切的关系。

电磁波是电磁场的传播方式,电磁场是电磁波的基础。

在电磁波传播的过程中,电场和磁场相互作用,互相转换,形成电磁波的传播。

同时,电磁波的传播也会产生电场和磁场的变化。

这种相互作用使得电磁场和电磁波具有相似的特性,例如传播速度相同、可以被反射和折射等。

四、电磁场与电磁波的应用电磁场和电磁波在日常生活和科学研究中有着广泛的应用。

在通信领域,无线电波和微波被用于无线通信和卫星通信,可见光被用于光纤通信和激光通信。

人教版高中物理选修2-1《电磁场、电磁波》基础测试及答案

人教版高中物理选修2-1《电磁场、电磁波》基础测试及答案

电磁场和电磁波基础测试一、选择题1.依据麦克斯韦电磁理论,以下说法正确的选项是[]A.变化的电场必定产生变化的磁场B.平均变化的电场必定产生平均变化的磁场C.稳固的电场必定产生稳固的磁场D.振荡的电场必定产生同频次的振荡磁场2.一平行板电容器与一自感线圈构成振荡电路,要使此振荡电路的周期变大,以下举措中正确的选项是[]A.增添电容器两极间的距离B.减少线圈的匝数C.增大电容器两极板间的正对面积D.增大电容器两极板间的距离的同时,减少线圈的匝数3.要使 LC 振荡电路的周期增大一倍,可采纳的方法是[] A.自感系数 L 和电容 C都增大一倍B.自感系数L和电容 C都减小一半C减小一半C.自感系数L增大一倍,而电容D.自感系数L 减小一半,而电容C增大一倍4.以下的阐述中正确的选项是[]A.在磁场四周必定能产生电场B.在变化的磁场四周必定能产生电场C.周期性变化的电场或磁场都能够产生电磁波D.振荡的电场或磁场都能够产生电磁波5.以下相关在真空中流传的电磁波的说法正确的选项是[]A.频次越大,流传的速度越大B.频次不一样,流传的速度同样C.频次越大,其波长越大D.频次不一样 ,流传速度也不一样6. LC 回路发生电磁振荡时[]A.放电结束时,电路中电流为0,电容器所带电量最大B.放电结束时,电路中电流最大,电容器所带电量为0C.充电结束时,电路中电流为0,电容器所带电量最大D.充电结束时,电路中电流最大,电容器所带电量为07.LC 回路发生电磁振荡时[]A.电容器两板间电压减小时,电路中电流减小B.电容器两板间电压减小时,电路中电流增大C.电容器两板间电压为0 时,电路中电流最大D.电容器两板间电压为最大时,电路中电流为08.如图 19-1所示,是 LC振荡电路中产生的振荡电流 i 随时间 t的变化图象,在 t3时辰以下说法正确的选项是[]A.电容器中的带电量最大B.电容器中的带电量最小C.电容器中的电场能达到最大D.线圈中的磁场能达到最小图19-1二、填空题9.在图 19-2 所示的电路中,可变电容器的最大电容是270 pF,最小电容为 30 pF,若 L 保持不变,则可变电容器的动片完整旋出与L C完整旋入时,电路可产生的振荡电流的频次之比为_____.图 19-2 10.频次为 600 kHz 到 1.5 MHz 的电磁波其波长由m 到m.11.某收音机调谐电路的可变电容器动片完整旋入时,电容是 390 PF,这时能接收到 520kHz的无线电电波,动片完整旋出时,电容变成 39 PF,这时能收到的无线电电波的频次是 ______× 106 Hz,此收音机能收到的无线电电波中,最短的波长为 ______m.(取三位有效数字)参照答案一、选择题1.D 2.C 3.A 4.BCD5.B 6.BC 7.BCD 8.B二、填空题9.3:1 10.500,20011. 1.64 , 182。

电磁场与电磁波公式总结

电磁场与电磁波公式总结

电磁场与电磁波公式总结电磁场与电磁波是电磁学中的两个重要概念。

电磁场是描述电荷体系在空间中产生的电磁现象的物理场,而电磁波是由电磁场振荡而产生的能量传播过程。

在电磁学中,有一些重要的公式用来描述电磁场和电磁波的性质和行为。

本文将对这些公式进行总结。

1.库仑定律:库仑定律描述了两个电荷之间的相互作用力。

对于两个电荷之间的相互作用力F,它与两个电荷之间的距离r的平方成反比,与两个电荷的电量的乘积成正比。

库仑定律的公式如下:F=k*,q1*q2,/r^2其中F为两个电荷之间的相互作用力,k为库仑常数,q1和q2为两个电荷的电量大小,r为两个电荷之间的距离。

2.电场强度公式:电场是描述电荷体系对电荷施加的力的物理量。

电场强度E可以通过电荷q对其施加的力F来定义。

电场强度的公式如下:E=F/q其中F为电荷所受的力,q为电荷的大小。

3.高斯定律:高斯定律描述了电场的产生和分布与电荷的关系。

高斯定律可以用来计算电荷在闭合曲面上的总电通量。

高斯定律的公式如下:Φ=∮E·dA=Q/ε0其中Φ为电场在曲面上的电通量,E为电场强度矢量,dA为曲面的面积矢量,Q为曲面内的总电荷,ε0为真空介电常数。

4.法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起的感应电动势。

法拉第电磁感应定律的公式如下:ε = -dΦ / dt其中ε为感应电动势,Φ为磁通量,t为时间。

5.毕奥—萨伐尔定律:毕奥—萨伐尔定律描述了电流元产生的磁场。

根据毕奥—萨伐尔定律,磁场强度B可以通过电流元i对其产生的磁场来定义。

毕奥—萨伐尔定律的公式如下:B = μ0 / 4π * ∮(i * dl × r) / r^3其中B为磁场强度,μ0为真空磁导率,i为电流强度,l为电流元的长度,r为电流元到观察点的距离。

6.安培环路定理:安培环路定理描述了围绕导线路径的磁场和沿路径的电流之间的关系。

安培环路定理的公式如下:∮B·dl = μ0 * I其中B为磁场强度矢量,dl为路径元素矢量,I为路径中的总电流,μ0为真空磁导率。

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

电磁场与电磁波复习重点

电磁场与电磁波复习重点

梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。

2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。

:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。

散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。

斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。

A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。

3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。

关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。

电磁场与电磁波基础(第1章)

电磁场与电磁波基础(第1章)
2013-7-17 电磁场与电磁波基础 6
●法国物理学家 查利· 奥古斯丁· 库仑
(Charles Augustin de Coulomb 1736~1806) 电学是物理学的一个重要分枝,在它的发展过程中,很多 物理学巨匠都曾作出过杰出的贡献。法国物理学家查利· 奥古斯 丁· 库仑就是其中影响力非常巨大的一员。 1785年,库仑用自己发明的扭秤建立了静电学中著名的库 仑定律。同年,他在给法国科学院的《电力定律》的论文中详 细地介绍了他的实验装置,测试经过和实验结果。
我们周围的物理世界中存在着各种各样的场,例 如自由落体现象,说明存在一个重力场;指南针在地 球磁场中的偏转,说明存在一个磁场;人们对冷暖的 感觉说明空间分布着一个温度场等等。 场是一种特殊的物质,它是具有能量的,场中的 每一点的某一种物理特性,都可以用一个确定的物理 量来描述。 当对这些物理量的描述与空间坐标或方向性有关 时,通常需要使用矢量来描述它们,这些矢量在空间 的分布就构成了所谓的矢量场。分析矢量场在空间的 分布和变化情况,需要应用矢量的分析方法和场论的 基本概念。
电磁场与电磁波基础 (第2版)
Fundamentals of Electromagnetic Fields and Waves
电子工业出版社
2013-7-17 电磁场与电磁波基础 1


电磁场与电磁波理论是近代自然科学中,理论相对最完整 、应用最广泛的支柱学科之一。电磁场与电磁波技术已遍及人 类的科学技术、政治、经济、军事、文化以及日常生活的各个 领域。 人类对电磁现象的认识源远流长,但其知识与应用开始形 成系统化和理论化则始于18世纪,伽伐尼、伏打、高斯、富兰 克林、卡文迪什、库仑等著名科学家对电磁现象所作的卓有成 效的研究启动了电磁世界这一巨轮的运转。 19世纪是电磁研究蓬勃开展的时代,法拉第、欧姆、傅立 叶、基尔霍夫、奥斯特、安培、毕奥、萨伐尔、麦克斯韦、斯 托克斯、汤姆森、赫兹、楞次、雅可比、西门,单单从这些名 字和科学家的阵容,你就可以感受到这一时期的电磁科学取得 了多么辉煌的成就。

高中物理电磁场和电磁波知识点总结

高中物理电磁场和电磁波知识点总结

高中物理电磁场和电磁波知识点总结高中物理电磁场和电磁波知识点总结1.麦克斯韦的电磁场理论(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场.(2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场.(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.2.电磁波(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s.下面为大家介绍的是2019年高考物理知识点总结电磁感应,希望对大家会有所帮助。

1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路.(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.。

电磁场与电磁波的基本概念

电磁场与电磁波的基本概念

电磁场与电磁波的基本概念电磁场和电磁波是物理学中非常重要的概念,对于我们理解电磁现象和应用电磁技术有着至关重要的作用。

本文将从电磁场和电磁波的基本概念入手,探讨它们的特性和应用。

一、电磁场的概念电磁场是由电荷和电流所产生的一种物理现象。

我们知道,电荷之间的相互作用通过电场来实现,而电流则通过磁场来实现。

电磁场则是电场和磁场的统一体,它们相互作用,相互影响。

电磁场具有一些基本特性。

首先,电磁场是无处不在的,它存在于我们周围的每一个空间点。

其次,电磁场具有传播性,它可以在空间中传播。

最后,电磁场具有能量和动量,可以对物质产生作用。

电磁场的描述可以使用电场强度和磁感应强度来进行。

电场强度描述了电荷对周围空间的作用,磁感应强度描述了电流对周围空间的作用。

它们都是矢量量,具有大小和方向。

二、电磁波的概念电磁波是由电磁场所产生的一种波动现象。

当电磁场发生变化时,就会产生电磁波。

电磁波是一种横波,它的振动方向与传播方向垂直。

电磁波具有一些基本特性。

首先,电磁波是一种自由空间中的波动现象,不需要介质的存在。

其次,电磁波具有传播性,可以在空间中传播。

最后,电磁波具有波长、频率和速度等特性。

电磁波的波长和频率之间存在着一定的关系,即波速等于波长乘以频率。

在真空中,电磁波的速度是一个常数,即光速,约为3×10^8米/秒。

三、电磁场与电磁波的关系电磁场和电磁波是密不可分的。

电磁波是电磁场的一种表现形式,电磁场的变化会产生电磁波的传播。

电磁波是由电场和磁场相互耦合产生的。

当电场发生变化时,磁场也会发生变化,从而产生磁场的传播;当磁场发生变化时,电场也会发生变化,从而产生电场的传播。

这种电场和磁场的相互转换和传播形成了电磁波。

四、电磁场与电磁波的应用电磁场和电磁波的应用非常广泛。

电磁波是我们日常生活中使用的无线通信技术的基础,如手机、无线网络等。

电磁波还被广泛应用于雷达、卫星通信等领域。

电磁场的应用也非常广泛。

电磁场可以用于电力传输和电能转换,如变压器、发电机等。

电磁场与电磁波--电磁场的基本规律

电磁场与电磁波--电磁场的基本规律

2 J C E ex J m cos tA / m , 所以E=ex E m cos t D E Jd = r 0 ex r 0 E m sin t t t 位移电流与传导电流幅值比 J dm r 0 E m = =9.58 10 13 f J Cm Em 通常金属电导率很大,其中的位移电流可忽略。
物理意义:随时间变化的磁场将产生电场。
4
当导体棒以速度v在静态磁场中运动时,导体回路中的 磁通量也发生变化。此时磁场力 Fm qv B 将使导体中 的自由电荷朝一端运动,则作用在单位电荷上的磁场力 F m 可看成作用于沿导体的感应电场,即:
q
v B
19
说明:时变电磁场的基本量包括电场和磁场,因此其 基本方程应包含四个式子。 注意:时变电磁场的源: 1、真实源(变化的电流和电荷); 2、变化的电场和变化的磁场。 二、麦克斯韦方程组的积分形式
D C H dl S ( J e t )dS B E dl C S t dS B dS 0 S D dS dV Q V S



Байду номын сангаас

B0bvt sin t B0bv cos t
11
位移电流
一、安培环路定律的局限性
H dl J dS I
c s
C
S2
l
S1
I
如图:以闭合路径 l 为边界的 曲面有无限多个,取如图所示的 两个曲面S1,S2。
则对S1面: H J I c dl S1 dS 矛盾 对S2面: H dl J dS 0

高中物理-电磁场和电磁波知识点精讲

高中物理-电磁场和电磁波知识点精讲

高中物理-电磁场和电磁波知识点精讲考纲要求1、电磁场,电磁波,电磁波的周期、频率、波长和波速Ⅰ2、无线电波的发射和接收Ⅰ3、电视、雷达Ⅰ知识网络:单元切块:按照考纲的要求,本章内容均为Ⅰ级要求,在复习过程中,不再细分为几个单元。

本章重点是了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论。

教学目标:1.了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论.2.了解电磁场和电磁波概念,记住真空中电磁波的传播速度.3.了解我国广播电视事业的发展.教学重点:了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论教学难点:定性理解麦克斯韦的电磁场理论教学方法:讲练结合,计算机辅助教学教学过程:一、电磁振荡1.振荡电路:大小和方向都随时间做周期性变儿的电流叫做振荡电流,能够产生振荡电流的电路叫振荡电路,LC 回路是一种简单的振荡电路。

2.LC 回路的电磁振荡过程:可以用图象来形象分析电容器充、放电过程中各物理量的变化规律,如图所示3.LC 回路的振荡周期和频率LC T π2=LC f π21=注意:(1)LC 回路的T 、f 只与电路本身性质L 、C 有关(2)电磁振荡的周期很小,频率很高,这是振荡电流与普通交变电流的区别。

分析电磁振荡要掌握以下三个要点(突出能量守恒的观点):⑴理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。

⑵回路中电流越大时,L 中的磁场能越大(磁通量越大)。

⑶极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。

LC 回路中的电流图象和电荷图象总是互为余函数(见右图)。

【例1】 某时刻LC 回路中电容器中的电场方向和线圈中的磁场方向如右图所示。

则这时电容器正在_____(充电还是放电),电 C Liq t t o o放电 充电 放电 充流大小正在______(增大还是减小)。

解:用安培定则可知回路中的电流方向为逆时针方向,而上极板是正极板,所以这时电容器正在充电;因为充电过程电场能增大,所以磁场能减小,电流在减小。

电磁场和电磁波

电磁场和电磁波

电磁场和电磁波是物理学中的两个基本概念。

电磁场和电磁波有什么区别?
电磁场
一般来说,电磁场是指彼此相关的交变电场和磁场。

电磁场是带电粒子运动产生的一种物理场。

在电磁场中,磁场的任何变化都会产生电场,而电场的任何变化也会产生磁场。

这种交变电磁场不仅可以存在于电荷,电流或导体周围,还可以在空间中传播。

电磁场可以看作是电场和磁场之间的联系。

电场由电荷产生,运动电荷产生磁场。

什么是电磁波
电磁场的传播构成电磁波。

也称为电磁辐射,例如,我们常见的电磁波是无线电波,微波,红外线,可见光,紫外线,X射线,r射线。

这些都是电磁波,但是这些电磁波的波长不同。

其中,无线电波的波长最长,而R射线的波长最短。

此外,人眼可以接收的电磁波波长通常在380至780 nm之间,这就是我们通常所说的可见光。

一般而言,只要物体本身的温度大于绝对零(即负273.15℃),除暗物质外,还会
发射电磁波。

但是,没有物体的温度低于-273.15℃,因此可以说我们周围的物体发出电磁波。

电磁波以光速传播。

谁首先发现电磁波?历史上,电磁波最初是由詹姆斯·麦克斯韦(James Maxwell)在1865年预测的,然后在1887年至1888年由德国物理学家海因里希·赫兹(Heinrich Hertz)确认的。

拓展:
《电磁场与电磁波第四版》是2006年01月由高等教育出版社出版的书籍,作者是谢处方、饶克谨。

本书可供普通高等学校电子信息、通信工程、信息工程等专业作为电磁场与电磁波课程的教材使用,也可供工程技术人员参考。

电磁场与电磁波(第二章)

电磁场与电磁波(第二章)

S
s
t
dS
v
Ñl JS
g(n)
v dl )
0
对时变面电流 对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
v
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
v F12
q1 q2
4 0 R 2
evR
q1 q2
4 0 R3
v R
rv' vO
(
1
)
v ex
(
1
)
v ey
(
1
)
v ez
(1)
R x R y R z R
v ex
uv
x
x R3
' uur
v ey
y
y R3
'
v ez
zz' R3
R R3
eR R2
第二章
❖电荷、电流 2.4
❖电场强度、矢量积分公式 2.8 2.9
作业
t 0
讨论:1)
v J
vv
式中: 为空间中电荷体密度,vv 为
正电荷流动速度。
2) I Jv(rv)gdsv Jv(rv)gn)ds
S
S
S Jv(rv) cos ds
n)
S
Jv(rv)
2、面电流密度
❖当电荷只在一v个薄层内流动时,形成的电流为面电流。 ❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l
v J
线元的电流为 I ,则定义
S

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是我们生活中经常接触到的物理现象。

本文将以通俗易懂的方式,详细介绍电磁场和电磁波的基本概念、特性及应用。

一、电磁场的概念与特性电磁场是由电荷所产生的力场和磁荷所产生的磁场组成的物理场。

它包括电场和磁场两个方面。

电场是由静止电荷所产生的场,具有方向和大小;磁场是由运动电荷所产生的场,同样也具有方向和大小。

电磁场具有以下特性:1. 空间的任何一点都存在电场和磁场;2. 电场和磁场相互作用,相互转换;3. 电场和磁场都遵循相应的物理规律,如库仑定律和安培定律;4. 电场和磁场的强度与产生它们的电荷和电流的大小有关。

二、电磁波的概念与特性电磁波是一种能够在真空中传播的无线电波,它是电磁场的一种表现形式。

电磁波具有电场和磁场的振荡,并且垂直于传播方向。

通常将电磁波按照频率分成不同的波段,如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

电磁波的特性如下:1. 电磁波具有波长和频率的关系,波长和频率互为倒数;2. 不同频率的电磁波在介质中传播的速度是相同的,即为光速;3. 电磁波可以在真空中传播,不需要介质媒质;4. 电磁波的能量和强度与其频率有关。

三、电磁场与电磁波的应用电磁场和电磁波在生活中有着广泛的应用。

以下是其中几个重要的应用领域:1. 通信技术:无线电通信、卫星通信、手机通信等都是基于电磁波传播原理进行的。

2. 电磁辐射与医学:医学影像学中的X射线和核磁共振都是利用电磁波进行的影像诊断。

3. 电磁感应:电磁感应是电动机、发电机和变压器等电器工作原理的基础。

4. 光学技术:光学仪器和光通信等利用了可见光的电磁波特性。

5. 无人驾驶和雷达系统:雷达系统利用电磁波的反射与接收原理,实现物体的探测与定位。

总结:电磁场与电磁波是我们日常生活中不可或缺的物理现象。

电磁场是由电场和磁场组成的物理场,而电磁波则是电磁场在真空中的一种传播形式。

电磁场和电磁波在通信技术、医学、电气工程、光学技术、雷达系统等方面都有广泛应用。

电磁场与电磁波

电磁场与电磁波
至失效
电磁辐射的安全防护 措施:包括屏蔽、滤 波、接地等方法,以 降低电磁辐射的危害
电磁波的防护措施
滤波:使用滤波器,滤除有 害电磁波
屏蔽:使用金属材料或电磁 屏蔽材料,阻挡电磁波的传 播
接地:将设备外壳接地,减 少电磁波的辐射
距离:保持与电磁波源的距 离,减少电磁波的影响
电磁波的安全标准与法规
科研领域: 电磁波在科 学研究中的 应用,如天 文观测、粒 子加速器等
未来电磁波的发展趋势与挑战
发展趋势:高速、大容量、低功耗
发展趋势:集成化、小型化、智能 化
添加标题
添加标题
添加标题
添加标题
挑战:电磁波干扰、信息安全、电 磁兼容
挑战:电磁波传播、接收、处理技 术的突破
THANKS
汇报人:XX
伽马射线:波长小于0.01nm,具有极强的穿透力,能穿透人体组织,常用于放射治疗和核物理研究等。
4
电磁波的应用
通信技术
电磁波的发现 和应用:无线 电通信、电视 广播、卫星通
信等
通信技术的发 展历程:从模 拟通信到数字 通信,从有线 通信到无线通

通信技术的应 用领域:军事、 航天、医疗、 交通、教育等
医疗设备:利用电磁波进行无 创检测和治疗
电磁波与其他领域的交叉发展
通信领域: 电磁波在无 线通信中的 应用,如5G、 6G等
医疗领域: 电磁波在医 疗设备中的 应用,如微 波治疗、射 频消融等
军事领域: 电磁波在军 事装备中的 应用,如雷 达、电子战 等
环保领域: 电磁波在环 保监测中的 应用,如电 磁波污染监 测、电磁波 消毒等
电磁场与电磁波
XX,a click to unlimited possibilities

初识电磁场与电磁波知识点

初识电磁场与电磁波知识点

初识电磁场与电磁波知识点
电磁场和电磁波是物理学中非常重要的概念,涉及到电场、磁场、电磁波的传播等多个方面。

以下是一些关于电磁场与电磁波的基本知识点:
1. 电磁场:由变化的电场和磁场组成,是相互联系、相互作用的统一场。

电磁场的变化会产生电磁波。

2. 电磁波:是电磁场的一种波动状态,可以传播能量。

电磁波由电场和磁场组成,它们的相互垂直并且都与波的传播方向垂直。

3. 电磁波的传播:电磁波可以在真空中传播,也可以在介质中传播。

在介质中传播时,电磁波的传播速度、频率和波长等特性会受到影响。

4. 电磁波的性质:具有波动性和粒子性,即具有能量和动量。

电磁波的频率、波长和能量之间存在关系,即E=hν,其中E为能量,ν为频率,h为普朗
克常数。

5. 电磁波谱:根据频率从低到高的顺序,电磁波谱包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。

6. 电磁辐射:指能量以电磁波形式发射到空间的现象。

电磁辐射包括无线电波、红外线、可见光、紫外线等。

7. 电磁感应:当导体处于变化的磁场中时,导体中会产生感应电动势。

这种现象称为电磁感应。

8. 磁场强度和电场强度:描述磁场和电场强弱的物理量,单位分别为安培/米2(A/m)和伏特/米(V/m)。

这些知识点为初步了解电磁场与电磁波的概念提供了基础,但实际应用和研究涉及更多深入的内容。

如需更多信息,建议查阅相关文献或咨询物理学专家。

电磁场与电磁波的基本理论和工程应用

电磁场与电磁波的基本理论和工程应用

电磁场与电磁波的基本理论和工程应用电磁场和电磁波是电磁学的基础概念,其理论和应用在现代科技社会中起着重要作用。

本文将详细介绍电磁场和电磁波的基本理论以及其在工程应用中的具体情况。

一、电磁场的基本理论1.1 电磁场的概念电磁场是一种存在于空间中的物理现象,描绘了电荷和电流的相互作用过程。

它由电场和磁场两部分组成,具有方向强度和传播速度等特性。

1.2 电磁场的数学表达电磁场的数学表达主要是通过麦克斯韦方程组来描述。

麦克斯韦方程组包括四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应第二定律。

1.3 电磁场的特性电磁场有许多特性,其中包括:- 有源性:电磁场的产生需要带电粒子或电流作为能量源。

- 传播性:电磁场可以在空间中传播,并以光速的速度传递信息。

- 叠加性:多个电磁场可以叠加形成新的电磁场。

- 势能性:电磁场可以与电荷相互转化,从而进行能量的传递。

二、电磁波的基本理论2.1 电磁波的概念电磁波是由电磁场在空间中传播形成的一种波动现象。

它由电场和磁场的相互作用引起,具有电磁场的传播速度和特性。

2.2 电磁波的产生和传播电磁波的产生主要是通过加速带电粒子或振荡电流来实现的。

一旦电磁波产生后,它会以电磁场的形式在空间中传播,直到被吸收或衰减。

2.3 电磁波的分类根据波长和频率的不同,电磁波可以分为不同的分类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

三、电磁场和电磁波的工程应用3.1 通信技术电磁场和电磁波在通信技术中起着关键作用。

无线电波和微波被广泛应用于无线通信和卫星通讯领域,可实现远距离的信息传输。

3.2 雷达技术雷达技术利用电磁波进行探测和测距,广泛应用于航空、军事等领域。

雷达可实现对目标的探测、定位和跟踪,具有重要意义。

3.3 高频加热技术高频加热技术是利用电磁场的能量将物体加热到所需温度。

它在工业生产中广泛应用于熔融金属、加热塑料等领域。

3.4 医学诊断技术电磁波在医学诊断技术中也有重要应用。

电磁场与电磁波

电磁场与电磁波

电磁场与电磁波电磁场和电磁波是物理学中非常重要的概念,它们在我们的日常生活和科学研究中扮演着重要角色。

本文将介绍电磁场和电磁波的概念、性质以及它们在现代科技中的应用。

一、电磁场的概念和性质电磁场是指由电荷产生的力场和磁场所组成的物理场。

根据麦克斯韦方程组,电荷的运动会产生电场,而变化的电流则会产生磁场。

这两个场之间相互作用,共同构成了电磁场。

电磁场具有以下几个重要的性质:1. 电磁场是无线的:电磁场的传播速度是光速,约为300,000公里/秒,具有较快的传播速度。

2. 电场和磁场的相互作用:根据法拉第电磁感应定律,变化的磁场可以产生感应电场,而变化的电场则会产生感应磁场。

这种相互作用是电磁波传播的基础。

3. 电磁场的能量传递:电磁场携带能量,能量的传递通过电磁波进行。

电磁波是由电场和磁场相互耦合形成的波动现象。

二、电磁波的概念和性质电磁波是由电场和磁场相互耦合形成的一种波动现象。

它以光速传播,并在真空中可以自由传播。

电磁波具有以下几个重要的性质:1. 频率和波长:电磁波的频率和波长之间存在确定的关系,即频率乘以波长等于光速。

不同频率和波长的电磁波表现出不同的特性,如可见光、射线和无线电波等。

2. 偏振性质:电磁波可以是无偏振的,也可以是偏振的。

偏振电磁波只在一个特定的方向上振动,有利于某些应用,如偏振镜和3D眼镜等。

3. 干涉和衍射:电磁波在遇到障碍物或孔径时会产生干涉和衍射现象。

这些现象可以用来解释光的折射、多普勒效应等现象,对科学研究和技术应用具有重要意义。

三、电磁场和电磁波的应用电磁场和电磁波在现代科技中运用广泛。

以下列举几个例子:1. 通信技术:无线通信离不开电磁波传播,无线电、微波和红外线等电磁波被广泛用于手机、无线网络、卫星通信等领域。

2. 医学影像:射线和磁共振成像等技术利用电磁波对人体进行成像,对医学诊断和治疗起到重要作用。

3. 光学器件:电磁波在光学器件中被广泛应用,如透镜、光电二极管和激光器等。

电磁场和电磁波基础

电磁场和电磁波基础

第一章 电磁场和电磁波基础1 电磁学基本物理量 2 电磁场定律 3 边界条件 4 本构关系 5 波动方程 6 场和方程的复数形式 7 波数和波阻抗 8 均匀平面波 9 平面波的反射和折射 10 坡印亭定理1 电磁学基本物理量在电磁场基本方程中,所涉及到的基本物理量有:E :称为电场强度(伏/米)H :称为磁场强度(安/米)D :称为电通密度(库/米 2) B :称为磁通密度(韦/米 2)电位移矢量 磁感应强度⎯真空→ ε 0 E ⎯ ⎯ ⎯真空→ μ 0 H ⎯ ⎯J :电流密度(安/米 2)ρ :电荷密度(库/米 )3⎧ ⎪基本物理量:E , B ⎨ ⎪导出物理量:D, H ⎩瞬时值或时域表示 一般情况下,各场量和源量既是空间坐标的函数,又是时 间的函数,即2 电磁学场定律电磁学场定律描述场和源的关系,包括积分形式场定 律和微分形式场定律。

微分场定律形式把某点的场与就在该点的源及该点 的其它场量联系起来,适用于场、源量都是连续函数并有 S 连续的导数的良态域。

•⎧ E = E ( r , t ) = E ( x, y , z , t ) ⎪ ⎪ D = D ( r , t ) = D ( x, y , z , t ) ⎪ B = B ( r , t ) = B ( x, y , z , t ) ⎪ ⎨ ⎪ H = H ( r , t ) = H ( x, y , z , t ) ⎪ ρ = ρ (r , t ) = ρ ( x, y, z , t ) ⎪ ⎪ J = J (r , t ) = J ( x, y, z , t ) ⎩对应不同时刻,这些场量和源量的方向和数值会发生变 化,对应着一般时变场,称为场量的时域表示,或者瞬时 值。

P⎧ ⎪场:E , B ⎨ ⎪源:ρ,J ⎩2.1 自由空间场定律 2.2 物质中场定律V2.1 自由空间场定律∇× E = −B∂B (1a) ∂t∂ε 0 E (1b) ∂tVS自由空间指真空或同真空基本上具有同样特性的任 何其它媒质 (如空气) 自由空间场定律描述纯粹的源 ρ 、 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可得
r
H 0
uur
由于 H m
2m 0
以上所导出的三个静态场的基本方程表明:静态场可以用
位函数表示,而且位函数在有源区域均满足泊松方程,在
无源区域均满足拉普拉斯方程。因此,静态场的求解问题
就变成了如何求解泊松方程和拉普拉斯方程的问题。这两
个方程是二阶偏微分方程,针对具体的电磁问题,不可能
完全用数学方法求解。在介绍具体的求解方法之前,我们
ur
这时同样可以引入一个标量位函数 使得 E
根据电流连续性方程
ur J
0
及物态方程
ur ur
J E
并设电导率 为一常数(对应于均匀导电媒质),则有
r
J
(
ur
E)
()
2
0
则有 2=0
这说明,在无源区域,恒定电场的位函数满足拉普拉斯 方程。
3、恒定磁场的位函数分布
(1) 磁场的矢量位函数
恒定磁场是有旋场,即
恒定电流的导体周围或内部不仅存在电场,而且存在
磁场,但这个磁场不随时间变化,是恒定磁场。假设导体
中的传导电流为I,电流密度为
ur J
,则有
ur
B 0
ur r
H J
r
Ñs Br Ñl H
dsr r
dl
0
s
r J
dsr
这是恒定磁场的基本方程。 另外:磁介质中的物态方程为
ur ur
B H
从以上方程可知,恒定磁场是一个旋涡场,电流是这个旋 涡场的源,磁力线是闭合的。
(2) 磁场的标量位函数
在没有电流分布的区域内,恒定磁场的基本方程变为
uur
ur
H 0 B0
这样,在无源区域内,磁场也成了无旋场,具有位场的性
质,因此,象静电场一样,我们可以引入一个标量函数,
即标量磁位函数 m
即令
uur
H m
注意:标量磁位的定义只是在无源区才能应用。
r
rr
当媒质是均匀、线性和各项同性时,由 B 0 和 B H
ur
ur B
r
J
,但它却是无散场,
即 B 0
引入一个矢量磁位
r A
后,由于
ur r
B= A
,可得
ur
A
(
ur
A)
2
ur
A
r
J
ur
人为规定 A 0
这个规定被称为库仑规范
于是有
2
r A
r J
此式即为矢量磁位的泊松方程。
r
在没有电流的区域 J 0 ,
2
r A
0
所以有
此式即为矢量磁位 的拉普拉斯方程
J E
2 0
rr I s J d s
ur
ur r
D
ur
E 0
Ñ s uDr
ds r
v
dv
q
Ñl E dl 0
上式表明:静电场中的旋度为0,即静电场中的电场不可 能由旋涡源产生;电荷是产生电场的通量源。
静电场是一个有源无旋场,所以静电场可用电位函数来描
述,即
ur
E
另外:电介质的物态方程为
ur ur
D E
2、恒定电场的基本方程 载有恒定电流的导体内部及其周围介质中产生的电场, 即为恒定电场。当导体中有电流时,由于导体电阻的存在, 要在导体中维持恒定电流,必须依靠外部电源提供能量, 其电源内部的电场也是恒定的。
有了对偶原理后,我们就能把某种场的分析计算结果, 直接推广到其对偶的场中,这也是求解电磁场的一种方法。
1、ρ=0区域的静电场与电源外区域的恒定电场的对偶
静电场
ur
E 0
ur
E uur
D 0 uur ur
D E
2 0
uur r
q Ñs D d s
恒定电场
ur
E 0
ur
E r
ur J ur0
由上述方程组可知,静态场与时变场最基本的区别在于静 态场的电场和磁场是彼此独立存在的,即电场只由电荷产 生,磁场只由电流产生。没有变化的磁场,也没有变化的 电场。既然如此,我们就可以分别写出静电场、恒定电场 和恒定磁场的基本方程。
1、静电场的基本方程
静电场是静止电荷或静止带电体产生的场,其基本方
程为
要先介绍几个重要的基本原理,这些原理将成为以后求解
方程的理论依据。
5.2 对偶原理
如果描述两种物理现象的方程具有相同的数学形式, 并且有相似的边界条件或对应的边界条件,那么它们的数 学解的形式也将是相同的,这就是对偶原理。具有同样数 学形式的两个方程称为对偶性方程,在对偶性方程中,处 于同等地位的量称为对偶量。
在直角坐标系中
2 2 2 2
x2 y2 z2
在圆柱坐标系中
2
1 r
r
(r
)
r
1 r2
2 2
2
z 2
在球坐标系中
2 1 (R2 ) 1 (sin ) 1 2
R2 R R R2 sin
R2 sin2 2
2、恒定电场的位函数
ur 在无源区域,恒定电场是一个位场,即有 E 0
2
上式即为在有电荷分布的区域内,或者说在有“源”的区
域内,静电场的电位函数所满足的方程,我们将这种形式
的方程称为
泊松方程。
如果场中某处有ρ=0,即在无源区域,则上式变为
2 0
我们将这种形式的方程称为
拉普拉斯方程。它
是在不存在电荷的区域内,电位函数 应满足的方程。
拉普拉斯算符 2 在不同的坐标系中有不同的表达形式:
若闭合路径不经过电源,则:
rr
Ñl E dl 0
rr
Ñs J ds 0
这是恒定电场在无源区的基方程积分形式,其微分形式为
ur
r
E 0
J 0
另外:导体中的物态方程为
ur ur
J E
从以上分析可知,恒定电场的无源区域也是一个位场,也
可用一个标量函数来描述。
ur
E
3、恒定磁场的基本方程
5.1.2 泊松方程和拉普拉斯方程
1、静电场的位函数
静电场既然是一个位场,就可以用一个标量函数
的梯度来表示它:

ur
E
式中的标量函数 称为
电位函数。
对于均匀、线性、各向同性的介质,ε为常数
所以有
uur
ur
ur
D ( E) E
()

2
静电场的位函数 满足的
泊松方程。
重点:
1. 静电场、恒定电场 、恒定磁场的基本方程
2. 静态场的位函数方程 3. 求解静态场位函数方程的方法所依据的理论 : 4. 镜像对法偶、原分理离、变叠量加法原理、、格唯林一函性数定法理、
有限差分法
5.1 泊松方程和拉普拉斯方程
5.1.1 静态场中的麦克斯韦方程组
对于静态场,各场量只是空间坐标的函数,并不随时
间而变化,即与时间t无关。因此 ,静态场的麦克斯韦方
程组为: uur
D
ur E 0
ur B 0
uur ur H J
电流连续性方程为:
ur r
Ñ s uDr
ds r
v
dv
Ñl Eur
d
l r
0
Ñ s uBur
d
s r
0
ur
r
Ñl H dl s J d s
r
ur r
J 0 Ñs Jd s0
相关文档
最新文档