海量数据笔试问题
数据分析笔试题目及答案解析
数据分析笔试题目及答案解析数据分析笔试题目及答案解析——第1题——1. 从含有N个元素的总体中抽取n个元素作为样本,使得总体中的每一个元素都有相同的机会(概率)被抽中,这样的抽样方式称为?A. 简单随机抽样B. 分层抽样C. 系统抽样D. 整群抽样答案:A——第2题——2. 一组数据,均值中位数众数,则这组数据A. 左偏B. 右偏C. 钟形D. 对称答案:B「题目解析」分布形状由众数决定,均值大于众数的化,说明峰值在左边,尾巴在右边,所以右偏。
偏态是看尾巴在哪边。
——第3题——3. 对一个特定情形的估计来说,置信水平越低,所对应的置信区间?A. 越小B. 越大C. 不变D. 无法判断答案:A「题目解析」根据公式,Z减小,置信区间减小。
——第4题——4.关于logistic回归算法,以下说法不正确的是?A. logistic回归是当前业界比较常用的算法,用于估计某种事物的可能性B. logistic回归的目标变量可以是离散变量也可以是连续变量C. logistic回归的结果并非数学定义中的概率值D. logistic回归的自变量可以是离散变量也可以是连续变量答案:B「题目解析」逻辑回归是二分类的分类模型,故目标变量是离散变量,B错;logisitc回归的结果为“可能性”,并非数学定义中的概率值,不可以直接当做概率值来用,C对。
——第5题——5.下列关于正态分布,不正确的是?A. 正态分布具有集中性和对称性B. 期望是正态分布的位置参数,描述正态分布的集中趋势位置C. 正态分布是期望为0,标准差为1的分布D. 正态分布的期望、中位数、众数相同答案:C「题目解析」N(0,1)是标准正态分布。
——第6题——6. 以下关于关系的叙述中,正确的是?A. 表中某一列的数据类型可以同时是字符串,也可以是数字B. 关系是一个由行与列组成的、能够表达数据及数据之间联系的二维表C. 表中某一列的值可以取空值null,所谓空值是指安全可靠或零D. 表中必须有一列作为主关键字,用来惟一标识一行E. 以上答案都不对答案:B「题目解析」B. 关系是一张二维表,表的每一行对应一个元组,每一列对应一个域,由于域可以相同,所以必须对每列起一个名字,来加以区分,这个名字称为属性。
大数据笔试题及答案
大数据笔试题及答案大数据技术的兴起和发展已经成为当今世界的热点话题。
随着人们对数据的需求和对数据分析的重视,大数据相关岗位的需求也日益增加。
因此,在求职和升职过程中,大数据笔试已成为各大公司选拔人才的重要环节。
本文将介绍几道常见的大数据笔试题目,并提供答案供参考。
题目一:请解释什么是大数据?并列举大数据的特点。
答案:大数据是指庞大且复杂的数据集合,无法使用传统的数据管理和分析方法进行处理。
大数据的特点包括以下几点:1. 大量性:大数据通常以TB、PB甚至EB为单位衡量,数据量巨大。
2. 高速性:大数据的产生速度非常快,需要实时或近实时地对数据进行处理和分析。
3. 多样性:大数据来源多样,可以包括结构化数据、半结构化数据和非结构化数据等多种形式。
4. 核心价值:大数据蕴含着重要的商业价值和创新机会,可以为企业决策和业务发展提供有力支持。
题目二:请简述Hadoop的原理和应用场景。
答案:Hadoop是一种分布式计算框架,基于Google的MapReduce和Google文件系统的研究成果。
其核心是Hadoop分布式文件系统(HDFS)和分布式计算框架(MapReduce)。
Hadoop的原理是将一个大任务划分为多个小任务,分布式地在多台计算机上进行计算。
MapReduce将计算任务分为Map阶段和Reduce阶段,通过将数据分片并在多个节点上并行计算,提高了计算效率。
Hadoop的应用场景包括大数据分析、数据挖掘、机器学习等领域。
它可以处理海量的数据,并通过分布式处理提高了数据的处理速度和计算效率。
题目三:请简述Spark的特点和优势。
答案:Spark是一种快速、通用、可扩展的大数据处理引擎。
其特点和优势如下:1. 快速:Spark使用内存计算,相比传统的基于磁盘的计算框架,速度更快。
同时,Spark还支持迭代计算和交互式查询,适用于需要实时计算的场景。
2. 通用:Spark提供了丰富的API,支持多种编程语言(如Java、Scala、Python等),可以处理大部分数据处理和分析需求。
亚马逊面试笔试题
亚马逊面试笔试题在互联网行业中,亚马逊被誉为一家全球领先的电子商务公司,其严谨的招聘流程备受瞩目。
在亚马逊的面试过程中,笔试环节往往是非常重要的一环,考察着应聘者的综合素质和能力。
本文将针对亚马逊面试的笔试题进行分析和解答,以帮助应聘者更好地应对亚马逊面试。
一、数学与逻辑能力亚马逊作为一家科技公司,对数学和逻辑能力的要求较高。
在亚马逊的笔试中,常见的数学与逻辑能力题目包括概率统计、排列组合、数列等等。
在解答这类问题时,应聘者需要清晰地理解题意,运用有效的方法和逻辑进行推理和计算。
为了更好地备战亚马逊的笔试,应聘者可以通过解答大量的数学与逻辑题目进行练习,提升自己的思维能力和解题速度。
二、算法与数据结构作为一家科技公司,亚马逊对应聘者的算法与数据结构能力也非常重视。
在亚马逊的笔试中,常见的算法与数据结构题目包括数组、链表、树、图等等。
应聘者需要灵活应用各类数据结构,并能够设计高效的算法来解决具体问题。
为此,应聘者可以通过刷题来提高自己的算法与数据结构能力,充分掌握基本的算法思想和常见的数据结构实现。
三、系统设计与编程能力作为一家快速发展的电子商务巨头,亚马逊对应聘者的系统设计与编程能力有着严格要求。
在亚马逊的面试笔试中,应聘者通常需要通过编程来解决具体的问题,同时需要考虑系统的设计和效率。
因此,应聘者需要具备扎实的编程基础和熟练的编程能力,熟悉常见的编程语言和开发工具。
为了更好地应对亚马逊的笔试,应聘者可以通过多写代码、多进行项目实践来提高自己的编程能力和系统设计能力。
四、产品与运营能力除了技术能力,亚马逊在面试中也重视应聘者的产品与运营能力。
在亚马逊的笔试中,应聘者可能会遇到与产品策划、市场推广、数据分析相关的题目。
为了应对这类题目,应聘者需要具备一定的商业敏感度和行业洞察力,能够结合实际情况进行问题分析和解决方案制定。
此外,对于数据分析能力的要求也较高,应聘者需要熟练掌握数据处理工具和方法,能够准确地从海量数据中提取有用的信息。
大数据常考的笔试面试题
大数据常考的笔试面试题(一):一:位图处理海量数据【题目1】(腾讯公司)给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?方案一:40 000 000 00 * 4 = 16 000 000 000 = 16G,把这么多数全部加载到内存中是不可能,我们可以考虑用bitmap,每一位表示相对应的数字,1表示存在,0表示不存在,只要512MB内存,从文件中读取40亿数字,设置相对应的比特位,判断要查询的那个数相对应的比特位是否为1,若为1表示存在否则表示不存在。
方案二:这里我们把40亿个数中的每一个数用32位的二进制来表示。
假设这40亿个数开始放在一个文件中,然后将这40亿个数分成两类:1.最高位为02.最高位为1并将这两类分别写入到两个文件中,其中一个文件中数的个数<=20亿,而另一个>=20亿(这相当于折半了);与要查找的数的最高位比较并接着进入相应的文件再查找。
再然后把这个文件为又分成两类:1.次最高位为02.次最高位为1并将这两类分别写入到两个文件中,其中一个文件中数的个数<=10亿,而另一个>=10亿(相当于折半);与要查找的数的次最高位比较并接着进入相应的文件再查找。
......以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完成。
【题目2】(July整理) 在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。
方案一:我们同样可以用bitmap来解决这个问题,但是现在每个数可能有三种状态,不存在,只有一个,重复存在,所以我们想到用2个比特位来表示,00表示这个数不存在,01表示这个数存在一次,10表示这个数存在多次,需要内存:250 000 000 * 4 = 1000 000 000 = 10G/16 < 1G 从文件中读取这2.5亿个整数,如果是第一次存在则从00变成01,如果是多次存在,依旧是10,不变,最终扫描位图,输出比特位为01的整数就行。
面试题目-大数据量海量数据处理
发信人: phylips (星星||一年磨十剑), 信区: Algorithm标题: 面试题目-大数据量专题发信站: 兵马俑BBS (Thu Nov 26 16:30:44 2009), 本站()1. 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。
2. 有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。
要你按照query的频度排序3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。
返回频数最高的100个词4.海量日志数据,提取出某日访问百度次数最多的那个IP。
5.2.5亿个整数中找出不重复的整数,内存空间不足以容纳这2.5亿个整数。
6.海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
7.怎么在海量数据中找出重复次数最多的一个8.上千万or亿数据(有重复),统计其中出现次数最多的前N个数据。
统计可以用hash,二叉数,trie树。
对统计结果用堆求出现的前n大数据。
增加点限制可以提高效率,比如出现次数>数据总数/N的一定是在前N个之内9.1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。
请问怎么设计和实现?10.一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前十个词。
请给出思想,给时间复杂度分析。
11.一个文本文件,也是找出前十个最经常出现的词,但这次文件比较长,说是上亿行或者十亿行,总之无法一次读入内存,问最优解。
12.有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复要按照query的频度排序13.100w个数中找最大的前100个数14.寻找热门查询:搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
数据分析师常见的道笔试题目及答案
数据分析师常见的道笔试题目及答案LELE was finally revised on the morning of December 16, 2020数据分析师常见的7道笔试题目及答案导读:探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
以下是由小编为您整理推荐的实用的应聘笔试题目和经验,欢迎参考阅读。
1、海量日志数据,提取出某日访问百度次数最多的那个IP。
首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。
注意到IP是32位的,最多有个2^32个IP。
同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。
然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。
或者如下阐述:算法思想:分而治之+Hash地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。
这样,每个小文件最多包含4MB个IP地址;3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。
一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。
),请你统计最热门的10个查询串,要求使用的内存不能超过1G。
典型的Top K算法,还是在这篇文章里头有所阐述,文中,给出的最终算法是:第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。
大数据分析师招聘笔试题及解答(某大型央企)2025年
2025年招聘大数据分析师笔试题及解答(某大型央企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、大数据分析的核心技术不包括以下哪项?A、数据挖掘B、机器学习C、自然语言处理D、数据可视化2、在数据仓库中,以下哪个组件用于存储和管理大量的数据?A、数据立方体B、元数据仓库C、数据湖D、事实表3、在数据预处理阶段,为了处理缺失值,下列哪种方法不是通常采用的方法?A. 删除含有缺失值的记录B. 用特定值填充(如均值、中位数)C. 使用预测模型来估算缺失值D. 将缺失值标记为一个独立的类别4、假设你正在分析一个关于客户购买行为的数据集,该数据集包含了客户的年龄信息。
如果要将连续的年龄变量转换为分类变量,下面哪个区间划分方式可能是最合理的?A. 0-18, 19-30, 31-50, 51-70, 70+B. 0-20, 21-40, 41-60, 61-80, 81+C. 0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 81-90, 91-100, 100+D. 0-15, 16-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-85, 86-95, 96-105, 105+5、某大型央企的数据仓库中存储了员工的基本信息、工作表现和绩效考核数据。
以下关于数据仓库的数据模型,哪一项描述是正确的?A、数据仓库是实时数据库,用于处理在线事务处理(OLTP)操作B、数据仓库是一个关系型数据库,用于存储历史数据,支持在线分析处理(OLAP)C、数据仓库是一个面向对象的数据库,主要用于存储复杂的数据结构D、数据仓库是一个文件系统,主要用于存储非结构化数据6、在数据分析中,以下哪种统计方法通常用于描述数据集中各个变量之间的线性关系强度?A、卡方检验B、方差分析(ANOVA)C、相关系数D、主成分分析(PCA)7、在数据仓库中,以下哪个阶段主要负责数据的集成和合并?A. 数据抽取阶段B. 数据清洗阶段C. 数据转换阶段D. 数据加载阶段8、在数据分析过程中,以下哪个指标通常用来评估数据集的完整性和一致性?A. 数据准确性B. 数据一致性C. 数据有效性D. 数据唯一性9、大数据分析师在处理数据时,以下哪种数据清洗方法适用于去除重复记录?A. 数据去重B. 数据排序C. 数据转换D. 数据采样 10、在数据可视化中,以下哪种图表最适合展示不同类别数据之间的比较?A. 雷达图B. 柱状图C. 折线图D. 散点图二、多项选择题(本大题有10小题,每小题4分,共40分)1、题号:1、题目:以下哪些工具或技术是大数据分析师在数据分析过程中常用的?()A、HadoopB、PythonC、R语言D、SQLE、Excel2、题号:2、题目:大数据分析过程中,以下哪些步骤是数据清洗的常见内容?()A、去除重复数据B、处理缺失值C、数据类型转换D、异常值处理E、数据标准化3、以下哪些工具和技术常用于大数据分析?()A、HadoopB、SparkC、MySQLD、PythonE、R语言4、在大数据分析中,以下哪些概念是数据挖掘过程中常见的?()A、关联规则挖掘B、聚类分析C、分类D、预测分析E、数据可视化5、以下哪些是大数据分析中的常见数据处理步骤?()A、数据清洗B、数据集成C、数据探索D、数据可视化6、以下哪些是大数据分析中常用的数据挖掘技术?()A、聚类分析B、关联规则挖掘C、分类算法D、预测模型7、以下哪些是大数据分析中常用的数据挖掘技术?()A. 关联规则挖掘B. 分类与预测C. 聚类分析D. 数据可视化E. 时间序列分析8、以下哪些是大数据分析中常用的数据处理技术?()A. 数据清洗B. 数据集成C. 数据存储D. 数据归一化E. 数据挖掘9、大数据分析师在进行数据挖掘时,以下哪些是常用的数据挖掘技术?()A. 关联规则挖掘B. 聚类分析C. 分类算法D. 时序分析E. 机器学习 10、以下关于大数据平台架构的描述中,正确的是哪些?()A. 大数据平台通常采用分布式架构B. 分布式文件系统如Hadoop的HDFS是大数据平台的核心组成部分C. 大数据平台中的数据处理引擎如Spark和Flink可以实现流处理和批处理D. 大数据平台通常包括数据存储、数据采集、数据处理、数据分析和数据可视化等模块E. 大数据平台中的数据采集模块负责从各种数据源收集数据三、判断题(本大题有10小题,每小题2分,共20分)1、大数据分析的核心任务是通过对海量数据的挖掘,提取有价值的信息和知识,进而支持企业的决策过程。
海量数据 面试题
海量数据面试题随着互联网的快速发展,数据量也在不断增加,我们正面临处理海量数据的挑战。
而在面试中,针对海量数据的问题经常会被提及。
本文将针对海量数据面试题展开讨论,探究如何高效处理海量数据。
一、海量数据的定义及挑战海量数据,顾名思义就是数据量非常大的数据集合。
在面试中,常常被用来考察面试者对于大数据处理的能力以及相关算法的理解。
处理海量数据的挑战主要体现在以下几个方面:1. 存储空间的限制:海量数据需要巨大的存储空间,如何高效地存储这些数据是一个难题。
2. 计算效率的要求:海量数据的计算速度通常要求非常高,需要使用高效的算法和计算模型。
3. 数据的处理:如何对海量数据进行有效的处理,从中提取出有用的信息,是一个关键问题。
二、常见的海量数据面试题及解决方案1. 确定一个文件中出现次数最多的单词。
在解决这个问题时,我们可以采用“分而治之”的思想,将大文件划分为多个小文件,然后分别统计每个小文件中出现次数最多的单词,最后再比较得出结果。
2. 求海量数据中的中位数。
对于海量数据,直接将其全部加载到内存中是不现实的。
解决这个问题可以采用“分治算法”。
具体操作步骤如下:a. 将海量数据分成多个小的数据块,每个数据块的大小可以装在内存中;b. 对每个数据块进行排序;c. 取出每个数据块的中位数,并找出这些中位数的中位数,即为所求中位数。
3. 找出海量数据中出现次数最多的前K个元素。
解决这个问题可以采用“堆”的数据结构。
具体操作步骤如下:a. 遍历整个海量数据集,将前K个元素放入到一个小根堆中;b. 对于剩余的元素,如果其出现次数大于堆顶元素的出现次数,则将堆顶元素弹出,再将该元素加入堆中;c. 最后堆中剩余的就是出现次数最多的前K个元素。
4. 判断一个数是否在海量数据中存在。
对于单个数字的查找,可以使用布隆过滤器(Bloom Filter)进行快速检索。
布隆过滤器是一种数据结构,用于判断一个元素是否存在于一个集合中。
海量数据的处理
1.Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对 于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这 个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
实 际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几 大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。
问题实例:
1).海量日志数据,提取出某日访问次数最多的那个IP。 IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。
3.bit-map
适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
"it": {0, 1, 2}
"what": {0, 1}
检索的条件"what", "is" 和 "it" 将对应集合的交集。
正 向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引 中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很 容易看到这个反向的关系。
数据岗位招聘笔试题及解答2024年
2024年招聘数据岗位笔试题及解答(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、以下哪个指标不属于数据分析师常用的数据分析指标?A、用户留存率B、平均订单金额C、页面浏览量D、员工满意度2、在数据分析中,以下哪种数据类型最适合用于进行时间序列分析?A、分类数据B、数值型数据C、文本数据D、时间戳数据3、以下哪项不是数据分析的步骤?A、数据清洗B、数据探索C、数据分析D、数据可视化4、在进行数据清洗时,以下哪种情况不需要处理?A、数据缺失B、数据重复C、异常值D、格式错误5、题干:在数据挖掘过程中,以下哪一项不是常用的数据预处理技术?A、数据清洗B、数据集成C、数据规约D、数据扩充6、题干:在处理缺失值问题时,以下哪种方法不适合用于高维数据集?A、均值填充B、众数填充C、K最近邻(KNN)插补D、决策树模型7、在数据分析中,以下哪个指标通常用于衡量数据质量?A、准确率B、召回率C、F1分数D、AUC8、以下哪种数据类型通常用于表示时间序列数据?A、分类数据B、数值数据C、字符串数据D、时间戳数据9、关于数据清洗,以下哪种说法是正确的?A. 数据清洗是指对数据进行简单的复制粘贴B. 数据清洗是指将所有错误的数据全部删除C. 数据清洗是指去除数据中的噪声、异常值和重复数据D. 数据清洗是指对数据进行排序和筛选 10、以下哪个不是数据挖掘的步骤?A. 数据预处理B. 特征选择C. 模型训练D. 模型评估二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些工具或技术通常用于数据分析和处理?()A、SQLB、PythonC、R语言D、HadoopE、Tableau2、以下哪些统计方法适用于时间序列数据的分析?()A、移动平均B、自回归模型C、指数平滑D、线性回归E、聚类分析3、以下哪些是数据分析师常用的数据分析工具?()A. ExcelB. PythonC. R语言D. TableauE. SQL4、在数据分析过程中,以下哪些是数据清洗的常见步骤?()A. 去除重复数据B. 填充缺失值C. 数据类型转换D. 异常值处理E. 数据标准化5、以下哪些指标可以用于评估数据分析师的工作效率?()A、数据处理速度B、数据可视化效率C、问题解决能力D、报告生成速度6、在数据清洗过程中,以下哪些步骤是常见的?()A、缺失值处理B、异常值检测C、数据类型转换7、以下哪些数据清洗方法是数据分析师在处理数据时常用的?A. 填空处理B. 异常值检测C. 数据归一化D. 文本数据分词8、以下哪些指标是衡量数据仓库性能的重要指标?A. 响应时间B. 数据加载速度C. 数据一致性D. 数据更新频率9、以下哪些指标通常用于衡量数据分析师的工作效率?()A、数据处理速度B、模型准确率C、报告产出速度D、数据清洗效率E、模型迭代次数 10、在数据分析过程中,以下哪些是常见的数据清洗步骤?()A、处理缺失值B、数据标准化C、异常值检测D、重复数据识别三、判断题(本大题有10小题,每小题2分,共20分)1、数据岗位的笔试题中,对于数据清洗环节,使用Python的Pandas库进行数据缺失值的处理时,fillna()方法可以用于填充整个Series中的缺失值。
数据岗位招聘笔试题及解答
招聘数据岗位笔试题及解答(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、以下哪个指标通常用于衡量数据质量的好坏?A、数据量B、数据准确性C、数据完整性D、数据多样性2、在数据分析中,以下哪种图表最适合展示时间序列数据的变化趋势?A、柱状图B、饼图C、折线图D、散点图3、题干:以下哪项不属于数据分析的基本步骤?A、数据清洗B、数据探索C、数据可视化D、数据预测4、题干:在统计分析中,描述一组数据集中趋势的指标通常称为:A、离散程度B、集中趋势C、分布形态D、相关系数5、在数据分析中,以下哪个指标通常用于衡量数据的准确度?A、标准差B、相关系数C、KPI(关键绩效指标)D、准确率6、在处理缺失值时,以下哪种方法最适用于数据集中某个字段大部分数据缺失的情况?A、删除含有缺失值的记录B、使用均值/中位数/众数填充C、使用模型预测缺失值D、不做任何处理,直接分析7、在统计学中,用来描述数据离散程度的指标是:A. 均值B. 中位数C. 方差D. 众数8、假设有一个数据集,其中包含顾客的年龄信息。
如果我们想要根据顾客年龄的分布来决定营销策略,并且已知该数据集中的年龄信息符合正态分布,则下列哪种图形最有助于我们直观地了解年龄分布?A. 条形图B. 直方图C. 散点图D. 饼图9、以下哪个统计指标最适合描述一组数据的集中趋势?A. 标准差B. 离散系数C. 中位数D. 极差二、多项选择题(本大题有10小题,每小题4分,共40分)1、在数据预处理阶段,对于缺失值的处理方法有哪些?A. 删除含有缺失值的记录B. 使用全局常量填充缺失值C. 使用统计量(如平均数、中位数)填充缺失值D. 使用预测模型估计缺失值E. 不做任何处理2、在数据分析过程中,下列哪些方法可以用来检测异常值?A. 箱线图(Boxplot)分析B. Z-Score方法C. DBSCAN聚类算法D. 基于IQR(四分位距)的规则E. 直方图(Histogram)观察3、以下哪些指标可以用来评估数据分析师的数据分析能力?()A. 数据清洗技巧B. 统计学知识C. 编程能力D. 数据可视化技巧E. 业务理解能力4、以下哪些是大数据技术中的存储技术?()A. 分布式文件系统(HDFS)B. 关系型数据库C. NoSQL数据库D. 云存储服务E. 数据库管理系统5、假设一个数据集包含了用户ID、购买日期、购买产品类别等信息。
大数据开发岗笔试题
大数据开发岗笔试题
大数据开发岗是一个需要掌握多种技能的岗位,涉及到数据处理、数据分析、编程等多个方面。
在笔试题中可能涉及到以下内容:
1. 数据处理,可能会涉及到对大规模数据的处理能力,包括数
据清洗、数据转换、数据抽取等方面的题目。
这些题目可能会要求
应聘者熟练掌握Hadoop、Spark等大数据处理框架。
2. 编程能力,大数据开发岗位通常需要应聘者具备一定的编程
能力,可能会涉及到Java、Python等编程语言的相关题目,包括编
程逻辑、算法等方面的考察。
3. 数据库知识,大数据开发岗位可能会要求应聘者掌握数据库
相关知识,包括SQL语言的应用、数据库设计等方面的题目。
4. 大数据技术栈,可能会涉及到对大数据生态系统的了解,包
括Hadoop、Spark、Hive、Hbase等相关技术的应用和原理。
5. 数据分析能力,可能会要求应聘者具备一定的数据分析能力,包括数据挖掘、数据建模等方面的题目。
总的来说,大数据开发岗位的笔试题目会涵盖数据处理、编程能力、数据库知识、大数据技术栈和数据分析能力等多个方面,考察应聘者的综合能力和技术水平。
希望我的回答能够帮助到你。
百度笔试题及答案解析-百度笔试题及答案解析
百度笔试题及答案-百度笔试题及答案百度java笔试题(含答案)更多面试题,百度面试笔试题解答答案专家回答:第一题简评百度的主要业务是搜索,搜索的基本原理如下1.编写爬虫程序到互联网上抓取网页海量的网页。
2.将抓取来的网页通过抽取,以一定的格式保存在能快速检索的文件系统中。
3.把用户输入的字符串进行拆分成关键字去文件系统中查询并返回结果。
由以上3点可见,字符串的分析,抽取在搜索引擎中的地位是何等重要。
因此,百度的笔试面试题中,出现这样的题就变得理所当然了。
以下是该题的java实现,代码如下:程序代码程序代码import *;import *;import *;/** * @author tzy * 在下测试通过*/public class FileNameStat{private String srcPath;//要统计的文件路径private Map statMap;//用于统计的mappublic FileNameStat(String srcPath){=srcPath; 软件开发网statMap=new TreeMap();}/*获得要统计的URL的文件名*/public String getFileName(String urlString){URL url=null;String filePath=null;String fileName=null;try{url=new URL(urlString);filePath=();int index=0;if ((index=(“/”))!=-1){fileName=(index+1);else{fileName=““;}}catch(MalformedURLException e){}return fileName;}/*统计指定文件名的个数*/public void stat(String filename){Integer count=null;if((filename)!=null){count=(Integer)(filename); count=new Integer(()+1); }else{count=new Integer(1);}(filename,count);}/*统计的主方法*/public void start() throws FileNotFoundException,IOException {BufferedReader bfin=new BufferedReader(new FileReader());String temp=null;while((temp=())!=null){stat(getFileName(temp));}}/*输出统计结果*/public void result(){Iterator it=().iterator();while(()){entry=()(());((().equals(““)?”空文件名”:()) + “的个数是”+ ()); }}public static void main(String args) throws Exception{FileNameStat fns=new FileNameStat(““);//指定成待统计文件();();}}第二题简评:这道题也与百度的业务有关,百度现在除了搜索外,还有贴吧,知道,博客等重要产品。
海量数据笔试问题
1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?方案1:可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。
所以不可能将其完全加载到内存中处理。
考虑采取分而治之的方法。
s 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为)中。
这样每个小文件的大约为300M。
s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为)。
这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。
然后我们只要求出1000对小文件中相同的url即可。
s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。
然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。
方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。
将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。
2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query 都可能重复。
要求你按照query的频度排序。
方案1:s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。
这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
s 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query 出现的次数。
利用快速/堆/归并排序按照出现次数进行排序。
海量数据面试题总结,这下面试不慌了!
海量数据面试题总结,这下面试不慌了!•文章目录•海量日志数据,提取出某日访问百度次数最多的那个IP•寻找热门查询,300万个查询字符串中统计最热门的10个查询•有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。
返回频数最高的100个词。
•有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。
要求你按照query的频度排序。
•给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?•2.5亿个整数中找出不重复的整数,内存空间不足以容纳这2.5亿个整数。
•给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?•已知某个文件内包含一些电话号码,每个号码为 8 位数字,统计不同号码的个数。
•5亿个int找它们的中位数海量数据相关的面试题主要是考察数据量比较大,内存不足时数据的处理方式,规律性还是很强的,其实简单来说就是分治,将大的数据分成多个小的数据,分别进行处理。
需要先掌握的一些基本概念<><>ction>常用的排序算法(堆排序)< font=""><>i><>参考:https:///v_JULY_v/article/details/7382693 还是使用这个方法根据次高位进行分流,并一直关注位数的位置,直到中位数所在的那部分数据大小可以直接放到内存中,然后对这部分排序,计算出中位数的值那3亿个数还是不能一次读取进内存要怎么办?一般不会这么恰好,假设文件1中的数为2亿个,文件2中的数为3亿个,那么中位数是文件中的第五千万个数及下一个数的平均值。
如果恰好文件1和文件2中的数都是2.5亿个,那么中位数则是文件1中的最小值和文件2中的最大值的平均值。
大数据开发工程师招聘笔试题与参考答案2025年
2025年招聘大数据开发工程师笔试题与参考答案(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、在大数据处理中,以下哪个技术或框架主要用于实时数据流处理?A. HadoopB. SparkC. KafkaD. Flink2、在大数据存储中,HDFS(Hadoop Distributed File System)的设计目标是?A. 提供低延迟的数据访问B. 支持随机读写操作C. 提供高吞吐量的数据访问D. 适用于小型数据集3、题干:以下哪种数据结构最适合存储大规模数据集,并支持快速的数据检索?A. 数组B. 链表C. 树D. 哈希表4、题干:在分布式系统中,以下哪个组件负责处理数据分片和分布式事务?A. 数据库B. 应用服务器C. 分布式文件系统D. 分布式数据库中间件5、大数据开发工程师在处理大规模数据集时,通常使用的分布式文件系统是:A. HDFS(Hadoop Distributed File System)B. NFS(Network File System)C. SMB(Server Message Block)D. APFS(Apple File System)6、在数据仓库中,用于存储元数据的表通常被称为:A. fact table(事实表)B. dimension table(维度表)C. lookup table(查找表)D. metadata table(元数据表)7、大数据开发工程师在处理海量数据时,以下哪种技术通常用于数据存储和管理?A. 关系型数据库B. NoSQL数据库C. 文件系统D. 数据库管理系统8、在大数据技术中,以下哪个组件通常用于实现数据流处理?A. Hadoop MapReduceB. Apache KafkaC. Apache SparkD. Apache HBase9、在Hadoop生态系统中,用于进行分布式存储的是哪一个组件?A. HDFSB. YARNC. MapReduceD. Hive 10、以下哪个算法不是机器学习中的监督学习算法?A. 支持向量机(SVM)B. 决策树C. 深度学习D. K-均值聚类二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些技术或工具通常用于大数据开发?()A、Hadoop HDFSB、Spark SQLC、MongoDBD、ElasticsearchE、MySQL2、以下哪些算法或模型在机器学习的大数据处理中应用广泛?()A、K-Means聚类B、决策树C、神经网络D、朴素贝叶斯E、线性回归3、关于大数据开发工程师所需掌握的技术栈,以下哪些技术是必要的?()A. Hadoop生态系统(包括HDFS、MapReduce、Hive等)B. Spark大数据处理框架C. NoSQL数据库(如MongoDB、Cassandra)D. 关系型数据库(如MySQL、Oracle)E. 容器技术(如Docker)4、以下关于大数据处理流程的描述,哪些是正确的?()A. 数据采集是大数据处理的第一步,需要从各种数据源获取原始数据。
大数据开发工程师招聘笔试题与参考答案(某大型央企)2025年
2025年招聘大数据开发工程师笔试题与参考答案(某大型央企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、大数据开发工程师在处理海量数据时,以下哪种技术通常用于提高数据处理速度和效率?()A、关系型数据库管理系统B、分布式文件系统C、数据仓库技术D、内存数据库2、在Hadoop生态系统中,用于实现分布式计算和存储的框架是?()A、HiveB、MapReduceC、ZookeeperD、HBase3、题干:大数据开发工程师在数据仓库设计中,以下哪种数据模型最适合于支持复杂查询和快速数据访问?A、星型模型B、雪花模型C、星座模型D、星云模型4、题干:在处理大数据时,以下哪种技术可以有效地提高数据处理速度和效率?A、分布式文件系统B、关系型数据库C、NoSQL数据库D、内存数据库5、以下哪项不是大数据开发工程师常用的编程语言?A. PythonB. JavaC. C++D. SQL6、在Hadoop生态系统中,以下哪个组件用于实现分布式文件存储?A. HBaseB. HiveC. YARND. HDFS7、在Hadoop生态系统中,以下哪个组件主要用于处理大规模数据的分布式存储?A. HDFSB. YARNC. HiveD. HBase8、在数据分析中,以下哪个算法通常用于分类问题?A. K-MeansB. Decision TreeC. KNN(K-Nearest Neighbors)D. SVM(Support Vector Machine)9、大数据开发工程师在处理海量数据时,以下哪种技术通常用于提高数据处理的效率?A. 关系型数据库B. NoSQL数据库C. MapReduceD. 关系型数据库与NoSQL数据库结合 10、以下哪个不是Hadoop生态系统中用于处理大数据分析的技术?A. HiveB. HBaseC. PigD. Spark二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些技术是大数据开发工程师在处理海量数据时通常会使用的?()A、Hadoop生态系统中的HDFS、MapReduce、HiveB、Spark生态系统中的Spark Core、Spark SQL、Spark StreamingC、NoSQL数据库,如MongoDB、Cassandra、RedisD、关系型数据库,如MySQL、Oracle、SQL Server2、大数据开发工程师在数据预处理阶段通常会进行哪些操作?()A、数据清洗,包括去除重复数据、处理缺失值B、数据集成,将来自不同数据源的数据合并C、数据转换,将数据格式转换为适合分析的形式D、数据归一化,确保不同数据集之间的一致性E、数据脱敏,对敏感数据进行加密或屏蔽3、以下哪些技术栈是大数据开发工程师通常需要掌握的?()A、Hadoop生态系统(包括HDFS、MapReduce、Hive、HBase等)B、Spark生态圈(包括Spark Core、Spark SQL、Spark Streaming等)C、NoSQL数据库(如MongoDB、Cassandra、Redis等)D、关系型数据库(如MySQL、Oracle等)E、机器学习框架(如TensorFlow、PyTorch等)4、以下关于大数据处理流程的描述,正确的是()A、数据采集是大数据处理的第一步,包括从各种数据源获取数据B、数据预处理包括数据清洗、数据转换和数据去重等C、数据存储是将处理后的数据存储到分布式文件系统或数据库中D、数据分析是通过统计、机器学习等方法对数据进行挖掘和解释E、数据可视化是将数据分析的结果以图形、图表等形式展示出来5、以下哪些技术是大数据开发工程师在处理大数据时可能会使用到的?()A、Hadoop生态圈中的HDFS、MapReduceB、Spark和Spark StreamingC、Flink和StormD、MySQL和OracleE、Elasticsearch和Kibana6、以下哪些工具或平台是用于大数据开发工程师进行数据可视化和分析的?()A、TableauB、Power BIC、DatawrapperD、D3.jsE、Jupyter Notebook7、以下哪些技术栈是大数据开发工程师在项目中常用的?()A、Hadoop生态圈(HDFS、MapReduce、Hive、HBase等)B、Spark生态圈(Spark Core、Spark SQL、Spark Streaming等)C、FlinkD、KafkaE、Redis8、以下关于大数据处理流程的描述,正确的是?()A、数据采集是大数据处理的第一步,包括数据的收集和预处理B、数据存储是将采集到的数据存储到合适的存储系统中,如HDFSC、数据处理包括数据的清洗、转换和聚合等操作D、数据挖掘是从处理过的数据中提取有价值的信息或知识E、数据展示是将挖掘到的信息通过图表、报表等形式呈现给用户9、以下哪些技术栈是大数据开发工程师在项目开发中可能需要熟练掌握的?()A. Hadoop生态系统(包括HDFS、MapReduce、YARN等)B. Spark生态(包括Spark Core、Spark SQL、Spark Streaming等)C. Kafka消息队列D. Elasticsearch全文检索E. MySQL关系型数据库 10、以下哪些行为符合大数据开发工程师的职业规范?()A. 严格遵守公司代码审查和代码提交规范B. 在遇到技术难题时,首先尝试通过查阅资料和向同事求助解决C. 在团队协作中,积极分享自己的经验和知识D. 对于新技术的学习,只关注自己负责的模块,不关心其他模块E. 在项目中,遇到问题及时向上级汇报三、判断题(本大题有10小题,每小题2分,共20分)1、大数据开发工程师在工作中,Hadoop生态系统中的HDFS(Hadoop Distributed File System)主要用于存储非结构化和半结构化的大数据文件。
大数据开发工程师招聘笔试题及解答(某大型央企)2025年
2025年招聘大数据开发工程师笔试题及解答(某大型央企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、大数据开发工程师在数据处理中经常使用的一种模式是将大规模数据集分成较小的部分,然后并行处理这些数据。
这种处理模式被称为:A、顺序处理B、并行处理C、串行处理D、实时处理2、大数据开发工程师需要频繁处理的数据量巨大,因此常常需要使用一些能够高效管理庞大数据集的技术。
下列哪个技术不是专门用于大数据处理的开源技术?A、HadoopB、SparkC、RedisD、Hive3、关于大数据处理的分布式技术,以下哪个选项不是常见的技术?A. Hadoop HDFSB. SparkC. NoSQL数据库D. Kafka4、在数据处理中,以下哪个指标通常用于描述数据的分布情况?A. 常数B. 标准差C. 直方图D. 频率5、下列哪种编程模型最适合用于处理大规模数据流的实时分析?A. MapReduceB. Spark StreamingC. Hadoop Batch ProcessingD. HiveQL6、在Hadoop生态系统中,哪个组件主要用于存储大量小文件会更加高效?A. HDFSB. HBaseC. HiveD. Amazon S37、大数据开发工程师在处理海量数据时,以下哪种技术通常用于提高数据处理速度和效率?A. MapReduceB. Hadoop Distributed File System (HDFS)C. Apache SparkD. NoSQL数据库8、在大数据项目中,以下哪个组件通常负责数据的清洗和预处理?A. 数据仓库B. ETL工具C. 数据挖掘模型D. 数据可视化工具9、大数据开发工程师在处理海量数据时,以下哪个工具通常用于数据的实时处理和分析?A. HadoopB. SparkC. HiveD. Storm 10、在数据仓库设计中,以下哪个数据模型是用来支持在线事务处理(OLTP)的系统?A. 星型模型B. 雪花模型C. 事实表-维度表模型D. 星网型模型二、多项选择题(本大题有10小题,每小题4分,共40分)1、下列哪些是Hadoop生态系统中的组件?A. HDFSB. MapReduceC. SparkD. MySQLE. Hive2、在Apache Kafka中,下列关于Topic的说法正确的有哪些?A. Topic是由生产者创建的。
大数据项目经理招聘笔试题及解答(某大型集团公司)2024年
2024年招聘大数据项目经理笔试题及解答(某大型集团公司)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、在大数据项目中,以下哪个是常见的分布式文件系统,用于存储海量数据?A)MySQLB)Hadoop HDFSC)RedisD)MongoDB2、大数据处理过程中,MapReduce模型中的Map阶段主要负责什么?A)数据的排序和合并B)数据的过滤和清洗C)数据的分片和局部处理D)数据的全局汇总和结果输出3、以下哪项不是大数据项目经理必须具备的技能?A、项目管理经验B、编程能力C、数据分析能力D、团队沟通能力4、以下哪个工具通常用于大数据项目的需求分析和规划?B、SeleniumC、TableauD、Pentaho Data Integration5、在大数据处理流程中,哪一个步骤主要负责将数据转换成适合分析的形式?A. 数据收集B. 数据清洗C. 数据转换D. 数据存储6、以下哪种技术或工具主要用于大规模数据集上的高效查询和分析?A. HadoopB. SparkC. SQLD. NoSQL7、以下哪项是大数据处理中常用的分布式存储系统?A)SQL ServerB)OracleC)Hadoop HDFSD)MySQL8、在大数据项目中,使用MapReduce框架进行数据处理时,哪个阶段主要负责处理数据并生成最终结果?A)ShuffleB)MapD)Split9、在大数据项目中,以下哪一项不是数据预处理的常见步骤?A. 数据清洗B. 数据集成C. 数据变换D. 数据可视化 10、Hadoop生态系统中,哪一个组件主要用于支持实时查询能力?A. HDFSB. MapReduceC. YARND. HBase二、多项选择题(本大题有10小题,每小题4分,共40分)1、以下哪些是大数据项目经理需要具备的技能?()A. 项目管理知识B. 数据分析能力C. 代码编写能力D. 沟通协调能力E. 团队管理能力2、以下哪些是大数据项目实施过程中可能遇到的风险?()A. 技术风险B. 数据安全风险C. 项目进度延误D. 预算超支E. 团队协作问题3、在大数据项目的数据采集阶段,以下哪些技术或工具常被用于从多种数据源中提取数据?(多选)A. FlumeB. KafkaC. HadoopD. Spark4、在大数据项目中,对于数据仓库的设计,以下哪些因素是需要重点考虑的?(多选)A. 数据源的选择与整合B. 数据模型的设计C. 数据存储的扩展性D. 数据的实时性要求5、在大数据项目管理中,以下哪些是确保数据质量的关键措施?A. 数据清洗与验证B. 数据加密传输C. 定期的数据审计D. 数据存储优化E. 用户权限管理6、下列哪几项属于大数据处理框架Hadoop的核心组件?A. HDFSB. MapReduceC. YARND. SparkE. Kafka7、以下哪些是大数据项目经理在项目实施过程中应具备的关键能力?()A、项目管理知识B、数据分析能力C、技术架构设计能力D、团队领导能力E、客户沟通能力8、以下哪些技术或工具是大数据项目中常用的?()A、HadoopB、SparkC、MySQLD、PythonE、Tableau9、以下哪几项是Hadoop生态系统中的组件,并且主要用于处理大规模数据集?A. HDFS - 分布式文件系统B. MapReduce - 分布式计算模型C. MySQL - 关系型数据库管理系统D. HBase - 分布式列存储数据库E. Redis - 内存数据结构存储 10、在设计大数据平台时,以下哪些原则是重要的考虑因素?A. 安全性 - 数据访问控制与审计B. 可扩展性 - 能够处理不断增长的数据量C. 高可用性 - 确保系统即使在部分组件故障的情况下也能继续运行D. 易用性 - 用户界面友好,便于操作与维护E. 实时性 - 所有数据处理都必须实时完成三、判断题(本大题有10小题,每小题2分,共20分)1、在大数据项目中,数据质量控制是可选环节,只要保证数据量足够大即可满足分析需求。
海量数据处理笔试面试题4
海量数据处理专题(一)——开篇2010-10-08 13:03转载自08到北京最终编辑08到北京大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。
下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。
下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。
本贴从解决这类问题的方法入手,开辟一系列专题来解决海量数据问题。
拟包含以下几个方面。
1.Bloom Filter2.Hash3.Bit-Map4.堆(Heap)5.双层桶划分6.数据库索引7.倒排索引(Inverted Index)8.外排序9.Trie树10.MapReduce海量数据处理专题(二)——Bloom Filter2010-10-08 13:04转载自08到北京最终编辑08到北京【什么是Bloom Filter】Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。
Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。
因此,Bloom Filter不适合那些“零错误”的应用场合。
而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。
这里有一篇关于Bloom Filter的详细介绍,不太懂的博友可以看看。
【适用范围】可以用来实现数据字典,进行数据的判重,或者集合求交集【基本原理及要点】对于原理来说很简单,位数组+k个独立hash函数。
将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案2:也可采用上题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。
6. 海量数据分布在100台电脑中,想个办法高校统计出这批数据的TOP10。
方案1:
s 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。
17. 最大子序列与最大子矩阵问题
数组的最大子序列问题:给定一个数组,其中元素有正,也有负,找出其中一个连续子序列,使和最大。
方案1:这个问题可以动态规划的思想解决。设表示以第i个元素结尾的最大子序列,那么显然。基于这一点可以很快用代码实现。
最大子矩阵问题:给定一个矩阵(二维数组),其中数据有大有小,请找一个子矩阵,使得子矩阵的和最大,并输出这个和。
方案2:
一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。
方案3:
与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。
5. 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。
方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。
s 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。
7. 怎么在海量数据中找出重复次数最多的一个?
方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。
方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。
方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。
方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。
3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。
方案1:顺序读文件中,对于每个词x,取,然后按照该值存到5000个小文件(记为)中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,知道分解得到的小文件的大小都不超过1M。对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。
s 找到n个数据中最大和最小数据max和min。
s 用n-2个点等分区间[min, max],即将[min, max]等分为n-1个区间(前闭后开区间),将这些区间看作桶,编号为,且桶的上界和桶i+1的下届相同,即每个桶的大小相同。每个桶的大小为:。实际上,这些桶的边界构成了一个等差数列(首项为min,公差为),且认为将min放入第一个桶,将max放入第n-1个桶。
2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。
方案1:
s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
(1) 请描述你解决这个问题的思路;
(2) 请给出主要的处理流程,算法,以及算法的复杂度。
方案1:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。
14. 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到个数中的中数?
s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为)。这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。
s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。
方案2:先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第个便是所求。复杂度是的。
15. 最大间隙问题
给定n个实数,求着n个实数在实轴上向量2个数之间的最大差值,要求线性的时间算法。
方案1:最先想到的方法就是先对这n个数据进行排序,然后一遍扫描即可确定相邻的最大间隙。但该方法不能满足线性时间的要求。故采取如下方法:
方案1:这题用trie树比较合适,hash_map也应该能行。
10. 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。
方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。
16. 将多个集合合并成没有交集的集合:给定一个字符串的集合,格式如:。要求将其中交集不为空的集合合并,要求合并完成的集合之间无交集,例如上例应输出。
(1) 请描述你解决这个问题的思路;
(2) 给出主要的处理流程,算法,以及算法的复杂度;
(3) 请描述可能的改进。
方案1:采用并查集。首先所有的字符串都在单独的并查集中。然后依扫描每个集合,顺序合并将两个相邻元素合并。例如,对于,首先查看aaa和bbb是否在同一个并查集中,如果不在,那么把它们所在的并查集合并,然后再看bbb和ccc是否在同一个并查集中,如果不在,那么也把它们所在的并查集合并。接下来再扫描其他的集合,当所有的集合都扫描完了,并查集代表的集合便是所求。复杂度应该是O(NlgN)的。改进的话,首先可以记录每个节点的根结点,改进查询。合并的时候,可以把大的和小的进行合,这样也减少复杂度。
海量数据笔试问题.txt
1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
方案1:可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。
s 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为)中。这样每个小文件的大约为300M。
4. 海量日志数据,提取出某日访问次数最多的那个IP。 方案1:首件中。注意到IP是32位的,最多有个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。
13. 寻找热门查询:
搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。
s 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。
s 对这10个文件进行归并排序(内排序与外排序相结合)。
方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。
s 将n个数放入n-1个桶中:将每个元素分配到某个桶(编号为index),其中,并求出分到每个桶的最大最小数据。
s 最大间隙:除最大最小数据max和min以外的n-2个数据放入n-1个桶中,由抽屉原理可知至少有一个桶是空的,又因为每个桶的大小相同,所以最大间隙不会在同一桶中出现,一定是某个桶的上界和气候某个桶的下界之间隙,且该量筒之间的桶(即便好在该连个便好之间的桶)一定是空桶。也就是说,最大间隙在桶i的上界和桶j的下界之间产生。一遍扫描即可完成。