黄陂区2018-2019年七年级下册期中数学试卷+答案
2018-2019学年度第二学期期中质量检测七年级数学试卷及答案
26.(本题满分 12 分) (1)如图①,△OAB、△OCD 的顶点 O 重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+ ∠COD= ▲ °;(直接写出结果) (2)连接 AD、BC,若 AO、BO、CO、DO 分别是四边形 ABCD 的四个内角的平分线. ①如图②,如果∠AOB=110°,那么∠COD 的度数为 ▲ ;(直接写出结果) ②如图③,若∠AOD=∠BOC,AB 与 CD 平行吗?为什么?
x
y
=-2,求
a
的值.
25.(本题满分 8 分) (1)观察下列式子: ① 21 20 =2-1=1= 20 ; ② 22 21 =4-2=2= 21 ; ③ 23 22 =8-4=4= 22 ; …… 根据上述等式的规律,试写出第 n 个等式,并说明第 n 个等式成立; (2)求 20 21 22 22 019 的个位数字.
A.4
B.5
C.6
D.7
4. 下列式子从左到右的变形中,属于因式分解的是·············································· ( ▲ )
A. 4x x = 5x
B. (x 2)2 = x2 4x 4
C. a2 a 1= a(a 1) 1
说明: (x 3)(x 7) 、 x(x 1) 计算正确分别给 1 分.
19.(本题满分 6 分,每小题 3 分)因式分解: 解:(1)原式= x2 (2y)2 ·········································································· 1 分
说明: (2a)3 、 a5 a2 计算正确分别给 1 分.
2018-2019学年度七年级下册期中数学试卷(含答案和解析)
2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
2018-2019年度数学学科初一年级第二学期期中考试试题+答案
2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
2018-2019学年七年级下册期中数学试卷(有答案及解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.如图:直线a、b被直线c所截,则∠1,∠2,∠3,∠4中,∠1的同位角是()A.∠3B.∠2C.∠4D.不确定2.如图:若∠1=∠2,则()A.AD∥BC B.AB∥CD C.∠A=∠C D.AB⊥BC3.如图:a∥b,若∠1=∠2,则∠2的度数为()A.30°B.90°C.120°D.150°4.已知:等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或105.已知:等腰△ABC中,∠B=∠C,若该三角形有一个内角80°,则顶角为()A.80°B.20°C.80°或20°D.100°6.已知:x m=3,则x2m=()A.6B.9C.12D.187.把0.00091科学记数表示为()A.91×10﹣5B.0.91×10﹣3C.9.1×104D.9.1×10﹣48.下列多项式因式分解能用平方差公式的是()A.﹣x2+1B.﹣x2﹣1C.49﹣x3D.49+x9.在二元一次方程x+3y=10中,若x、y均为正数,则该方程的正整数解的个数为()A.1个B.2个C.3个D.4个10.从长度分别为3cm、4cm、5cm、6cm、9cm的小木棒中任取三根,能搭成三角形的组数有()A.4B.5C.6D.7二、填空题(共8小题,每小题3分,满分24分)11.已知:∠α的两条边分别平行∠β的两条边,若∠α=40°,则∠β=.12.如图AB∥CD,AE,CE分别平分∠BAC,∠ACD,那么∠AEC=度.13.已知多边形的内角和为540°,则该多边形的边数为.14.已知:a m=10,a n=2,则a2m﹣n=.15.若关于x的代数式x2+(m﹣3)x+16 是一个完全平方式,则m=.16.已知:实数a、b满足a2+b2+2a+4b+5=0,则b=.17.若是二元一次方程3x+by=5的一个解,则b=.18.已知:a2+b2+c2﹣ab﹣ac﹣ca=0,则a、b、c的大小关系为.三、解答题(56分)19.(8分)如图:点D、E在AB上,点F在BC上,点G在AC上,若∠1=∠B,∠2=∠3,∠4=70°.(1)请说明EF∥DC(2)求∠ADC的度数(要求书写完整步骤)20.(8分)已知:△ABC中,AB<AC,AH是高,AD是∠BAC的平分线.(1)若∠B=60°,∠C=40°,求∠HAD的度数;(2)若∠B=m°,∠C=n°,(m>n).求∠HAD(用mn的代数式表示)21.(8分)计算:22.(8分)先化简,后求值:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2,其中x=,y=﹣1 23.(8分)把下列各式因式分解:(1)4x2﹣64(2)4(m+n)2﹣9(m﹣n)224.(8分)解下列方程组(1)(代入法)(2)25.(8分)观察并计算(1)①1×2×3×4+1=2②3×4×5×6+1=2限填正整数(2)猜想:写出一个反应上述等量关系的等式.(3)说明你猜想的理由.(4)应用:计算:10×11×12×13+1七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.【分析】根据同位角的定义即可求出答案.【解答】解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角.故选:B.【点评】本题考查同位角的定义,解题的关键是熟练理解同位角的定义,本题属于基础题型.2.【分析】∠1与∠2是直线AB、直线CD被直线BD所截形成的内错角,即∠1=∠2,所以AB ∥CD.【解答】解:∵∠1=∠2,∴AB∥CD,故选:B.【点评】此题考查平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.【分析】根据平行线的性质解答即可.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=∠2,解得:∠2=120°,故选:C.【点评】考查了平行线的判定和性质,平行线的性质有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.4.【分析】因为已知长度为2和4两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;当2为腰时,其它两边为2和4,∵2+2=4=4,所以不能构成三角形,故舍去,∴答案只有10.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【分析】若80°是顶角,则可直接得出答案;若80°是底角,则设顶角是y,根据三角形内角和为180°即可求解;【解答】解:若80°是顶角,则顶角为80°;若80°是底角,则设顶角是y,∴2×80°+y=180°,解得:y=20°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,关键是注意分类讨论.6.【分析】将x m=3代入x2m=(x m)2,计算可得.【解答】解:当x m=3时,x2m=(x m)2=32=9,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00091=9.1×10﹣4.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.【解答】解:A、﹣x2与1符号相反,能运用平方差公式,故本选项正确;B、﹣x2与﹣1符号相同,不能运用平方差公式,故本选项错误;C、49﹣x3,不能运用平方差公式,故本选项错误;D、49+x,不能运用平方差公式,故本选项错误.故选:A.【点评】本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.9.【分析】将方程变形为x=10﹣3y,再分别求出y=1、2、3时x的值即可得.【解答】解:∵x+3y=10,∴x=10﹣3y,当y=1时,x=7;当y=2时,y=4;当y=3时,x=1;∴该方程的正整数解有3组,故选:C.【点评】本题主要考查二元一次方程的解,解题的关键是熟练将方程变形为用含一个未知数的代数式表示另一个未知数及方程的解的定义.10.【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故选:C.【点评】此题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题(共8小题,每小题3分,满分24分)11.【分析】根据当两角的两边分别平行时,两角的关系可能可能相等也可能互补,即可得出答案.【解答】解:∵∠α=40°,∠α的两边分别和∠β的两边平行,∴∠β和∠α可能相等也可能互补,即∠β的度数是40°或140°,故答案为:40°或140°.【点评】本题考查了对平行线的性质的应用,注意:运用了分类思想.12.【分析】根据平行线的性质得∠BAC+∠DCA=180°,再根据角平分线的定义得∠EAC=∠BAC,∠ECA=∠DCA,则∠EAC+∠ECA=90°,然后根据三角形内角和定理可计算出∠AEC.【解答】解:∵AB∥CD,∴∠BAC+∠DCA=180°,∵AE,CE分别平分∠BAC,∠ACD,∴∠EAC=∠BAC,∠ECA=∠DCA,∴∠EAC+∠ECA=(∠BAC+∠DCA)=90°,∴∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.也考查了角平分线的定义.13.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为已知多边形的内角和为540°,所以可列方程求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=540°,解得n=5.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.14.【分析】根据同底数幂的除法法则和幂的乘方与积的乘方法则解答.【解答】解:∵a m=10,a n=2,∴a2m﹣n===50.故答案是:50.【点评】考查了同底数幂的除法和幂的乘方与积的乘方,属于基础计算题.15.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+(m﹣3)x+16 是一个完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故答案为:11或﹣5【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.【分析】将已知等式左边的5变为1+4,利用加法运算律变形后,再利用完全平方公式变形,根据两非负数之和为0,两非负数分别为0,即可求出a与b的值.【解答】解:∵a2+b2+2a+4b+5=0,∴a2+2a+1+b2+4b+4=0,即(a+1)2+(b+2)2=0,∴a+1=0且b+2=0,解得:a=﹣1,b=﹣2.故答案为:﹣2.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,灵活运用完全平方公式是解本题的关键.17.【分析】将x=3、y=4代入方程3x+by=5得到关于b的方程,解之可得.【解答】解:根据题意将x=3、y=4代入方程3x+by=5,得:9+4b=5,解得:b=﹣1,故答案为:﹣1.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握方程的解的定义.18.【分析】对a2+b2+c2﹣ab﹣bc﹣ca=0进行因式分解可得(a﹣b)2+(b﹣c)2+(c﹣a)2=0,进而解答即可.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故答案为a=b=c【点评】本题主要考查因式分解的应用,解题的关键是把所给式子进行因式分解.三、解答题(56分)19.【分析】(1)根据平行线的判定和性质得出DG∥BC,进而得出∠2=∠DCB,利用等量代换得出∠3=∠DCB,进而证明平行即可;(2)利用平行线的性质解答即可.【解答】解:(1)∵∠1=∠B,∴DG∥BC,∴∠2=∠DCB,∵∠2=∠3,∴∠3=∠DCB,∴EF∥DC;(2)∵EF∥DC,∴∠4=∠ADC═70°.【点评】此题考查平行线的判定和性质,关键是根据平行线的判定和性质得出DG∥BC.20.【分析】(1)先利用△ABC的内角和为180°,求出∠BAC的度数,再根据AD是∠BAC的平分线,求出∠BAD的度数,在△ABH中,求出∠BAH=180°﹣∠B﹣∠AHB=30°,根据∠HAD =∠BAD﹣∠BAH,即可解答;(2)根据(1)的解题过程,即可解答.【解答】解:(1)∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=40°,∵△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=60°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=30°,∴∠HAD=∠BAD﹣∠BAH=40°﹣30°=10°,(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣∠B﹣∠C═(180﹣m﹣n)°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=(180﹣m﹣n)°,∵:△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=m°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=(90﹣m)°,∴∠HAD=∠BAD﹣∠BAH=(180﹣m﹣n)°﹣(90﹣m)°=(m﹣n)°,【点评】本题考查了三角形的内角和定理和角平分线的性质,解决本题的关键是熟记三角形内角和定理.21.【分析】首先进行积的乘方运算,再利用单项式乘以多项式得出答案.【解答】解:原式=a2b2(﹣a2b﹣12ab+b2)=﹣8a4b3﹣a3b3+a2b4.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.22.【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2=25y2﹣x2﹣x2+10xy﹣25y2=﹣2x2+10xy,当x=,y=﹣1,原式==﹣﹣5=﹣5.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.23.【分析】(1)首先提取公因式4,再利用平方差公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+8)(x﹣8);(2)4(m+n)2﹣9(m﹣n)2=[2(m+n)+3(m﹣n)][2(m+n)﹣3(m﹣n)]=(5m﹣n)(﹣m+5n).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:y=﹣2x+8③,把③代入①得:3x+8x﹣32=1,解得:x=3,把x=3代入②得:y=2,则方程组的解为;(2)方程组整理得:,①+②得:4x=32,解得:x=8,把x=8代入②得:y=﹣6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.【分析】(1)各式计算得到结果即可;(2)归纳总结得到一般性结论,写出即可;(3)验证得到的等式即可;(4)利用得出的规律计算即可求出值.【解答】解:(1)①1×2×3×4+1=52;②3×4×5×6+1=192;故答案为:①5;②19;(2)猜想得到:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2;(3)等式左边=(n2+n)(n2+5n+6)+1=n4+6n3+11n2+6n+1,等式右边=(n2+3n)2+2(n2+3n)+1=n4+6n3+11n2+6n+1,左边=右边,等式成立;(4)根据题意得:原式=1312=17161.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.。
2018-2019学年七年级(下)期中数学试卷(有答案和解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.计算a6÷a2的结果是( )A.a3 B.a4 C.a8 D.a122.二元一次方程2x+y=11的非负整数解有( )A.1个 B.2个 C.6个 D.无数个3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A、C两点之间 B.E、G两点之间C.B、F两点之间 D.G、H两点之间4.方程3x+2y=1和2x=y+3的公共解是( )A. B. C. D.5.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c…;a+b+c 就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是( )A.①② B.②③ C.①③ D.①②③6.已知方程组的解满足x+y=3,则k的值为( )A.10 B.8 C.2 D.﹣87.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是( )A. B.C .D .8.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片的小正方形卡片((a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣15,则小正方形卡片的面积是( )A .10B .8C .2D .5二、填空题(每题3分,共30分)9.某细胞的直径约为0.0000102米,用科学记数法表示为 米. 10.计算:1012﹣992= .11.若(a ﹣2)x |a |﹣1+3y =1是二元一次方程,则a = .12.已知(m +n )2=7,(m ﹣n )2=3,则m 2+n 2= .13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= °.14.设A =(x ﹣3)(x ﹣7),B =(x ﹣2)(x ﹣8),则A 、B 的大小关系为 .15.如图,面积为3cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC 长的2倍,则△ABC 纸片扫过的面积为 .16.如果4x 2﹣mxy +9y 2是一个完全平方式,则m =.17.如果方程组的解中x 与y 的值相等,那么a 的值是 .18.对于正整数m ,若m =pq (p ≥q >0,且p ,q 为整数),当p ﹣q 最小时,则称pq 为m 的“最佳分解”,并规定f (m )=(如:12的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f (12)=).关于f (m )有下列判断:①f (27)=3;②f (13)=;③f (2018)=;④f (2)=f (32);⑤若m 是一个完全平方数,则f (m )=1.其中,正确判断的序号是 . 三、解答题(共96分) 19.(8分)计算(1)(3.14﹣π)0+(﹣4)2﹣()﹣1(2)(x ﹣3)2﹣(x +2)(x ﹣2)20.(8分)因式分解 (1)a 2﹣25 (2)xy 2﹣4xy +4x 21.(8分)解方程组 (1) (2)22.(8分)先化简再求值:4(a +2)2﹣7(a +3)(a ﹣3)+3(a ﹣1)2,其中a 是最小的正整数. 23.(8分)如图,EG ⊥BC 与点G ,∠BFG =∠DAC ,AD 平分∠BAC ,试判断AD 与BC 的位置关系,并说明理由.24.(8分)小明和小丽同解一个二元一次方程组,小明正确解得,小丽因抄错了c ,解得.已知小丽除抄错c 外没有发生其他错误,求a +b +c 的值.25.(12分)拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a 2+7ab +2b 2,并通过拼图对多项式3a 2+7ab +2b 2因式分解:3a 2+7ab +2b 2= . (3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(x >y ),结合图案,指出以下关系式:(1)xy =;(2)x +y =m ;(3)x 2﹣y 2=m •n ;(4)x 2+y 2=其中正确的关系式的个数有( ) A .1个 B .2个 C .3个 D .4个. 26.(12分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. ∵m 2+2mn +2n 2﹣6n +9=0∴m 2+2mn +n 2+n 2﹣6n +9=0∴(m +n )2+(n ﹣3)2=0∴m +n =0,n ﹣3=0∴m =﹣3,n =3 根据你的观察,探究下面的问题:(1)若x 2+4x +4+y 2﹣8y +16=0,求的值.(2)试说明不论x ,y 取什么有理数时,多项式x 2+y 2﹣2x +2y +3的值总是正数.(3)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a +8b ﹣41,且c 比a 、b 都大,求c 的取值范围.27.(12分)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.28.(12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减计算即可. 【解答】解:a6÷a2=a6﹣2=a4.故选:B.【点评】本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.2.【分析】最小的非负整数为0,把x=0,x=1,x=2,x=3…依次代入二元一次方程2x+y=11,求y值,直至y为负数,从而得到答案.【解答】解:最小的非负整数为0,当x=0时,0+y=11,解得:y=11,当x=1时,2+y=11,解得:y=9,当x=2时,4+y=11,解得:y=7,当x=3时,6+y=11,解得:y=5,当x=4时,8+y=11,解得:y=3,当x=5时,10+y=11,解得:y=1,当x=6时,12+y=11,解得:y=﹣1(不合题意,舍去)即当x≥6时,不合题意,即二元一次方程2x+y=11的非负整数解有6个,故选:C.【点评】本题考查解二元一次方程,正确掌握代入法是解题的关键.3.【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. 【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.【分析】组成方程组求解即可.【解答】解:解方程组得,故选:D.【点评】本题主要考查了二元一次方程的解,解题的关键是正确求出方程组的解.5.【分析】由于将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式,由于将代数式中的任意两个字母互相替换,代数式不变,根据这个定义分别将①②③进行替换,看它们都有没有改变,由此即可确定是否完全对称式. 【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.【点评】此题是一个阅读材料题,考查了完全平方公式,难点在于读懂题意,然后才能正确利用题意解决问题.6.【分析】理解清楚题意,运用三元一次方程组的知识,解出K的数值.【解答】解:由题意可得,2×①﹣②得y=k﹣,②﹣③得x=﹣2,代入③得y=5,则k﹣=5,解得k=8.故选:B.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【分析】此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.【点评】此题是追及问题.注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 8.【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣15,整理得,b2=5,则小正方形卡片的面积是5,故选:D.【点评】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键. 二、填空题(每题3分,共30分)9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000102=1.02×10﹣5,故答案为:1.02×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】直接利用平方差公式分解因式进而计算得出即可.【解答】解:1012﹣992=(101+99)×(101﹣99)=400.故答案为:400.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式是解题关键.11.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0. 【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.14.【分析】根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案. 【解答】解:∵A=(x﹣3)(x﹣7)=x2﹣10x+21,B=(x﹣2)(x﹣8)=x2﹣10x+16, ∴A﹣B=x2﹣10x+21﹣(x2﹣10x+16)=5>0,∴A>B,故答案为:A>B.【点评】本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.15.【分析】根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,△ABC 纸片扫过的面积为四边形ABDF 的面积=5个△ABC 的面积; 【解答】解:∵平移的距离是边BC 长的两倍, ∴BC =CE =EF ,∴四边形ACED 的面积是三个△ABC 的面积; ∴△ABC 纸片扫过的面积=S四边形ABFD=5×3=15cm 2,【点评】【点评】考查了平移的性质,考查了平移的性质,考查了平移的性质,本题的关键是得出四边形本题的关键是得出四边形ACED 的面积是三个△ABC 的面积.然后根据已知条件计算.16.【分析】这里首末两项是2x 和3y 这两个数的平方,那么中间一项为加上或减去2x 和3y 积的2倍.【解答】解:∵4x 2﹣mxy +9y 2是一个完全平方式, ∴﹣mxy =±2×2x ×3y , ∴m =±12.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 17.【分析】把y =x 代入方程组求出a 的值即可. 【解答】解:把y =x 代入方程组得:,解得:,则a 的值是3, 故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.【分析】先分解因数,进而找出最佳分解,即可得出结论. 【解答】解:①∵27的分解有27×1,9×3, ∴9×3为27的最佳分解,则f (12)==,故说法①错误;②∵13的分解有13×1,∴13×1为13的最佳分解,则f (13)=,故说法②正确;③∵2018的分解有2018×1,1009×2,∴1009×2为2018的最佳分解,则f (2018)=,故说法③错误;④∵2的分解有2×1,∴2×1为2的最佳分解,则f (2)=,∵32的分解有32×1,16×2,8×4,∴8×4为32的最佳分解,则f (22)==,∴f (2)=f (32),故说法④正确;⑤∵m 是一个完全平方数,设m =n 2(m >0),∴n ×n 为m 的最佳分解,则f (m )==1,故说法⑤正确,∴正确判断的序号为②④⑤,故答案为②④⑤.【点评】此题主要考查了新定义,分解因数,完全平方数的特点,能正确分解因数是解本题的关键.三、解答题(共96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(1)原式=1+16﹣2=15;(2)原式=x 2﹣6x +9﹣x 2+4=﹣6x +13.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【分析】(1)两项考虑平方差公式;(2)提取公因式x后,再用完全平方公式.【解答】解:(1)原式=(a+5)(a﹣5);(2)原式=x(y2﹣4y+4)=x(y﹣2)2.【点评】本题考查了因式分解的平方差公式和完全平方公式.题目比较简单,掌握公式是关键.21.【分析】(1)用代入法求解方程组比较简便;(2)变形2x+y=1,可用代入法求解,亦可①×2﹣②用加减法求解.【解答】解:(1),把②代入①,得2(1﹣y)+4y=5,解得,y=,把y=代入②,得x=1﹣=﹣.∴原方程组的解为.(2)由①,得y=1﹣2x③,把③代入②,得5x+2(1﹣2x)=3,解得x=1把x=1代入③,得y=1﹣2×1=﹣1.所以原方程组的解为.【点评】本题考查的是二元一次方程组的解法,题目相对简单,掌握代入、加减消元法是解决本题的关键.22.【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【解答】解:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a 2+16a +16﹣7a 2+63+3a 2﹣6a +3=10a +82,最小的正整数是1,则a =1,原式=10+82=92,.【点评】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可. 23.【分析】根据角平分线的定义可得∠BAD =∠DAC ,从而可得∠BFG =∠BAD ,再根据同位角相等,两直线平行可得EG ∥AD ,然后根据EG ⊥BC 即可证明AD ⊥BC .【解答】解:AD ⊥BC .理由如下:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFG =∠DAC ,∴∠BFG =∠BAD ,∴EG ∥AD ,∴∠EGC =∠ADC ,又∵EG ⊥BC ,∴∠EGC =90°,∴∠ADC =90°,∴AD ⊥BC .【点评】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键. 24.【分析】因为小明的解正确,所以可以代入任何一个方程,代入①可求c 的值,代入②得a ﹣b =2;因为小丽抄错了c ,因此可以代入②中,得a ﹣3b =1,建立方程组,可以得出a 、b 的值,从而求出结论.【解答】解:将代入cx ﹣3y =﹣2①得,c +3=﹣2,c =﹣5, 将代入ax +by =2②得,a ﹣b =2③, 将代入②得,2a ﹣6b =2,a ﹣3b =1④,将③,④联立,, 解之得,所以.【点评】本题考查了二元一次方程组的解,要求方程组的字母系数,通常采用代入法,将正确的解代入即可.25.【分析】(1)看图即可得出所求的式子;(2)画出的矩形边长分别为(3a+b)和(a+2b)即可;(3)根据图中每个图形的面积之间的关系即可判断出正确的有几个.【解答】解:(1)由分析知:图③所表示的等式为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)示意图如下3a2+7ab+2b2=(3a+b)(a+2b);(3)D.【点评】此题考查利用图形面积研究因式分解,同时也加深了对多项式乘多项式的理解. 26.【分析】(1)已知等式利用完全平方公式整理配方后,求出x与y的值,即可求出所求;(2)原式配方变形后,利用非负数的性质判断即可;(3)已知等式利用完全平方公式配方后,利用非负数的性质求出a与b的值,即可求出c的范围.【解答】解:(1)已知等式整理得:(x+2)2+(y﹣4)2=0,可得x+2=0,y﹣4=0,解得:x=﹣2,y=4,则原式=﹣2;(2)∵(x﹣1)2≥0,(y+1)2≥0,∴原式=(x﹣1)2+(y+1)2+1≥1>0,则不论x,y取什么有理数时,多项式x2+y2﹣2x+2y+3的值总是正数;(3)已知等式整理得:(a﹣5)2+(b﹣4)2=0,可得a﹣5=0,b﹣4=0,解得:a=5,b=4,则c的范围是5<c<9.【点评】此题考查了配方法的应用,非负数的性质:偶次幂,以及三角形三边关系,熟练掌握完全平方公式是解本题的关键.27.【分析】(1)设每辆小客车能坐x人,每辆大客车能坐y人,根据题意可得等量关系:3辆小客车座的人数+1辆大客车座的人数=105人;1辆小客车座的人数+2辆大客车座的人数=110人,根据等量关系列出方程组,再解即可;(2)①根据题意可得小客车m辆运的人数+大客车n辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金150元,大客车每辆租金250元分别计算出租金即可.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出二元一次方程或方程组.28.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得 t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点评】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。
2018-2019学年七年级下学期期中考试数学试卷含答案详解
第1页(共21页)2018-2019学年七年级下学期期中考试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列式子中,属于最简二次根式的是( )ABCD2x 的取值范围是( )A .3x <B .3x …C .3x >D .3x …3.下列计算错误的是( )A=B=C= D.3=4.实数a( )A .7B .7-C .215a -D .无法确定 5.已知a =b =,则a 与b 的关系是( )A .a b =B .1ab =C .a b =-D .5ab =-6.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形7.如图,ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若4AB =,6AC =,则BD的长是( )A .8B .9C .10D .11 8.如图,在ABC ∆中,45A ∠=︒,30B ∠=︒,CD AB ⊥,垂足为D ,1AD =,则BD 的长第2页(共21页)为( )AB .2 CD .39.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .40海里D .50海里10.如图,平行四边形ABCD 中,5AD =,3AB =,AE 平分BAD ∠交BC 边于点E ,则EC 等于( )A .1B .2C .3D .411.如图, 在ABC ∆中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH BC⊥于H ,8FD =,则HE 等于( )A . 20B . 16C . 12D . 812.如图,已知OP 平分AOB ∠,60AOB ∠=︒,2CP =,//CP OA ,PD OA ⊥于点D ,PE OB⊥于点E .如果点M 是OP 的中点,则DM 的长是( )。
黄陂初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
黄陂初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:上述各数中,属于无理数的有:两个.故答案为:B.【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。
2、(2分)如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A.60°B.80°C.100°D.120°【答案】B【考点】平行线的性质【解析】【解答】解:∵DE∥OB∴∠ADE=∠AOB=40°,∠CDE+∠DCB=180°∵CD和DE为光线∴∠ODC=∠ADE=40°∴∠CDE=180°-40°-40°=100°∴∠BCD=180°-100°=80°。
故答案为:B。
【分析】根据入射光线和反射光线,他们与镜面所成的角相等,可得∠ODC=∠ADE;根据直线平行的性质,两直线平行,同位角相等,同旁内角互补进行计算即可。
3、(2分)高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()A.每100克内含钙150毫克B.每100克内含钙高于150毫克C.每100克内含钙不低于150毫克D.每100克内含钙不超过150毫克【答案】C【考点】不等式及其性质【解析】【解答】解:根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”,故答案为:C【分析】”≥”就是“不小于”,在本题中就是“不低于”的意思。
2018-2019学年七年级下学期期中考试数学试题word版含答案
2018-2019学年七年级下学期期中考试数学试题一、精心挑选,小心有陷阱哟!(本大题共8小题,每小题3分,共24分.每小题四个选项中只有一个正确,请把正确选项的代号写在题后的括号内)1. 如图,与∠1是内错角的是 ( ) A.∠2 B.∠3 C.∠ 4 D.∠52、一个数的平方根和它的立方根相等,则这个数是()A、0B、1C、1或0D、1或0或-13、已知()2230a b-++=,则P(a,b)的坐标为 ( )A.(2,3) B. (2,-3) C. (-2,3) D. (-2,-3)4、将点A(-2,-3)向左平移3个单位长度得到点B,则点B的坐标是()A、(1,-3)B、(-2,0)C、(-5,-3)D、(-2,-6)5、直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、7,则点P的坐标为()A. (-3,-7)B. (-7,-3)C. (3,7)D. (7,3)6、如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A、25ºB、50ºC、100ºD、115º7.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A(1,0) B.(-1,0) C.(-1,1) D.(1,-1)8. 在-1.414,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为 ( )A.5B.2C.3D.4二、细心填空,看谁又对又快哟!(本大题共8小题,每小题3分,共24分)9.已知点A(-3+a,2a+9)在y轴上,则点A的坐标是 .10. 一个正数x的平方根是2a-3与5-a,则x= .11.把命题“垂直于同一条直线的两条直线互相平行”改写成“如果…那么…”的形式.12、如图所示,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 度.13、先阅读理解,再回答下列问题:因为2112=+,且221<<,所以112+的整数部分为1; 因为6222=+,且362<<,所以222+的整数部分为2; 因为12332=+,且4123<<,所以332+的整数部分为3; 以此类推,我们会发现n n n (2+为正整数)的整数部分为 . 14.81的算术平方根是 ,364 的平方根是 。
2018-2019学七年级下学期数学期中考试试题含参考答案
2018-2019学七年级下学期数学期中考试试题2019年4月28日一.选择题(每题3分,共30分)1.若(2x +1)0=l 则 ( )A .x ≥-12B .x ≠-12C .x ≤-12D .x ≠122.下列四个运算:①2100.001-=,②2121(1)1x x -+=+,③11133-÷=,④100(1)1--=. 其中正确的有( )A .1个B . 2个C .3个D .4个 3.201020112()1.53-⨯等于( )A .1B .23-C .32-D .324.如下图,ABC ∆中,,,AD BC GC BC CF AB ⊥⊥⊥,,,D C F 是垂足,则下列说法错误的是(A)ABC ∆中,AD 是BC 边上的高 (B)ABC ∆中,GC 是BC 边上的高(C)GBC ∆中,GC 是BC 边上的高 (D)GBC ∆中,CF 是BG 边上的高 (第4题) (第5题) (第9题)5.如图,直线l 1∥l 2,l 3⊥l 4.有三个命题:①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是 ( )A .只有①正确B .只有②正确C .①和③正确D .①②③都正确 6.下列各式中,可以运用平方差公式计算的是( )A .(4)(4)a b a b -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D .11()()22x y x y --+ 7.若()2221243by xy x y ax +-=+,则a ,b 的值分别为 ( )A .2, 9B .2, -9C .-2 ,9D .-4, 98.把一个三角形分成面积相等的两个三角形的线段为 A .三角形的中线 B .三角形的角平分线C .三角形的高 D .以上都可以 9.如图,已知ABC ∆中90=∠C ,若沿图中虚线剪去C ∠,则12∠+∠ 等于( ) A .90︒ B .135︒ C .270︒ D .315︒ 10.等腰三角形的周长为24,那么腰长x 的取值范围为( ) A .0<x ≤8 B .0<x < 6 C .0<x <12 D .6<x <12二.填空题(每空2分,共22分)F GC D BA21EDCBAD CBA11.已知:a +b =9,a b =7,则 a 2+b 2= ; (a -b ) 2= . 12.0.0000034可用科学记数法表示为 . 13.已知2m +3n =3,则4m ·8n 的值为 . 14.如图,12,3100∠=∠∠=︒,则4∠= .15.从n 边形一个顶点出发共可作4条对角线,则这个n 边形的内角和为________. 16.若2249a kab b ++是完全平方式,则常数k = .17.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =6,BD =4,则点D 到AB 的距离是 .(第14题) (第17题) (第19题) 18.等腰三角形的一个底角为700,则一腰上的高与另一腰的夹角的度数是 .19.如图,直线AB CD ∥,直线EF 交AB 于G ,交CD 于F ,直线EH 交AB 于H .若145=∠,260=∠,则E ∠的度数为 度.20.若210a a ++=,则3a 值为 .三.解答题:(21每小题4分,22每小题5分 ,23题5分.)21.计算(1)120211()(2)5()42---+-⨯-; (2)2332(2)()x x --;22.计算:(1) )5)(32()12(52-+-++x x x x x ; (2)2(23)(23)(2)x y x y x y -++---+23.先化简,再求值:()()()()3342213222-+-+-++-m m m m m m m ,其中321=mA HBDCGE12F432124.(本题6分) 如图,////AB CD PN ,若50,150ABC CPN ∠=︒∠=︒,求BCP ∠的度数.25.(本题6分) 如图,在△ABC 中,BD ⊥AC ,E F ⊥AC ,垂足分别为D .F . (1)若∠1=∠2,试说明DE ∥BC ; (2)若DE ∥BC ,你能得到∠l=∠2吗?26.(本题7分)如图,四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的锐角,若设∠A=α,∠D=β; (1)如图①,αβ+>180°,试用α,β表示∠F ;N P D C B A F(2)如图②,αβ+<180°,请在图中画出∠F ,并试用α,β表示∠F ;(3)一定存在∠F 吗?如有,求出∠F 的值,如不一定,指出α,β满足什么条件时,不存在∠F .27.(本题6分)(1)欲求231333++++ (20)3+的值,可令231333S =++++ (20)3+…①,将①式两边同乘以3,得 ……②,由②式减去①式,得S = . (2)仿照(1)的方法,当1k ≠时,试求23a ak ak ak ++++…nak +的值(用含,,a n k 的代数式表示)参考答案一.选择题.( 本题共10小题,每题3分,共30分.)题号 1 2 3 4 5 6 7 8 9 10答案BBDBACCACD二.填空题.(本题共10小题,每空2分,共22分)11.22a b +=__67 _,2()a b -=___53 ;12.63.410-⨯ ;13. 8 ;14.∠4= 80 °; 15.__900° ;16. k=_ ±12 ;17. 2 __ ;18. 50°_; 19.__15°_ ;20. 1 .三、计算题(21每小题4分,22每小题5分 ,23题5分.)21.(1)-4;(2)69x -;22.(1)3258215x x x +++;(2)281249y y xy -++-23. 原式=311m -+=624.∠BCD=50° (2分) ∠PCD=30° (2分) ∠BCD=20° (2分) 25.(1) 3分(2) 3分 26.(1)∠F=0902αβ+- (2分)(2)画图 (1分)∠F=0902αβ+-(2分)(3)0180αβ+= (2分)27.(1)233333S =+++ (21)3+ (1分)21312S -= (2分)(2)1(1)1n a k k +-- (3分)。
最新2018-2019年七年级下数学期中试卷含答案
第二学期七年级数学期中考试试卷一、选择题(本大题共8小题,共24.0分)1.下列四个图形中,不能推出与相等的是A. B. C. D.【答案】B【解析】解:A、和互为对顶角,,故本选项错误;B、,两直线平行,同旁内角互补,不能判断,故本选项正确;C、,两直线平行,内错角相等,故本选项错误;D、如图,,两直线平行,同位角相等,对顶角相等,,故本选项错误;故选B.根据平行线的性质以及对顶角相等的性质进行判断.本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.2.下列方程组中,是二元一次方程组的是A. B. C. D.【答案】B【解析】解:A、方程组中含3个未知数,A不是二元一次方程组;B、两个未知数,最高次数为,是二元一次方程组;C、两个未知数,最高次数为,不是二元一次方程组;D、两个未知数,一个算式未知数次数为,不是二元一次方程组.故选B.根据二元一次方程组定义再结合四个选项中各方程特点即可得出结论.本题考查了二元一次方程组的定义,解题的关键是:明白二元一次方程组含两个未知数并且未知数次数均为本题中易将D选项也当成二元一次方程组,x在分母出现时,其次数为,不符合二元一次方程组的定义,故被排除.3.如果7年2班记作,,那么,表示A. 7年4班B. 4年7班C. 4年8班D. 8年4班【答案】D【解析】解:年2班记作,,,表示8年4班,故选:D.根据7年2班记作,,可知,表示出8年4班,本题得以解决.本题考查坐标确定位置,解题的关键是明确题意,用相应的坐标表示出题目中的语句.4.如图,小手盖住的点的坐标可能为A. ,B. ,C. ,D. ,【答案】D【解析】解:由图可知,小手盖住的点在第四象限,A、,在第二象限,B、,在第三象限,C、,在第一象限,D、,在第四象限.所以,小手盖住的点的坐标可能是,.故选D.根据各象限内点的坐标特征对各选项分析判断即可得解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限,;第二象限,;第三象限,;第四象限,.5.下列各数中:,,,,,,无理数个数为A. 2B. 3C. 4D. 5【答案】B【解析】解:,,是无理数,故选:B.根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如第2页,共5页,,每两个8之间依次多1个 等形式.6. 下列条件中不能判定 的是A.B. C. D. 【答案】B【解析】解:A 、 , 内错角相等,两直线平行 ,故本选项错误; B 、 , 内错角相等,两直线平行 ,判定的不是 ,故本选项正确; C 、 , 同位角相等,两直线平行 ,故本选项错误;D 、, 同旁内角互补,两直线平行 ,故本选项错误. 故选B .根据平行线的判定方法对各选项分析判断后利用排除法求解.本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,要注意内错角、同位角、同旁内角与截线、被截线的关系.7. 下列图形中,可以由其中一个图形通过平移得到的是A.B.C.D.【答案】B【解析】解: 只有B 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选B .根据平移的性质,结合图形对小题进行一一分析,选出正确答案.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.8. 如图,直线 , 相交于点 , 于点 ,,则的度数是A.B. C.D.【答案】B 【解析】解: , ,, 对顶角相等 ,故选B .由垂直的定义可求得 ,再根据对顶角相等可求得 .本题主要考查对顶角的性质和垂直的定义,掌握对顶角相等是解题的关键,注意垂直定义的运用.二、填空题(本大题共6小题,共18.0分)9. 若m 是 的算术平方根,则 ______ . 【答案】5【解析】解: ,且m 是 的算术平方根, , 则 , 故答案为:5.由算术平方根的定义得到 ,然后依据算术平方根的性质可求得m 的值,最后代入求得代数式的值即可.本题主要考查算术平方根定义,掌握算术平方根的定义:如果一个正数x 的平方等于a ,即 ,那么这个正数x 叫做a 的算术平方根是解题关键.10. 将点P 向下平移3个单位,向左平移2个单位后得到点 , ,则点P 坐标为______ . 【答案】 ,【解析】解:设点P 的坐标为,,根据题意, , , 解得 , , 则点P 的坐标为 , . 故答案为: , .设点P 的坐标为 , ,然后根据向左平移,横坐标减,向下平移,纵坐标减,列式进行计算即可得解. 本题考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11. 把命题“对顶角相等”改写成“如果 那么 ”的形式:______. 【答案】如果两个角是对顶角,那么它们相等 【解析】解:题设为:对顶角,结论为:相等,故写成“如果 那么 ”的形式是:如果两个角是对顶角,那么它们相等, 故答案为:如果两个角是对顶角,那么它们相等.命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面. 本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.12. 如果 , 在y 轴上,那么点P 的坐标是______ . 【答案】 ,【解析】解: , 在y 轴上, ,则 , 点P 的坐标是: , .故答案为:,直接利用y轴上点的坐标性质得出m的值,进而得出答案.此题主要考查了点的坐标,正确得出m的值是解题关键.13.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是,,嘴唇C点的坐标为、,则此“QQ”笑脸右眼B的坐标______.【答案】,【解析】解:画出直角坐标系为,则笑脸右眼B的坐标,.故答案为,.根据A点坐标作出直角坐标系,然后可写出B点坐标.本题考查了坐标确定位置:直角坐标系内的点与有序实数对一一对应记住平面内特殊位置的点的坐标特征:各象限内点,的坐标特征:第一象限:,;第二象限:,;第三象限:,;第四象限:,坐标轴上点,的坐标特征:轴上:a为任意实数,;轴上:b为任意实数,;坐标原点:,.14.已知坐标平面内点,在第四象限那么点,在第______ 象限.【答案】二【解析】解:点,在第四象限,,,点,在第二象限.故答案为:二.根据第四象限内点的横坐标是正数,纵坐标是负数求出m、n的正负情况,然后求出点B所在的象限即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限,;第二象限,;第三象限,;第四象限,.三、解答题(本大题共9小题,共72.0分)15.(1)解方程组:.【答案】解:,代入得,,解得,将代入得,,所以,方程组的解是.【解析】将第一个方程直接代入第二个方程,然后利用代入消元法求解即可.本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.(2)解方程组.【答案】解:,得,,得,,解得,将代入得,,解得,所以,方程组的解是.【解析】第二个方程乘以2,然后减去第一个方程消掉y求出x的值,再代入第一个方程求出y即可.本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.16.已知2a一1的平方根是,的立方根是4,求的平方根.【答案】解:一1的平方根是,的立方根是4,,.解得:,..的平方根为.【解析】由平方根的定义和列方程的定义可求得,,从而可求得a、b的值,然后可求得代数式的值,最后再求其平方根即可.本题主要考查的是平方根和立方根的定义,掌握平方根和立方根的定义是解题的关键.17.完成下面推理过程.如图:在四边形ABCD中,, ,于点,于点F,求证:证明:, 已知______ ____________ ______,已知____________ ____________ ____________【答案】BC;同旁内角互补,两直线平行;;两直线平行,内错角相等;垂直的定义;EF;同位角相等,两直线平行;;两直线平行,同位角相等;等量代换第4页,共5页【解析】证明: , 已知 , ,同旁内角互补,两直线平行 , 两直线平行,内错角相等 , , 已知 ,垂直的定义 , 同位角相等,两直线平行 , 两直线平行,同位角相等 , 等量代换 ,故答案为:BC ,同旁内角互补,两直线平行, ,垂直的定义,EF ,同位角相等,两直线平行, ,两直线平行,同位角相等,等量代换.求出 ,根据平行线的判定得出 ,根据平行线的性质得出 ,根据垂直得出 ,根据平行线的判定得出 ,根据平行线的性质得出 ,即可得出答案.本题考查了平行线的性质和判定,角平分线定义等知识点,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有: 两直线平行,同位角相等, 两直线平行,内错角相等, 两直线平行,同旁内角互补,反之亦然.18. 根据解答过程填空:如图,已知 , ,那么AB 与DC 平行吗? 解: 已知 ______ ______ ______ ______ 又 ______ ______ 等量代换 ______【答案】AD ;BC ;内错角相等,两直线平行;两直线平行,内错角相等;已知;B;同位角相等,两直线平行【解析】解: 已知 内错角相等,两直线平行 两直线平行,内错角相等 又 已知 等量代换同位角相等,两直线平行 ,故答案为:AD ;BC ;内错角相等,两直线平行;两直线平行,内错角相等;已知;B ;同位角相等,两直线平行.根据平行线的判定定理和性质定理证明即可.本题考查的是平行线的性质和判定,掌握平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系是解题的关键.19. 王林同学利用暑假参观了幸福村果树种植基地 如图 ,他出发沿, , , , , , , , , , , , , , , 的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.【答案】解:由各点的坐标可知他路上经过的地方:葡萄园 杏林 桃林 梅林 山楂林 枣林 梨园 苹果园. 如图所示:【解析】根据坐标的定义依次找出经过的地方即可.本题考查了坐标确定位置,熟练掌握平面直角坐标系中点的坐标的确定方法是解题的关键.20. 如图,直角坐标系中, 的顶点都在网格点上,其中,C 点坐标为 , .写出点A 、B 的坐标:______ ,______ 、 ______ ,______将 先向左平移2个单位长度,再向上平移1个单位长度,得到 ,则 的三个顶点坐标分别是 ______ ,______ 、 ______ ,______ 、 ______,______的面积为______ .【答案】2; ;4;3;0;0;2;4; ;3;5【解析】解: 写出点A 、B 的坐标: , 、 ,将 先向左平移2个单位长度,再向上平移1个单位长度,得到 ,则 的三个顶点坐标分别是 , 、 , 、 , .的面积.在第四象限,横坐标为正,纵坐标为负;B 在第一象限,横纵坐标均为正; 让三个点的横坐标减2,纵坐标加1即为平移后的坐标;的面积等于边长为 , 的长方形的面积减去2个边长为 , 和一个边长为 , 的直角三角形的面积,把相关数值代入即可求解.用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.21. 如图,已知火车站的坐标为 , ,文化宫的坐标为 , .请你根据题目条件,画出平面直角坐标系; 写出体育场、市场、超市、医院的坐标.【答案】解: 如图所示;体育场 , 、市场 , 、超市 , 、医院 , .【解析】 以火车站向左两个单位,向下一个单位为坐标原点建立平面直角坐标系; 根据平面直角坐标系写出各场所的坐标即可.本题考查了坐标确定位置,主要利用了平面直角坐标系的定义以及平面直角坐标系中点的坐标的确定方法.22. 如图,在平面直角坐标系中, , 是 的边AC 上一点,经平移后点P 的对应点为, ,请画出上述平移后的 ,并写出点A 、C 、 、 的坐标; 求出以A 、C 、、 为顶点的四边形的面积.【答案】解: 如图,画对 ; 分各点的坐标为: , 、 , 、 , 、 , ;如图,连接 、 ; 分; 分; 分 四边形 的面积为 分答:四边形 的面积为 分【解析】 横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位; 以A 、C 、 、 为顶点的四边形的面积可分割为以 为底的2个三角形的面积.本题涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;求四边形的面积通常整理为求几个三角形的面积的和.。
2018-2019学年七年级(下)期中数学试卷(有答案与解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置上)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()A.B.C.D.2.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.(ab)2=ab2D.a6÷a2=a33.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.4.如图,直线a,b被直线c,d所截,若∠1=80°,∠2=100°,∠3=85°,则∠4度数是()A.80°B.85°C.95°D.100°5.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.4cm、7cm、3cm B.7cm、3cm、8cmC.5cm、6cm、7cm D.2cm、4cm、5cm6.若(x+y)2=9,(x﹣y)2=5,则xy的值为()A.﹣1B.1C.﹣4D.47.若a x=6,a y=4,则a2x﹣y的值为()A.8B.9C.32D.408.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:=.10.某种生物细胞的直径约为0.00038米,用科学记数法表示为米.11.若(x+1)(x﹣3)=x2+mx﹣3,则m值是.12.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.13.已知等腰三角形的一条边等于4,另一条边等于9,那么这个三角形的第三边是.14.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.15.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=度.16.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=°.17.已知a2﹣a﹣3=0,那么a2(a﹣4)的值是.18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒20°的速度沿顺时针方向旋转一周,在旋转的过程中,在第秒时,边CD恰好与边AB平行.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(1)(2)(2a2)2•a4﹣(﹣5a4)220.分解因式:(1)5x2﹣10xy+5y2;(2)4(a﹣b)2﹣(a+b)221.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.22.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在右图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )23.一个长方体的高是8cm ,它的底面是边长为3cm 的正方形.如果底面正方形的边长增加acm ,那么它的体积增加多少?24.已知:DE ⊥AO 于E ,BO ⊥AO ,∠CFB =∠EDO ,试说明:CF ∥DO .25.如图,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E ,BD 是△ABC 的角平分线.求∠DEB 的度数.26.(1)①比较4m 与m 2+4的大小:(用“>”、“<”或“=”填充)当m =3时,m 2+4 4m ;当m =2时,m 2+4 4m ;当m =﹣3时,m 2+4 4m . ②观察并归纳①中的规律,无论m 取什么值,m 2+4 4m (用“>”、“<”、“≥”或“≤”),并说明理由.(2)利用上题的结论回答:试比较x 2+2与2x 2+4x +6的大小关系,并说明理由.27.阅读与思考:整式乘法与因式分解是方向相反的变形.由(x +p )(x +q )=x 2+(p +q )x +pq 得,x 2+(p +q )x +pq =(x +p )(x +q );利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题:(1)分解因式:x2+7x+12=;(2)分解因式:(x2﹣3)2+(x2﹣3)﹣2;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能的值是.28.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置上)1.【分析】根据图形平移与翻折变换的性质解答即可.【解答】解:由图可知,ABC利用图形的翻折变换得到,D利用图形的平移得到.故选:D.【点评】本题考查的是利用平移设计图案,熟知图形平移不变性的性质是解答此题的关键.2.【分析】依据幂的乘方、同底数幂的乘法、积的乘方以及同底数幂的除法法则计算即可.【解答】解:A、(a2)3=a6,故A正确;B、a2•a3=a5,故B错误;C、(ab)2=a2b2,故C错误;D、a6÷a2=a4,故D错误.故选:A.【点评】本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方以及同底数幂的除法法则的应用,熟练掌握相关法则是解题的关键.3.【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.【解答】解:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AD∥BC,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.【点评】本题考查了平行线的判定,解题的关键是熟练掌握3线8角之间的位置关系.4.【分析】先根据题意得出a∥b,再由平行线的性质即可得出结论.【解答】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a∥b.∵∠3=85°,故选:B.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.5.【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【解答】解:A、4+3=7,不能组成三角形,故本选项正确;B、7+3>8,能组成三角形,故本选项错误;C、5+6>7,能组成三角形,故本选项错误;D、4+2>5,能组成三角形,故本选项错误.故选:A.【点评】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6.【分析】(x+y)2=9减去(x﹣y)2=5,然后用平方差公式计算即可.【解答】解:(x+y)2﹣(x﹣y)2=4,∴[(x+y)+(x﹣y)][(x+y)﹣(x﹣y)]=4.∴2x•2y=4.∴4xy=4.∴xy=1.故选:B.【点评】本题主要考查的是完全平方公式或平方差公式的应用,熟练掌握公式是解题的关键.7.【分析】根据幂的乘方法则、同底数幂的除法法则计算即可.【解答】解:a2x﹣y=(a x)2÷a y=36÷4=9,故选:B.【点评】本题考查的是同底数幂的除法,掌握同底数幂的除法法则:底数不变,指数相减是解题的关键.8.【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故①正确;②∵∠CEG=∠ACB,而∠GEC与∠GCE不一定相等,∴CA不一定平分∠BCG,故②错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故③正确;④∵∠ABC+∠ACB=90°,∵CD平分∠ACB,BE平分∠ABC,∴∠EBC=∠ABC,∠DCB=∠ACB,∴∠DFB=∠EBC+∠DCB=(∠ABC+∠ACB)=45°,∵∠CGE=90°,∴∠DFB=∠CGE,故④正确.故选:C.【点评】本题主要考查的是三角形内角和定理、平行线的性质,熟知直角三角形的两锐角互余是解答此题的关键.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:原式=n4.故答案为:n4.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00038=3.8×10﹣4.故答案为:3.8×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】先根据多项式乘以多项式展开,即可得出答案.【解答】解:(x+1)(x﹣3)=x2﹣2x﹣3,∵(x+1)(x﹣3)=x2+mx﹣3,∴m=﹣2,故答案为:﹣2.【点评】本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键12.【分析】根据多边形的内角和公式(n﹣2)•180°,外角和等于360°列出方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.13.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】解:当4为底时,其它两边都为9,4、9、9可以构成三角形;当4为腰时,其它两边为4和9,因为4+4=8<9,所以不能构成三角形.故答案为:9.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.15.【分析】根据三角形内角和定理以及角平分线性质,先求出∠D、∠A的等式,推出∠A=2∠D,最后代入求出即可.【解答】解:∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠A=50°,∴∠D=25°.故答案为:25.【点评】此题考查三角形内角和定理以及角平分线性质的综合运用,解此题的关键是求出∠A=2∠D.16.【分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【解答】解:由折叠可得∠3=180°﹣2∠2=180°﹣110°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=110°,故答案为:110.【点评】此题主要考查了翻折变换和平行线的性质,关键是掌握两直线平行,同旁内角互补.17.【分析】直接利用已知变形,进而代入原式求出答案.【解答】解:∵a2﹣a﹣3=0,∴a2=a+3,a2﹣a=3∴a2(a﹣4)=(a+3)(a﹣4)=a2﹣a﹣12=3﹣12=﹣9.故答案为:﹣9.【点评】此题主要考查了单项式乘以多项式,正确将原式变形是解题关键.18.【分析】讨论:如图1,△COD绕点O顺时针旋转得到△C′OD′,C′D′交OB于E,了;一平行线的判定,当∠OEC′=∠B=40°时,C′D′∥AB,则根据三角形外角性质计算出∠C′OC=100°,从而可计算出此时△COD绕点O顺时针旋转100°得到△C′OD′所需时间;如图2,△COD绕点O顺时针旋转得到△C″OD″,C″D″交直线OB于F,利用平行线的判定得当∠OFC″=∠B=40°时,C″D″∥AB,根据三角形内角和计算出∠C″OC=80°,则△COD 绕点O顺时针旋280°得到△C″OD″,然后计算此时旋转的时间.【解答】解:如图1,△COD绕点O顺时针旋转得到△C′OD′,C′D′交OB于E,则∠C′OD′=∠COD=90°,∠OC′D=∠C=60°,当∠OEC′=∠B=40°时,C′D′∥AB,∴∠C′OC=∠OEC′+∠OC′E=40°+60°=100°,∴△COD绕点O顺时针旋转100°得到△C′OD′所需时间为=5(秒);如图2,△COD绕点O顺时针旋转得到△C″OD″,C″D″交直线OB于F,则∠C″OD″=∠COD=90°,∠OC″D=∠C=60°,当∠OFC″=∠B=40°时,C″D″∥AB,∴∠C″OC=180°﹣∠OFC″+∠OC′F=180°﹣40°﹣60°=80°,而360°﹣80°=280°,∴△COD绕点O顺时针旋280°得到△C″OD″所需时间为=14(秒);综上所述,在旋转的过程中,在第5秒或14秒时,边CD恰好与边AB平行.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行线的判定.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质、积的乘方运算分别化简得出答案;(2)直接利用积的乘方运算法则以及合并同类项法则计算得出答案.【解答】解:(1)原式=2﹣1+[2×(﹣)]2017×2=2﹣1﹣2=﹣1;(2)原式=4a4•a4﹣25a8=﹣21a8.【点评】此题主要考查了实数运算以及积的乘方运算,正确掌握运算法则是解题关键.20.【分析】(1)先提取公因式5,再利用完全平方公式分解可得;(2)利用平方差公式分解后整理可得.【解答】解:(1)原式=(x2﹣2xy+y2)=5(x﹣y)2;(2)原式=[2(a﹣b)+a+b][2(a﹣b)﹣(a﹣b)]=(3a﹣b)(a﹣3b).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.【分析】根据整式的运算法则即可求出答案.【解答】解:∵x=3,y=﹣2,∴原式=x2+6xy+9y2﹣(x2﹣9y2)=6xy+18y2=6×3×(﹣2)+18×(﹣2)2=﹣36+18×4=36【点评】本题整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)分别将点A、B、C向左平移2格,再向上平移4格,得到点A'、B'、C',然后顺次连接;(2)过点C作CD⊥AB的延长线于点D;(3)利用平行线的性质过点A作出BC的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD即为所求;(3)如图所示:能使S△PBC =S△ABC的格点P的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.23.【分析】长方体变化后的高为8cm,底面边长为(3+a)cm,根据长方体的体积公式进行计算即可.【解答】解:它的体积增加了:8(3+a)2﹣8×32=72+48a+8a2﹣72=8a2+48a.答:它的体积增加8a2+48a.【点评】本题考查了完全平方公式,分别用整式表示两个长方体的体积,再求差,即可得到体积增加的值.24.【分析】根据平行线的判定和性质解答即可.【解答】解:∵DE⊥AO于E,BO⊥AO,∴DE∥OB,∴∠EDO=∠DOF,∵∠CFB=∠EDO,∴∠CFB=∠DOF,∴CF∥DO.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.25.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DBE,再根据角平分线的定义求出∠ABC,然后根据两直线平行,同旁内角互补求解即可.【解答】解:∵∠A=50°,∠BDC=70°,∴∠DBE=∠BDC﹣∠A=70°﹣50°=20°,∵BD是△ABC的角平分线,∴∠ABC=2∠DBE=2×20°=40°,∵DE∥BC,∴∠DEB=180°﹣∠ABC=180°﹣40°=140°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.26.【分析】(1)①当m=3时,当m=2时,当m=﹣3时,分别代入计算,再进行比较即可;②根据(m2+4)﹣4m=(m﹣2)2≥0,即可得出答案;(2)根据(2x2+4x+6)﹣(x2+2)=(x+2)2≥0,即可得出答案.【解答】解:(1)①当m=3时,4m=12,m2+4=13,则4m<m2+4,当m=2时,4m=8,m2+4=8,则4m=m2+4,当m=﹣3时,4m=﹣12,m2+4=13,则4m<m2+4,故答案为;>;=;>;②∵(m2+4)﹣4m=(m﹣2)2≥0,∴无论取什么值,总有4m≤m2+4;故答案是:≥;(2)∵(2x2+4x+6)﹣(x2+2)=x2+4x+4=(x+2)2≥0∴x2+2≤2x2+4x+6.【点评】此题考查了不等式的性质,用到的知识点是不等式的性质、完全平方公式、非负数的性质,关键是根据两个式子的差比较出数的大小.27.【分析】(1)利用十字相乘法分解因式即可;(2)将x2﹣3看作整体,利用十字相乘法分解,再利用平方差公式分解可得.(3)找出所求满足题意p的值即可.【解答】解:(1)x2+7x+12=(x+3)(x+4),故答案为:(x+3)(x+4);(2)原式=(x2﹣3﹣1)(x2﹣3+2)=(x2﹣4)(x2﹣1)=(x+2)(x﹣2)(x+1)(x﹣1);(3)若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是﹣8+1=﹣7;﹣1+8=7;﹣2+4=2;﹣4+2=﹣2,故答案为:±7,±2.【点评】此题考查了因式分解﹣十字相乘法,弄清题中的分解因式方法是解本题的关键.28.【分析】(1)根据AC∥BD,可得∠DAE=∠D,再根据∠C=∠D,即可得到∠DAE=∠C,进而判定AD∥BC;(2)根据∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根据△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD =180°﹣8α,再根据2∠C+∠DAE=90°,即可得到2(180°﹣8α)+α=90°,求得α的值,即可运用三角形内角和定理得到∠BAD的度数.【解答】解:(1)如图1,∵AC∥BD,∴∠DAE=∠D,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.【点评】本题主要考查了平行线的判定与性质以及三角形内角和定理的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。
湖北省武汉市黄陂区2018-2019学年七年级(下)期中数学试卷(含解析)
2018-2019学年湖北省武汉市黄陂区七年级(下)期中数学试卷一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A,B,C,D四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效1.(3分)9的平方根是()A.3B.﹣3C.±3D.±62.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.3.(3分)在平面直角坐标系中,点(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)在6×6方格中,将图①中的图形甲平移后位置如图②所示,则图形甲的平移方法正确的是()A.先向左平移1格,再向下平移2格B.先向右平移3格,再向下平移2格C.先向右平移1格,再向下平移3格D.先向右平移2格,再向下平移3格5.(3分)下列说法错误的是()A.0的平方根是0B.5是25的算术平方根C.﹣8的立方根是﹣2D.带根号的数都是无理数6.(3分)如图,下列条件不能判断AB∥CD的是()A.∠A=∠CDE B.∠C+∠ABC=180°C.∠C=∠CDE D.∠ABD=∠BDC7.(3分)下列命题中,真命题是()A.同位角相等B.平行于同一直线的两条直线互相平行C.两个锐角的和是锐角D.和为180°的两个角互为邻补角8.(3分)在平面直角坐标系中,点A(1,0),B(3,2),将线段AB平移后得到线段CD,若点A的对应点C(2,﹣1),则点B的对应点D的坐标为()A.(4,1)B.(5,3)C.(5,1)D.(2,0)9.(3分)利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若≈1.30,≈4.11,则≈()A.13.0B.130C.41.1D.41110.(3分)如图,已知直线AB∥CD,点F为直线AB上一点,G为射线BD上一点.若∠HDG=2∠CDH,∠GBE =2∠EBF,HD交BE于点E,则∠E的度数为()A.45B.60°C.65°D.无法确定二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.(3分)实数的相反数为.12.(3分)已知M(x﹣2,x+1)在x轴上,则x的值为.13.(3分)如图,直线AB,CD相交于点O,OE⊥CD,垂足为O.若∠AOE=45°,则∠BOD的度数为.14.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.15.(3分)已知点A(a,3),B(﹣1,b),且AB⊥x轴,若两点的距离为5,则满足条件的a的值为,b 的值为.16.(3分)在平面直角坐标系中,点A(﹣1,0),B(3,﹣1),点P为y轴上一点,若△ABP的面积为3,则满足条件的点P坐标为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算(1)﹣+(2)﹣(﹣)18.(8分)按要求完成下列推理证明.如图,已知点D为BC延长线上一点,CE∥AB.求证:∠A+∠B+∠ACB=180°证明:∵CE∥AB,∴∠1=,()∠2=,()又∠1+∠2+∠ACB=180°(平角的定义),∴∠A+∠B+∠ACB=180°19.(8分)求下列各式中x的值.(1)x2﹣49=0(2)x3+=120.(8分)在如图所示边长为1的正方形网格中,点A,B,C,D,E均在格点上.若A(﹣2,0),B(1,﹣1).(1)请在图中建立平面直角坐标系并写出:C(,),D(,),E(,);(2)分别连接BD,BE,DE,则三角形BDE的面积为(直接写出结果).21.(8分)如图,已知点D,E分别为AB,BC上的点,连接DE,∠A=70°,∠ADE=110°.(1)求证:∠C=∠BED;(2)作图:过D点作DF⊥BC,垂足为F,连接AE,若∠EDF=∠EAC=28°,求∠C的度数.22.(10分)有一块面积为100cm2的正方形纸片.(1)该正方形纸片的边长为cm(直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?23.(10分)如图,AB∥CD,点A,E,B,C不在同一条直线上.(1)如图1,求证:∠E+∠C﹣∠A=180°(2)如图2.直线F A,CP交于点P,且∠BAF=∠BAE,∠DCP=∠DCE.①试探究∠E与∠P的数量关系:②如图3,延长CE交P A于点Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),则∠PQC的度数为(用含α的式子表示)24.(12分)如图,已知点A(a,b),B(1,6)为平面直角坐标系内两点,且a,b满足b=﹣+2,AB的延长线交y轴于点C.(1)点A的坐标为(直接写出结果);(2)如图1,点P(m,4)为线段AB上的点.①点C坐标为(直接写出结果)②求m的值;(3)如图2,若Q为第四象限直线AB上一点,将QC绕Q点逆时针旋转50°,交x轴负半轴于点D,在第二象限内有点E,使x轴、y轴分别平分∠EDQ,∠ECQ,试求∠CED的度数,2018-2019学年湖北省武汉市黄陂区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A,B,C,D四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效1.【解答】解:∵±3的平方是9,∴9的平方根是±3;故选:C.2.【解答】解:A、∠1与∠2不是对顶角,故本选项不符合题意;B、∠1与∠2是对顶角,故本选项符合题意;C、∠1与∠2不是对顶角,故本选项不符合题意;D、∠1与∠2不是对顶角,故本选项不符合题意;故选:B.3.【解答】解:点(﹣2,1)在第二象限,故选:B.4.【解答】解:根据图形甲平移前后对应点的位置变化可知,需要向右平移1个单位,向下平移3个单位.故选:C.5.【解答】解:A、0的平方根是0,故正确,不符合题意;B、5是25的算术平方根,故B不符合题意;C、﹣8的立方根是﹣2,故C不符合题意;D、带根号的数不一定都是无理数,故D符合题意;故选:D.6.【解答】解:A、根据同位角相等,两直线平行判定AB∥CD,故此选项不合题意;B、根据同旁内角互补,两直线平行判定AB∥CD,故此选项不合题意;C、根据内错角相等,两直线平行判定AD∥BC,不能判定AB∥CD,故此选项符合题意;D、根据内错角相等,两直线平行判定AB∥CD,故此选项不合题意.故选:C.7.【解答】解:A、两直线平行,同位角相等,故此选项是假命题,不合题意;B、平行于同一直线的两条直线互相平行,是真命题;C、两个锐角的和不一定是锐角,故此选项是假命题,不合题意;D、和为180°的两个角互为补角,故此选项是假命题,不合题意;故选:B.8.【解答】解:∵点A(1,0)的对应点C的坐标为(2,﹣1),∴平移规律为向右平移1个单位,向下平移1个单位,∴B(3,2)的对应点D的坐标为(4,1).故选:A.9.【解答】解:由表格可以发现:被开方数的小数点(向左或者右)每移动两位,其算术平方根的小数点相应的向相同方向移动一位.∵16.9×100=1690,∴=×10=41.1.故选:C.10.【解答】解:∵∠HDG=2∠CDH,∠GBE=2∠EBF,∴设∠CDH=x,∠EBF=y,∴∠HDG=2x,∠DBE=2y,∵AB∥CD,∴∠ABD=∠CDG=3x,∴3x+2y+y=180°,∴x+y=60°,∵∠BDE=∠HDG=2x,∴∠E=180°﹣2x﹣2y=180°﹣2(x+y)=60°,故选:B.二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【解答】解:实数的相反数为﹣,故答案为:﹣.12.【解答】解:∵点M(x﹣2,x+1)在x轴上,∴x+1=0,解得:x=﹣1,故答案为:﹣1.13.【解答】解:∵OE⊥CD,∴∠DOE=90°,又∵∠AOE=45°,∴∠AOD=90°﹣45°=45°,∵∠BOD+∠AOD=180°,∴∠BOD=180°﹣∠AOD=180°﹣45°=135°,故答案为:135°.14.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.15.【解答】解:(1)∵AB⊥x轴,∴AB∥y轴,∴a=﹣1,∵两点的距离为5,∴b=3﹣5或b=3+5,即b=﹣2或8,故答案为:﹣1,﹣2或8.16.【解答】解:如图,∵点A(﹣1,0),B(3,﹣1),∴直线AB的解析式为:y=﹣x﹣,当x=0时,y=﹣,∴直线AB与y轴的交点坐标为:C(0,﹣),设P(0,m),∴×1×(|m|+)+×3×(|m|+)=3,解得:m=或m=﹣,∴满足条件的点P坐标为(0,)或(0,),故答案为:(0,)或(0,).三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【解答】解:(1)原式=5﹣2+3=6;(2)原式==.18.【解答】证明:∵CE∥AB,∴∠1=∠B,(两直线平行,同位角相等)∠2=∠A,(两直线平行,内错角相等)又∠1+∠2+∠ACB=180°(平角的定义),∴∠A+∠B+∠ACB=180°,故答案为:∠B,∠A,两直线平行,同位角相等,两直线平行,内错角相等.19.【解答】解:(1)x2﹣49=0,则x2=49,解得:x=±7;(2)x3+=1,则x3=,解得:x=.20.【解答】解:(1)∵A(﹣2,0),B(1,﹣1),∴建立平面直角坐标系如图所示,∴C(﹣1,﹣1),D(﹣3,1),E(0,2);(2)三角形BDE的面积为:3×4﹣1×3﹣1×3﹣2×4=5,故答案为:﹣1,﹣1,﹣3,1,0,2;5.21.【解答】解:(1)证明:∵∠A=70°,∠ADE=110°.∴∠A+∠ADE=180°.∴DE∥AC,∴∠C=∠BED;(2)如图所示,过D点作DF⊥BC,垂足为F,连接AE,∵DE∥AC,∠EDF=∠EAC=28°∴∠EAC=∠AED=EDF=28°,∴DF∥AE,∵DF⊥BC,∴∠AEB=∠DFB=90°,∵∠C=∠BED,∴∠C=∠BED=90°﹣28°=62°.22.【解答】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)∵长方形纸片的长宽之比为4:3,∴设长方形纸片的长为4xcm,则宽为3xcm,则4x•3x=90,∴12x2=90,∴x2=,解得:x=或x=(负值不符合题意,舍去),∴长方形纸片的长为2cm,∵5<<6,∴10<2,∴小丽不能用这块纸片裁出符合要求的纸片.23.【解答】解:(1)如图1,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠AEF=∠A,∠C+∠FEC=180°,∴∠E=∠AEF+∠FEC=∠A+180°﹣∠C,即∠E+∠C﹣∠A=180°;(2)①∵∠BAF=∠BAE,∠DCP=∠DCE,∴设∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),如图2,过P作PG∥CD,∵AB∥CD,∴AB∥PG,∴∠GP A=∠BAF=x,∠GPC=∠PCD=y,∴∠APC=y﹣x,即∠E=180°﹣3∠P;②如图3,过P作PG∥CD,∵∠BAQ=α,∴∠QAE=2α,∵AE∥PC,∴∠QAE=∠APC=2α,由①知,∠AEC=180°﹣3∠APC=180°﹣6α,∴∠PQC=∠AEC﹣∠QAE=180°﹣6α﹣2α=180°﹣8α,故答案为:180°﹣8α.24.【解答】解:(1)∵b=﹣+2,又∵,∴a=3,b=2,∴A(3,2),故答案为(3,2).(2)①由图象法可知C(0,8).故答案为(0,8).②如图1中,作AE⊥OC于E,OF⊥OC于F.∵S△AEC=S△PCF+S四边形AEFP,∴•AE•EC=•CF•PF+•(AE+PF)•EF,∵A(3,2),B(1,6),C(0,8),P(m,4),∴×3×6=×4×m+×2×(m+3),解答m=2.(3)如图2中,分别过C,E,Q作直线l∥x轴,EF∥x轴,QG∥x轴.由题意设∠EDO=∠QDO=x.则∠DQG=∠ODQ=x,∵直线l∥EF∥GQ,∴∠1=∠2=∠CQG=50°+x,∠FEC=180°﹣∠2=130°﹣x,∵∠FED=∠EDO=x,∴∠CED=∠FEC+∠FED=130°﹣x+x=130°.。
2018-2019学年七年级(下)期中数学试卷及答案解析
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
湖北省武汉市黄陂区2018-2019学年七年级下学期期中考试数学试题(附答案)
2019年春部分学校期中调研考试七年级数学参考答案及评分说明一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)11.2− 12.1− 13.135°14.15° 15.1−,2−或8 16.(0,54),(0,74−),三、解答题(共8小题,共72分)17.(1)原式=52+3− (2)原式=55+3− ………2分=6; =3. ………4分 18.∴∠1=∠B ,( 两直线平行,同位角相等), ………4分∠2=∠A ,(两直线平行,内错角相等), ………8分19.(1)249x = (2)318x = ……4分解得 7x =± 12x =………8分 20.(1)C (1−,1−),D (3−,1),E (0,2);(正确建立坐标系2分)……5分 (2)5 …………8分 21.(1)∵∠A =70°,∠ADE =110°,∴∠A +∠ADE =180°, …………1分 ∴DE ∥AC ,∴∠C =∠BED ; …………3分(2)正确作图 …………4分∵DE ∥AC ,∠EDF =∠EAC =28°, ∴∠EAC =∠AED =∠EDF =28°, ∴DF ∥AE ,又DF ⊥BC ,∴∠AEB =∠BFD =90°, …………6分又∠C =∠BED ;∴∠C =∠BED =90°-28°=62° …………8分题号 1 2 3 4 5 6 7 8 9 10 答案CABCDCBACB22. (1) 10. …………2分(2)设正方形的长为4x cm ,宽为3x cm ,则43x x ⋅=90, …………5分即230=4x,x 0x >), …………7分∴长方形的长为4x = …………8分∵56<<,∴10<,故不能裁出 ………9分 即小丽不能用这块纸片裁剪出符合要求的纸片. …………10分23.(1)过E 点作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠AEF =∠A ,∠C +∠FEC =180°, ∴∠E =∠AEF +∠FEC =∠A +180°−∠C ,即∠E +∠C −∠A =180°; …………3分(2)①∵∠BAF =13∠BAE ,∠DCP =13∠DCE , …………4分 设∠BAF =x ,∠BAE =3x ,∠DCP =y ,∠DCE =3y , 由(1)知∠E =180°−∠C +∠A =()1803y x ︒−−, 过点P 作PG ∥CD , 易证∠P =y x −,∴∠E =1803P ︒−∠. …………7分②1808α︒−. …………10分24. (1)(3,2); …………2分(2)①(0,8); …………4分②分别过点A ,P 作AE ⊥y 轴于E ,PF ⊥y 轴于F , =AECPFCPFEA SSS +四边形, 即()111222AE CE CF PF EF PF AE ⋅=⋅++, F EDCB AGPEB ACFD又A (3,2),B (1,6),C (0,8),P (m ,4) 即()11136423222m m ⨯⨯=⨯+⨯+,解得2m =. …………8分(3)分别过点C ,E ,Q 作l ∥x 轴,EF ∥x 轴,QG ∥x 轴,依题意设∠EDO =∠QDO =x , 易证∠DQG =x ,由平行关系易证∠2=∠1=∠CQG =50°+x , ……………10分∠FEC =180°−∠2=130°−x ,由平行可证∠FED =x ,∴∠CED =∠FEC+∠FED =130°−x +x =130°, ……………12分b )。
黄陂镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
黄陂镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在下列所给出的坐标中,在第二象限的是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)【答案】D【考点】点的坐标,点的坐标与象限的关系【解析】【解答】解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(2,﹣3)、(﹣2,﹣3)、(﹣2,3)中只有(﹣2,3)在第二象限.故答案为:D.【分析】第二象限内的点的坐标特征是:横坐标为负数,纵坐标为正数. 由此即可得出.2、(2分)下列说法错误的是().A.不等式x-3>2的解集是x>5B.不等式x<3的整数解有无数个C.x=0是不等式2x<3的一个解D.不等式x+3<3的整数解是0【答案】D【考点】不等式的解及解集【解析】【解答】解:A.不等式x-3>2的解集是x>5,不符合题意;B.不等式x<3的整数解有无数个,不符合题意;C.x=0是不等式2x<3的一个解,不符合题意;D.不等式x+3<3的解集是x<0,故D符合题意.故答案为:D.【分析】解不等式x-3>2可得x>5 可判断A;整数解即解为整数,x<3的整数有无数个,可判断B;把x=0代入不等式成立,所以x=0是不等式2x<3的一个解。
即C正确;不等式x+3<3的解集是x<0,根据解和解集的区别(不等式的解是使不等式成立的一个未知数的值,而不等式的解集包含了不等式的所有解)可判断D;3、(2分)实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.【答案】C【考点】绝对值及有理数的绝对值,实数在数轴上的表示【解析】【解答】解:由数轴上点的位置,得:a<−4<b<0<c<1<d.A.a<−4,故A不符合题意;B.bd<0,故B不符合题意;C.|a|>|b|,故C符合题意;D.b+c<0,故D不符合题意;故答案为:C.【分析】根据数轴上表示的数的特点,可知在数轴上右边的总比左边的大,即可得出a<−4<b<0<c<1<d,即可判断A是错误的,再根据有理数的加法法则,乘法法则即可判断B,D是错误的,最后根据数轴上表示的数离开原点的距离就是该数的绝对值即可判断C是正确的,综上所述即可得出答案。
2018—2019学年度第二学期期中测试卷
1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。
2018-2019人教版七年级(下)期中数学试卷(含答案解析)
2018-2019七年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)2.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A.∠1=∠2B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°3.的算术平方根是()A.2B.4C.±2D.±44.在实数,,,0,π,中,无理数的个数是()A.1B.2C.3D.45.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°6.下列各点中位于第四象限的点是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)7.如图,直线a∥b,Rt△BCD如图放置,∠DCB=90°,∠1=35,∠2=25°,则∠B的度数为()A.20°B.25°C.30°D.35°8.的平方根是()A.2B.﹣2C.D.±29.已知点A(1,0),B(0,2),点P在x轴上,且三角形PAB的面积为5,则P点的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(4,0)D.(﹣4,0)或(6,0)10.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.80°二.填空题(共7小题,满分28分,每小题4分)11.如果某数的一个平方根是﹣5,那么这个数是.12.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.13.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为.14.命题“线段垂直平分线上的点到线段两端的距离相等”的逆命题是.15.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是.16.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.17.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共8小题,满分82分)18.(8分)计算:19.(10分)求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.20.(8分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.21.(10分)如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.22.(10分)已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.23.(10分)如图,把△ABC平移,使点A平移到点O.(1)作出平移后的△OB'C';(2)写出△OB'C'的顶点坐标,并描述这个平移过程.24.(12分)如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.25.(14分)如图,长方形OABC中,O为平面直角坐标系的原点,A、C两点的坐标分别为(3,0),(0,5),点B在第一象限内.(1)如图1,写出点B的坐标();(2)如图2,若过点C的直线CD交AB于点D,且把长方形OABC的周长分为3:1两部分,则点D的坐标();(3)如图3,将(2)中的线段CD向下平移,得到C′D′,使C′D′平分长方形OABC的面积,则此时点D′的坐标是().参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据点在y轴上,可知P的横坐标为0,即可得m的值,再确定点P的坐标即可.【解答】解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.【点评】解决本题的关键是记住y轴上点的特点:横坐标为0.2.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;B、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:A.【点评】此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.3.【分析】利用算术平方根定义计算即可得到结果.【解答】解:=4,4的算术平方根是2,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.4.【分析】根据无理数的定义进行解答即可.【解答】解:在实数,,,0,π,中,无理数有:、、π,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.5.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.6.【分析】应先判断点在第四象限内点的坐标的符号特点,进而找相应坐标.【解答】解:第四象限的点的坐标的符号特点为(+,﹣),观察各选项只有C符合条件,故选C.【点评】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:根据三角形外角性质,可得∠3=∠B+∠1,∵直线a∥b,∴∠3+∠ACD+∠2=180°,∴∠B+∠1+∠ACD+∠2=180°,又∵∠1=35,∠2=25°,∴∠1+∠2=60°,∴∠B+60°+90°=180°,∴∠B=30°,故选:C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.8.【分析】利用立方根定义计算即可求出值.【解答】解:=2,2的平方根是±,故选:C.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.9.【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【解答】解:如图,设P(m,0),由题意:•|1﹣m|•2=5,∴m=﹣4或6,∴P(﹣4,0)或(6,0),故选:D.【点评】本题考查三角形的面积、只能与图形性质等知识,解题的关键是学会利用参数构建方程解决问题.10.【分析】根据平行线的性质求出∠4,根据三角形的外角的性质计算即可.【解答】解:∵AB∥CD,∴∠4=∠2=50°,∴∠3=∠4﹣∠1=20°,故选:A.【点评】本题考查的是平行线的性质,三角形的外角的性质,掌握两直线平行,内错角相等是解题的关键.二.填空题(共7小题,满分28分,每小题4分)11.【分析】利用平方根定义即可求出这个数.【解答】解:如果某数的一个平方根是﹣5,那么这个数是25,故答案为:25【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.12.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E=2(42°+y),即可得到结论.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.【点评】本题考查了平行线的性质以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和,正确设未知数是关键.13.【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=BC=3,于是得到AA′=3.【解答】解:∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=BC=3,∴AA′=3.故答案为3.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.【分析】把原命题的题设与结论交换得到逆命题.【解答】解:命题“线段垂直平分线上的点到线段两端的距离相等”的逆命题是到线段两端的距离相等的点在线段垂直平分线上,故答案为:到线段两端的距离相等的点在线段垂直平分线上.【点评】本题考查了命题与定理的知识,解题的关键是能够区分原命题的题设和结论,难度不大.15.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A'的坐标为(1﹣2,﹣2+3),即(﹣1,1),故答案为:(﹣1,1).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.【解答】解:为了使李庄人乘火车最方便(即距离最近),过李庄向铁路画垂线段,根据是垂线段最短.故答案为:垂线段最短.【点评】本题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短的性质.17.【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n的坐标为(﹣n,n)(n为正﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共8小题,满分82分)18.【分析】先化简二次根式、计算零指数幂和负整数指数幂、取绝对值符号,再计算加减可得.【解答】解:原式=2﹣1+4+=3+3.【点评】本题主要考查实数的混合运算,解题的关键是熟练掌握二次根式的性质、零指数幂和负整数指数幂及绝对值的性质.19.【分析】(1)先将x2的系数化为1,再利用平方根的定义计算可得;(2)两边都除以8,再利用立方根的定义得出x+1的值,从而得出答案.【解答】解:(1)∵4x2﹣81=0,∴4x2=81,则x2=,∴x=±;(2)∵8(x+1)3=27,∴(x+1)3=,则x+1=,解得x=.【点评】本题考查立方根、平方很,解答本题的关键是明确它们各自的含义.20.【分析】先判定AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.【解答】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.【点评】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.21.【分析】(1)欲证明DC∥EF,只要证明∠2=∠DCB即可.(2)由DG∥BC,可知∠ADG=∠B,求出∠B即可解决问题.【解答】(1)证明:∵DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴DC∥EF.(2)解:∵EF⊥AB,∴∠FEB=90°,∵∠1=∠2=55°,∴∠B=90°﹣55°=35°,∵DG∥BC,∴∠ADG=∠B=35°.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)根据AC∥BD,可得∠DAE=∠D,再根据∠C=∠D,即可得到∠DAE=∠C,进而判定AD∥BC;(2)根据∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根据△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD =180°﹣8α,再根据2∠C+∠DAE=90°,即可得到2(180°﹣8α)+α=90°,求得α的值,即可运用三角形内角和定理得到∠BAD的度数.【解答】解:(1)如图1,∵AC∥BD,∴∠DAE=∠D,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.【点评】本题主要考查了平行线的判定与性质以及三角形内角和定理的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.【分析】(1)根据平移的性质画出平移后的△OB'C'即可;(2)根据各点在坐标系中的位置写出各点坐标,再由平移的方向和距离即可得出结论.【解答】解:(1)如图,△OB′C′即为所求;(2)由图可知,O(0,0),B′(﹣3,﹣2),C′(﹣1,﹣5).将△ABC先向左平移5个单位,再向下平移7个单位即可得到△OB′C′.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.【分析】由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.【解答】证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).【点评】本题是先从结论出发得到需证明的条件,又从所给条件入手,得到需证明的条件.属于典型的从两头往中间证明.25.【分析】(1)根据矩形的对边相等可得BC=OA,AB=OC,然后写出点B的坐标即可;(2)先求出长方形OABC的周长,然后求出被分成两个部分的长度,判断出点D一定在AB上,再求出BD的长度即可得解;(3)先用待定系数法求出直线CD 的解析式,根据线段CD 向下平移,得到C ′D ′,设处直线C ′D ′的解析式,再求出矩形OABC 的中心坐标,代入直线C ′D ′的解析式即可得出结论.【解答】解:(1)∵A (3,0),C (0,5),∴OA =3,OC =5,∵四边形OABC 是长方形,∴BC =OA =3,AB =OC =5,∴点B 的坐标为(3,5).故答案为(3,5);(2)长方形OABC 的周长为:2(3+5)=16,∵CD 把长方形OABC 的周长分为3:1两部分,∴被分成的两部分的长分别为16×=12,16×=4,①C →B →D 长为4,点D 一定在AB 上,∴BD =4﹣3=1,AD =5﹣BD =5﹣1=4,∴点D 的坐标为(3,4),②C →B →A →O →D 长为12时,点D 在OC 上,OD =1,不符合题意,所以,点D 的坐标为(3,4).故答案为(3,4);(3)设直线CD 的解析式为y =kx +b (k ≠0),∵C (0,5),D (3,4),∴,解得,∴直线CD 的解析式为y =﹣x +5,∵直线C ′D ′由直线CD 平移而成,∴设直线C ′D ′的解析式为y =﹣x +5﹣a ,∵A (3,0),C (0,5),∴矩形OABC 的中心坐标为(,),∵C′D′平分长方形OABC的面积,∴直线C′D′过矩形OABC的中心,∴=﹣×+5﹣a,解得a=2,∴D′(3,2).故答案为:(3,2).【点评】本题考查的是坐标与图形性质,熟知矩形的性质与一次函数的性质是解答此题的关键.。
2019年湖北省武汉市黄陂区部分学校七年级下期中数学试卷(含答案解析)
2019年湖北省武汉市黄陂区部分学校七年级(下)期中试卷数学一、选择题(共10小题,每小题3分,共30分)1.(3分)25的平方根是()A.5 B.﹣5 C.±5 D.6252.(3分)在平面直角坐标系中,点P(﹣3,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列选项中能由左图平移得到的是()A.B.C.D.4.(3分)如图,∠1=∠2,且∠3=108°,则∠4的度数是()A.72°B.62°C.50°D.45°5.(3分)下列各组数中互为相反数的是()A.5和B. C. D.﹣5和6.(3分)如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A .B .C .D .7.(3分)下列结论中:①若a =b ,则=,②在同一平面内,若a ⊥b ,b ∥c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;④|﹣2|=2﹣,正确的个数有( )A .1个B .2个C .3个D .4个8.(3分)已知△ABC 内任意一点P (a ,b )经过平移后对应点P 1(c ,d ),已知A (﹣3,2)在经过此次平移后对应点A 1(4,﹣3),则a ﹣b ﹣c +d 的值为( )A .12B .﹣12C .2D .﹣29.(3分)若AB ∥CD ,∠CDF =∠CDE ,∠ABF =∠ABE ,则∠E :∠F =( )A .2:1B .3:1C .4:3D .3:210.(3分)如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .∠F 的度数为( )A .120°B .135°C .150°D .不能确定二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)4是 的算术平方根.12.(3分)点P (﹣5,6)到x 轴的距离为 ,点Q (3,6)到y轴的距离为,线段PQ的长度为.13.(3分)观察下列各式:,…,根据你发现的规律,若式子(a、b为正整数)符合以上规律,则=.14.(3分)如图,直线AB∥CD∥EF,且∠B=40°,∠C=125°,则∠CGB=.15.(3分)如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC 于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.16.(3分)已知∠A与∠B的两边一边平行,另一边垂直,且2∠A ﹣∠B=18,则∠A=______三、解答题(共8题,共72分)17.(8分)计算:(1)+﹣(2)|1﹣|+|﹣|18.(8分)求下列各式的值:(1)x2﹣25=0(2)(3x+1)3=﹣819.(8分)已知和互为相反数,求x+y的平方根.20.(8分)如图,三角形ABC的三个顶点坐标为:A(1,4),B(﹣3,3),C(2,﹣1),三角形ABC内有一点P(m,n)经过平移后的对应点为P1(m+3,n﹣2),将三角形ABC作同样平移得到三角形A1B1C1(1)写出A1、B1、C1三点的坐标;(2)在图中画出三角形A1B1C1;(3)直接写出两次平移过程中线段AC扫过的面积.21.(8分)小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.22.(10分)如图,在平面直角坐标系中,已知A(﹣3,0)、B(3,0)、C(2,4),求以A、B、C三个点为顶点的平行四边形的第四个点D的坐标.23.(10分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.24.(12分)已知A(0,a),B(﹣b,﹣1),C(b,0)且满足﹣|b+2|+=0.(1)求A、B、C三点的坐标;(2)如图1所示,CD∥AB,∠DCO的角平分线与∠BAO的补角的角平分线交于点E,求出∠E的度数;(3)如图2,把直线AB以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y轴交于点(0,﹣5).参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)25的平方根是()A.5 B.﹣5 C.±5 D.625【解答】解:∵(±5)2=25,∴25的平方根是±5.故选:C.2.(3分)在平面直角坐标系中,点P(﹣3,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣3,﹣3)在第三象限,故选:C.3.(3分)下列选项中能由左图平移得到的是()A.B.C.D.【解答】解:能由左图平移得到的是:选项C.故选:C.4.(3分)如图,∠1=∠2,且∠3=108°,则∠4的度数是()A.72°B.62°C.50°D.45°【解答】解:如图,∵∠1=∠2,∴直线a∥直线b,∵∠3=108°,∴∠5=180°﹣∠3=72°,∴∠4=∠5=72°,故选:A.5.(3分)下列各组数中互为相反数的是()A.5和B.C.D.﹣5和【解答】解:A、5和=5,两数相等,故此选项错误;B、﹣|﹣|=﹣和﹣(﹣)=是互为相反数,故此选项正确;C、﹣=﹣2和=﹣2,两数相等,故此选项错误;D、﹣5和,不是互为相反数,故此选项错误.故选:B.6.(3分)如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.【解答】解:点C是AB的中点,设A表示的数是c,则﹣3=3﹣c,解得:c=6﹣.故选:C.7.(3分)下列结论中:①若a=b,则=,②在同一平面内,若a⊥b,b∥c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④|﹣2|=2﹣,正确的个数有()A.1个B.2个C.3个D.4个【解答】解:①若a=b<0时,则=无意义,②在同一平面内,若a⊥b,b∥c,则a⊥c故②符合题意;③直线外一点到直线的垂线段的长叫点到直线的距离,故③不符合题意;④|﹣2|=2﹣,故④符合题意,故选:B.8.(3分)已知△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(﹣3,2)在经过此次平移后对应点A1(4,﹣3),则a﹣b﹣c+d的值为()A.12 B.﹣12 C.2 D.﹣2【解答】解:∵A(﹣3,2)在经过此次平移后对应点A1的坐标为(4,﹣3),∴△ABC的平移规律为:向右平移7个单位,向下平移5个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+7=c,b﹣5=d,∴a﹣c=﹣7,b﹣d=5,∴a﹣b﹣c+d=a﹣c﹣(b﹣d)=﹣7﹣5=﹣12,故选:B.9.(3分)若AB∥CD,∠CDF=∠CDE,∠ABF=∠ABE,则∠E:∠F=()A.2:1 B.3:1 C.4:3 D.3:2【解答】解:过E、F分别作EM∥AB,FN∥AB,∵AB∥CD,∴CD∥EM,CD∥FN,∴∠CDE=∠DEM,∠ABE=∠BEM,∠CDF=∠DFN,∠ABF=∠BFN,∴∠DEB=∠CDE+∠ABE,∠DFB=∠CDF+∠ABF,∵∠CDF=∠CDE,∠ABF=∠ABE∴∠DFB=∠CDE+∠ABE=∠DEB,∴∠DEB:∠DFB=3:2,故选:D.10.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN 的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)4是16 的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)点P(﹣5,6)到x轴的距离为 6 ,点Q(3,6)到y轴的距离为 3 ,线段PQ的长度为8 .【解答】解:点P(﹣5,6)到x轴的距离为6,点Q(3,6)到y 轴的距离为3,∵点P、Q的纵坐标相同,∴PQ∥x轴,∴线段PQ的长度=3﹣(﹣5)=3+5=8.故答案为:6;3;8.13.(3分)观察下列各式:,…,根据你发现的规律,若式子(a、b为正整数)符合以上规律,则= 4 .【解答】解:根据题意得:a=7,b=9,即a+b=16,则==4.故答案为:4.14.(3分)如图,直线AB∥CD∥EF,且∠B=40°,∠C=125°,则∠CGB=15°.【解答】解:∵AB∥CD∥EF,∠B=40°,∠C=125°,∴∠BGF=∠B=40°,∠C+∠CGF=180°,∴∠CGF=55°,∴∠CGB=∠CGF﹣∠BGF=15°,故答案为:15°.15.(3分)如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC 于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=32 .【解答】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,﹣5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.16.(3分)已知∠A与∠B的两边一边平行,另一边垂直,且2∠A ﹣∠B=18,则∠A=36°或60°【解答】解:∵∠A的两边与∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,∵2∠A﹣∠B=18,∴∠A=36°或∠A=60°,故答案为:36°或60°三、解答题(共8题,共72分)17.(8分)计算:(1)+﹣(2)|1﹣|+|﹣|【解答】解:(1)原式=5﹣3﹣×=1;(2)原式=﹣1+﹣=﹣1.18.(8分)求下列各式的值:(1)x2﹣25=0(2)(3x+1)3=﹣8【解答】解:(1)∵x2﹣25=0,∴x2=25,则x=±5;(2)∵(3x+1)3=﹣8,∴3x+1=﹣2,则3x=﹣2﹣1,3x=﹣3,x=﹣1.19.(8分)已知和互为相反数,求x+y的平方根.【解答】解:由题意,得x﹣2+y﹣2=0,解得x+y=4==±2.20.(8分)如图,三角形ABC的三个顶点坐标为:A(1,4),B(﹣3,3),C(2,﹣1),三角形ABC内有一点P(m,n)经过平移后的对应点为P1(m+3,n﹣2),将三角形ABC作同样平移得到三角形A1B1C1(1)写出A1、B1、C1三点的坐标;(2)在图中画出三角形A1B1C1;(3)直接写出两次平移过程中线段AC 扫过的面积.【解答】解:(1)由点P (m ,n )经过平移后的对应点为P 1(m +3,n ﹣2)知需将△ABC 先向右平移3个单位、再向下平移2个单位, 则点A (1,4)的对应点A 1的坐标为(4,2),B (﹣3,3)的对应点B 1的坐标为(0,1),C (2,﹣1)的对应点C 1的坐标为(5,﹣3);(2)如图所示,△A 1B 1C 1即为所求;(3)两次平移过程中线段AC 扫过的面积为S ▱ACED +S ▱A 1C 1ED =3×5+2×1=17.21.(8分)小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.【解答】解:(1)裁剪方案如图所示:(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3xcm,则宽为2xcm,则3x•2x=300,解得:x=5或x=﹣5(舍),∴长方形纸片的长为15cm,又∵(15)2=450>202即:15>20,∴小丽不能用这块纸片裁出符合要求的纸片.22.(10分)如图,在平面直角坐标系中,已知A(﹣3,0)、B(3,0)、C(2,4),求以A、B、C三个点为顶点的平行四边形的第四个点D的坐标.【解答】解:∵四边形ABCD是平行四边形,①当BC=AD时,∵A(﹣3,0)、B(3,0)、C(2,4),∴D点坐标为(﹣4,4)、(﹣2,﹣4)②BD=AC时,∵A(﹣3,0)、B(3,0)、C(2,4),∴D点坐标为(8,4).综上所述,D(8,4)、(﹣2,﹣4)或(﹣4,4).23.(10分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为∠E=∠END﹣∠BME;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.【解答】解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.24.(12分)已知A(0,a),B(﹣b,﹣1),C(b,0)且满足﹣|b+2|+=0.(1)求A、B、C三点的坐标;(2)如图1所示,CD∥AB,∠DCO的角平分线与∠BAO的补角的角平分线交于点E,求出∠E的度数;(3)如图2,把直线AB以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y轴交于点(0,﹣5).【解答】解:(1)∵﹣|b+2|+=0.又∵≥0,|b+2|≥0,≥0,∴a=7,b=﹣2,∴A(0,7)B(2,﹣1)C(﹣2,0)(2)延长EA交CD的延长线于H.设∠ECO=∠ECH=x,∠EAB=∠EAP=y,设AB交x轴于F.∵AB∥CH,∴∠EAB=∠H=y,∠HCO+∠AFC=180°,∵∠PAB=90°+∠ABC,∴2y=90°+(180°﹣2x),∴x+y=135°,在△EHC中,∠E=180°﹣x﹣y=45°.(3)∵A(0,7),B(2,﹣1),∴直线AB的解析式为y=﹣4x+7,设平移后的解析式为y=﹣4x+b,把(0,﹣5)代入得到b=﹣5,∴平移后的直线为y=﹣4x﹣5,该直线交x轴于(﹣,0),∵F(,0),∴t=+=3.。