赛课简单随机抽样示范学案模版
简单随机抽样学案
【高一数学学案】2.1.1简单随机抽样主备人:秦玲玲审核人:赵德强时间:一、自主学习阅读教材P49-51,完成下列填空:1、总体、个体、样本:总体:把所考察对象的的构成的看做总体。
个体:构成总体的作为个体样本:从总体中抽出所组成的集合叫做样本。
2、随机抽样:抽样时要保证每一个个体都,每一个个体被抽到的机会是,满足这样的条件的抽样是。
即抽样时,抽样有性和性。
3、简单随机抽样:元素个数为N的中地抽取容量为n的,如果每一次抽取时,总体中的各个个体有的可能性被抽到,这种抽样方法叫简单随机抽样,这样抽取的样本叫。
4、简单随机抽样方法有,它们的共同点:都是可能抽样;适用范围:总体容量5、抽签法步骤1、2、3、随机数表法步骤1、2、3、二、典型例题例1:总体有80个个体组成,利用抽签法抽取10个样本,设计抽取方案例2:某种体彩有500个有机会中奖的号码(设号码为000~999)有关机构按照随机抽取的方式,利用随机数法确定最后面两位数为36的号码为中奖号码,试分别写出5个中奖号码。
三、小结:四、作业1、现从80件产品中随机抽出10件进行质量检验,下列说法正确的是()。
(A)80件产品是总体(B)10件产品是样本(C)样本容量是80 (D)样本容量是102、为了了解某地参加计算机水平测试的5000名学生的成绩,从中抽取了200名学生的成绩进行统计分析,在这个问题中,5000名学生成绩的全体是()。
(A)个体(B)从总体中抽取的一个样本(C)总体(D)样本容量3、某中学为了支援西部教育事业,现从报名的60名教师中选取6人组成志愿小组,请用抽签法设计抽样方案。
4、某居民有730户,居委会计划从中抽取25户调查其家庭收入状况,请帮助居委会抽出一个简单随机样本并写出步骤。
1.2.1 简单随机抽样导学案
1.2.1简单随机抽样导学案【学习目标】1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.【学习重点】.掌握简单随机抽样的两种方法。
【导学流程】一、数理统计中样本的抽取是否得当, 对于研究总体来说十分关键. 那么, 怎样从总体中抽取样本呢?怎样使抽取的样本能更充分地反应总体的情况呢?预习课本8—11页,回答下列思考题:思考1:常用的抽样方法有哪几种?思考2:什么是简单随机抽样?它的特点是么?思考3:实施简单随机抽样的方法有哪几种?它们的实施步骤分别是什么?三、例题自学例1.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.【解析】第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中不放回地抽出10个号签,则相应编号的艺人参加演出.(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人. 第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.例2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【解析】选D.由题意知选定的第一个数为65(第1行的第5列和第6列),按由左到右选取两位数(大于20的跳过、重复的不选取),前5个个体编号为08,02,14,07,01.故选出来的第5个个体的编号为01.例3 下列抽样实验中,用抽签法方便的是( )A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验【解析】选B.A选项中总体容量较大,样本容量也较大不适宜用抽签法;B选项总体容量较小,样本容量也较小可用抽签法;C选项中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D选项总体容量较大,不适宜用抽签法.四、:1、简单随机抽样,也叫纯随机抽样。
简单随机抽样 优秀教案
简单随机抽样优秀教案教学目标】1.理解简单随机抽样的概念,能够描述抽签法和随机数表法的步骤。
2.能够根据样本情况选择适当的抽样方法。
教学重点】理解简单随机抽样的概念,掌握抽签法和随机数表法的步骤,能够从总体中抽取样本。
教学难点】理解简单随机抽样的概念,掌握抽签法和随机数表法的步骤。
教学过程】一、情境导入:1.国务院在2000年11月1日进行了第五次全国人口普查的登记工作,结果显示我国人口总数为万。
这个例子用到了什么统计方法?它的优缺点是什么?你有其他的想法吗?答:这个例子用到了普查的统计方法。
优点是全面准确,缺点是工作量大,在大部分统计案例中无法实现(检查具有破坏性)。
还可以使用随机抽样的方法。
2.你认为在这个例子中预测结果出错的原因是什么?答:所选样本没有代表性。
3.假设你是一名食品卫生工作人员,需要对某食品店内的一批小包装饼干进行卫生达标检验,你会怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。
那么,应当怎样获取样本呢?二、新知探究:一)简单随机抽样的概念:一般地,从一个总体含有N个个体中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)二)抽签法和随机数表法:1.抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法的一般步骤:1)将总体的个体编号;2)连续抽签获取样本号码。
思考:抽签法有什么优点和缺点?当总体个体数较多时,使用抽签法方便吗?解析:操作简便易行,但当总体个数较多时工作量大,也很难做到“搅拌均匀”。
2.随机数表法利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法。
如何利用随机数表进行样本抽取?以检验某公司生产的500克袋装牛奶质量为例,从800袋牛奶中抽取60袋进行检验。
随机抽样教案范文
随机抽样教案范文讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性.接下来是小编为大家整理的随机抽样教案范文,希望大家喜欢!随机抽样教案范文一一、内容和内容解析1.内容本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题.2.内容解析本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法.在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的.统计有两种.一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查.但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常的大或者有的产品的质量检查是破坏性的.统计和概率的基础知识已经成为一个未来公民的必备常识.抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体.其中蕴涵了重要的统计思想样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.二、目标和目标解析1.目标(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;(3)以问题链的形式深刻理解样本的代表性.2.目标解析本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题.让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识.对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性.抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解.为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本.由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.三、教学问题诊断分析学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想样本估计总体以及统计结果的不确定性.学生已有知识经验与本节要达成的教学目标之间还有很大的差距.主要的困难有:对样本估计总体的思想、对统计结果的不确定性产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力.在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳.根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体.四、教学支持条件分析准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.五、教学过程设计(一)感悟数据、引入课题问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?普查:为了一定的目的而对考察对象进行的全面调查称为普查.总体:所要考察对象的全体称为总体(population)个体:组成总体的每一个考察对象称为个体(individual)普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等.设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的.(二)操作实践、展开课题问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(sampling investigation).样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.列举:一个著名的案例在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:候选人预测结果%选举结果%Roosevelt4362Landon5738随机抽样教案范文二一、教材背景与内容分析本节内容是新课标实验教材(人教版A版)必修③第二章统计的第一课时。
随机抽样讲课教案模板范文
课时:2课时年级:八年级学科:数学教学目标:1. 知识与技能:理解随机抽样的概念,掌握随机抽样的方法,能够运用随机抽样方法解决实际问题。
2. 过程与方法:通过小组合作、讨论、探究等活动,培养学生动手操作、合作交流的能力。
3. 情感态度与价值观:培养学生严谨的科学态度和良好的合作精神。
教学重点:1. 随机抽样的概念和方法。
2. 随机抽样的应用。
教学难点:1. 理解随机抽样的随机性。
2. 运用随机抽样方法解决实际问题。
教学准备:1. 教师准备:多媒体课件、实物教具(如骰子、扑克牌等)、练习题。
2. 学生准备:笔记本、笔。
教学过程:第一课时一、导入1. 通过提问:“同学们,你们在日常生活中有没有遇到需要随机选择的情况?”引导学生思考随机抽样的概念。
2. 介绍随机抽样的概念,强调随机性的重要性。
二、新课讲授1. 介绍随机抽样的方法,如简单随机抽样、分层抽样、系统抽样等。
2. 通过实例讲解每种抽样方法的操作步骤。
3. 利用多媒体课件展示随机抽样的实例,让学生直观地理解随机抽样的过程。
三、课堂练习1. 学生独立完成练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
四、课堂小结1. 回顾本节课所学内容,强调随机抽样的概念、方法和应用。
2. 布置课后作业,让学生巩固所学知识。
第二课时一、复习导入1. 复习上节课所学内容,检查学生对随机抽样知识的掌握情况。
2. 引导学生思考随机抽样在生活中的应用。
二、新课讲授1. 讲解随机抽样在实际问题中的应用,如市场调查、产品质量检测等。
2. 通过实例分析,让学生了解随机抽样在解决问题中的作用。
3. 引导学生运用所学知识解决实际问题。
三、课堂练习1. 学生独立完成练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
四、课堂小结1. 回顾本节课所学内容,强调随机抽样在实际问题中的应用。
2. 布置课后作业,让学生进一步巩固所学知识。
教学评价:1. 课后作业完成情况,了解学生对随机抽样知识的掌握程度。
9.1.1.1简单随机抽样+教学设计
9.1 随机抽样9.1.1.1 简单随机抽样教学目标:1.通过阅读课本了解数据的调查方法;2.通过阅读课本了解简单随机抽样;3.通过问题掌握简单随机抽样的常用方法.教学重点:了解简单随机抽样和良种常用方法教学难点:会用抽签法和随机数法进行简单随机抽样教学过程:一、导入新课,板书课题想必大家都听说过人口普查,那么人口普查是如何进行的,面对庞大的数据不方便全面收集的时候,又该如何处理呢,本节课我们就来学习一下简单随机抽样。
【板书:简单随机抽样】二、出示目标,明确任务1.了解调查数据的方法。
2.了解何为简单随机抽样3.掌握简单随机抽样的常用方法三、学生自学,独立思考学生看书,教师巡视,督促学生认真看书下面,阅读课本P173-P177页内容,思考如下问题(4min):1.找出阅读内容中的知识点。
2.找出阅读内容中的重点。
3.找出阅读内容中的困惑点,疑难点。
四、自学指导,紧扣教材1.自学指导1(5min)阅读课本173-175页问题1以上内容,思考并完成如下问题(1)什么是全面调查?人口普查是否为全面调查?(2)什么是总体?什么是个体?(3)什么是抽样调查?何为样本,何为样本容量?(4)抽样调查的目的是什么?(5)放回和不放回简单抽样分别是什么?统称为什么?自学指导2(5min)阅读课本175-177页,思考并完成以下问题(1)简单随机抽样常用的两种方法有?(2)抽签法如何操作,优点是什么?(3)随机数法如何操作,优点是什么?(4)用简单随机抽样方法抽取样本,样本量是否越大越好?五、自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT)2.书面检测:在以下调查中,总体、个体各是什么?哪些适合用全面调查?哪些适合用抽样调查?(1)调查一个班级学生每周的体育锻炼时间(2)调查一个地区结核病的发病率(3)调查一批炮弹的杀伤半径(4)调查一个水库所有鱼中草鱼所占的比例精讲点拨:自学指导1:点拨1.全面调查与抽样调查的区别;全面调查是对每一个对象进行调查,抽样调查时抽取一部分进行调查。
随机抽样讲课教案模板范文
教学对象:八年级学生教学目标:1. 知识与技能:理解随机抽样的概念,掌握简单随机抽样的方法,能够进行简单的随机抽样操作。
2. 过程与方法:通过小组合作、讨论等方式,培养学生的动手操作能力和合作探究能力。
3. 情感态度与价值观:培养学生严谨的科学态度和实事求是的精神,提高学生对统计学应用的认识。
教学重点:1. 随机抽样的概念和简单随机抽样的方法。
2. 如何进行随机抽样操作。
教学难点:1. 理解随机抽样的原理。
2. 如何在实际情况中应用随机抽样方法。
教学准备:1. 教学课件或黑板。
2. 随机抽样工具(如抽签、随机数表等)。
3. 小组合作学习材料。
教学过程:一、导入新课1. 教师通过提问引导学生回顾统计学的基本概念,如样本、总体等。
2. 提出问题:“如何从总体中选取部分个体作为样本进行研究?”3. 学生自由发言,教师总结并引出课题:随机抽样。
二、新课讲授1. 教师讲解随机抽样的概念,强调随机性的重要性。
2. 讲解简单随机抽样的方法,包括抽签法和随机数表法。
3. 通过实例演示如何进行随机抽样操作,如从班级中随机抽取10名学生作为样本。
4. 学生跟随教师进行操作练习,巩固所学知识。
三、小组合作探究1. 将学生分成小组,每组发放随机抽样工具和小组合作学习材料。
2. 小组讨论:如何在实际研究中应用随机抽样方法?3. 各小组分享讨论成果,教师点评并总结。
四、课堂小结1. 教师回顾本节课所学内容,强调随机抽样的重要性和应用场景。
2. 学生总结自己在课堂上的收获和疑问。
五、作业布置1. 完成课后练习题,巩固所学知识。
2. 查阅资料,了解随机抽样在生活中的应用。
教学反思:本节课通过引导学生回顾统计学的基本概念,引入随机抽样的概念,使学生理解随机抽样的原理和方法。
在教学过程中,注重学生的动手操作能力和合作探究能力的培养,通过小组合作探究,让学生在实践中掌握随机抽样方法。
在教学过程中,应关注学生的学习状态,及时调整教学策略,确保教学目标的实现。
2.1 简单随机抽样 学案(含答案)
2.1 简单随机抽样学案(含答案)2抽样方法2.1简单随机抽样学习目标1.了解随机抽样的必要性和重要性.2.理解随机抽样的目的和基本要求.3.掌握简单随机抽样中的抽签法.随机数法的一般步骤.知识点一简单随机抽样1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本nN,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫作简单随机抽样.2.简单随机抽样必须具备的特点1样本容量n小于等于总体容量N;2简单随机抽样是一种逐个不放回的抽样;3简单随机抽样的每个个体被抽到的可能性均为.3.最常用的简单随机抽样方法有两种抽签法和随机数法.知识点二抽签法1.抽签法的定义先把总体中的N个个体编号_________,并把编号_________写在形状.大小相同的号签上,然后将这些号签放在同一个箱子里均匀搅拌,每次随机地从中抽取一个,然后将号签均匀搅拌,再进行下一次抽取,如此下去,连续抽取n次,就得到一个容量为n的样本,这种方法称为抽签法.2.抽签法的一般步骤1给调查对象群体中的每个对象编号_________;2准备“抽签”的工具,实施“抽签”;3对样品中每一个个体进行测量或调查.3.优缺点优点简单易行,适合总体个数不多的情况.缺点当总体容量非常大时,对个体编号_________工作量大,搅拌均匀较难,影响样本的代表性.思考采用抽签法抽取样本时,为什么将编号_________写在形状.大小相同的号签上,并且将号签放在同一个箱子里搅拌均匀答案为了使每个号签被抽取的可能性相等,保证抽样的公平性.知识点三随机数法1.随机数法的定义利用随机数表.随机数骰子或计算机产生的随机数进行抽样叫随机数法,这里仅介绍随机数表法.2.随机数表法的一般步骤1编号_________将总体中的个体以数字编号_________;2选定开始的数字,为了保证所选定数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置;3获取样本号码,抽取样本.3.优缺点优点简单易行,它很好地解决了当总体中个体数较多时抽签法制签难的问题.缺点当总体中的个体数很多,需要的样本容量也较大时,用随机数法抽取样本仍不方便.1.简单随机抽样也可以是有放回的抽样.2.简单随机抽样中每个个体被抽到的机会相等.3.采用随机数表法抽取样本时,个体编号_________的位数必须相同.4.在简单随机抽样中,被抽取样本的总体个数可以是无限多个.题型一简单随机抽样的判断例1下列4个抽样中,简单随机抽样的个数是从无数个个体中抽取50个个体作为样本;仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;一彩民选号,从装有36个大小.形状都相同的号签的盒子中不放回地逐个抽出6个号签;箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0B.1C.2D.3考点简单随机抽样的概念题点简单随机抽样的概念及特征答案B解析根据简单随机抽样的特点逐个判断.不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回.等可能的抽样.不是简单随机抽样,因为它是有放回抽样.综上,只有是简单随机抽样.反思感悟简单随机抽样必须具备下列特点1被抽取样本的总体中的个体数N是有限的;2抽取的样本是从总体中逐个抽取的;3简单随机抽样是一种不放回抽样;4简单随机抽样是一种等可能的抽样.如果四个特征有一个不满足,就不是简单随机抽样.跟踪训练1在简单随机抽样中,某一个体被抽到的可能性A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽到的可能性要大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一定考点简单随机抽样的概念题点每个个体入选可能性的计算答案B解析在简单随机抽样中,每一个个体被抽到的可能性都相等,与第几次抽样无关,故A,C,D不正确,B正确.题型二简单随机抽样等可能性应用例2一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.答案解析因为简单随机抽样过程中每个个体被抽到的可能性均为,所以第一个空填.因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为.反思感悟简单随机抽样,每次抽取时,剩余总体中各个个体被抽到的概率相同,在整个抽样过程中各个个体被抽到的机会也都相等.跟踪训练2从总体容量为N的一批零件中,抽取一个容量为30的样本,若每个零件被抽到的可能性为0.25,则N的值为A.120B.200C.150D.100答案A解析因为从含有N个个体的总体中抽取一个容量为30的样本时,每个个体被抽到的可能性为,所以0.25,从而有N120.故选A.题型三抽签法与随机数法命题角度1抽签法例3某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解方案如下第一步,将18名志愿者编号_________,号码为01,02,03,,18.第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号_________.第五步,与所得号码对应的志愿者就是医疗小组成员.反思感悟一个抽样试验能否用抽签法,关键看两点一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.跟踪训练3从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解第一步,将20架钢琴编号_________,号码是01,02,,20.第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号_________.第五步,与所得号码对应的5架钢琴就是要进行质量检查的对象.命题角度2随机数法例4为了检验某种药品的副作用,从编号_________为1,2,3,,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.解第一步,将120名服药者重新进行编号_________,分别为001,002,003,,120;第二步,在随机数表见教材P9表12中任选一数作为初始数,如选第9行第6列的数1;第三步,从选定的数1开始向右读,每次读取三位,凡不在001120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到111,024,042,019,058,005,002,054,115,062;第四步,以上这10个号码所对应的服药者即是要抽取的对象.反思感悟1当总体容量较大,样本容量不大时,可用随机数法抽取样本.2用随机数法抽取样本,为了方便,在编号_________时需统一编号_________的位数.3将总体中的个体进行编号_________时,可以从0开始,也可以从1开始.跟踪训练4某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本解方法一抽签法将100件轴编号_________为1,2,,100,并做好大小.形状相同的号签,分别写上这100个数,将这些号签放在一起,搅拌均匀,接着连续不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.方法二随机数法将100件轴编号_________为00,01,,99,在随机数表见教材P10表12续表中选定一个起始位置,如取第21行第1个数开始,向右选取10个为93,12,47,79,57,37,89,18,45,50,这10件即为所要抽取的样本.抽样方法的选择及实施典例某学校有2005名学生,从中选取20人参加学生代表大会,采用简单随机抽样方法进行抽样,是用抽签法还是随机数表法如何具体实施解由于学生人数较大,制作号签比较麻烦,所以决定用随机数表法,采用随机数表法其实施步骤1对2005名同学进行编号_________,00002004.2在随机数表中随机地确定一个数作为开始,如21行5列的数字9开始的4位9145;依次从左向右读数,2368,4792,,凡不在00002004范围内的,则跳过,遇到自己读过的数也跳过.最后得到号码为036803380508157408811312111000xxxx69044605271547011815940 4251162139716860711.这些编号_________对应的学生组成容量为20的样本.素养评析1当总体容量较大,样本容量不大时,可以用随机数法抽取样本.2选择抽样方法,抽样获取数据,这些都是数据分析必须经历的过程,是培养学生数学核心素养的重要内容.1.下列抽样方法是简单随机抽样的是A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验假设10个手机已编好号,对编号_________随机抽取答案D解析选项A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中,一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.2.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号_________方法1,2,3,,100;001,002,,100;00,01,02,,99;01,02,03,,100.其中正确的序号是A.B.C.D.答案C解析编号_________位数不统一,根据随机数法的步骤可知,正确.3.为抽查汽车排放尾气的合格率,某环保局在一路口随机抽查,这种抽查是A.简单随机抽样B.抽签法C.随机数法D.以上都不对考点简单随机抽样的概念题点简单随机抽样的概念及特征答案D解析由于不知道总体的情况包括总体个数,因此不属于简单随机抽样.4.使用简单随机抽样从1000件产品中抽出50件进行某项检查,合适的抽样方法是A.抽签法B.随机数法C.随机抽样法D.以上都不对考点随机数法题点随机数法的概念答案B解析由于总体相对较大,样本容量较小,故采用随机数法较为合适.5.一个总体中含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的可能性为________.答案解析因为是简单随机抽样,故每个个体被抽到的机会相等,所以指定的某个个体被抽到的可能性为.1.简单随机抽样是一种简单.基本.不放回的抽样方法,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量大时,费时.费力,并且标号的签不易搅拌均匀,这样会导致抽样不公平;随机数法的优点也是简单易行,缺点是当总体容量大时,编号_________不方便.两种方法只适合总体容量较少的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为,但要将每个个体入样的可能性与第n次抽取时每个个体入样的可能性区分开,避免在解题中出现错误.。
2.1.1简单随机抽样学案
第二章统计2.1 随机抽样2.1.1 简单随机抽样【学习目标】1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本;3. 感受抽样统计的重要性和必要性.【重点】简单随机抽样的意义及方法的应用.【难点】抽签法和随机数法的实施步骤.【复习旧知】总体、个体、样本、样本容量【课堂探究】探究1先看一个笑话:妈妈:“儿子,帮妈妈买盒火柴去.”妈妈:“这次注意点,上次你买的火柴好多划不着.” ………儿子高兴地跑回来.孩子:“妈妈,这次的火柴全划得着,我每根都试过了.”笑过之后,谈谈你的看法结论:这个调查具有破坏性,不可能每根试过.我们通常只考察总体中的一个_____,通过______来了解总体的情况,在保证一定精度的前提下,样本中包含的个体数__________.探究2在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?结论1:抽取样本时,要使抽取出的样本具有______,否则调查的结果与实际相差较大.结论2:高质量的样本数据来自“”的总体.为了使样本具有好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,即使每个个体有相同的_________ .例题1为调查央视春节联欢晚会的收视率,有如下三种调查方案:方案一:通过互联网调查.方案二:通过居民小区调查.方案三:通过电话调查.上述三种调查方案能获得比较准确的收视率吗?为什么?探究3自三鹿公司生产的毒奶粉导致婴幼儿死亡的事件发生后,卫生部门高度重视,各地区也加大了对奶粉的质检力度,假设你作为一名质检员,想要对某地区一大型超市中袋装奶粉质量是否合格作一次检查,你准备怎样做?显然,你只能从中抽取一定数量的袋装奶粉作为检验的样本.(为什么?)那么,应当怎样获取样本呢?结论:一般地,设一个总体含有N个个体,从中_____抽取n个个体作为样本(n≤N),如果每次抽取时总体内的每个个体被抽到的,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种——抽签法和随机数法.例题2 下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)一超市中有日光灯管80根,从中一次性选取10根进行质量检测.(3)某班有40名同学,指定个子最高的5名同学参加校篮球赛.探究4假设要在我们班选派5个人去参加某项活动,为了体现选派的公平性,你有什么办法确定具体人选?结论:抽签法就是把总体总体的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.练习1.现有30个零件,需从中抽取10个进行检查,问如何采用抽签法得到一个容量为10的样本?2.你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?探究5在对三鹿毒奶粉事件的调查中,如果你作为一名质检员,需要对三鹿公司刚生产的800袋奶粉中三聚氰胺的含量进行达标检测,现从中抽取60袋进行检验,你准备怎样做?(你想用什么方法?)抽签法方便吗?为什么?(它有什么缺点?)结论:随机数法的步骤①将总体中的每个个体____(每个号码位数一致);②在随机数表中_________作为开始;③从选定的数开始按一定的方向读下去,得到的号码若不在编号中,则跳过;若在编号中,则取出;如果得到的号码前面已经取出,也跳过.如此进行下去,直到取满为止;④根据选定的号码抽取样本.练习3.你认为如何实现在随机数表中任选一个数,用随机数表法抽取样本有什么优点和缺点?【课堂小结】1.知识:2.方法:3.本节课运用的数学思想:【达标练习】1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240 B.个体是每一个学生C.样本是40名学生D.样本容量是402.在简单抽样中,某一个个体被抽的可能是()A.与第几次抽样有关,第一次抽中的可能性大些。
《简单随机抽样》学案1
2.1.1简单随机抽样学案一、学习目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
三、教学设想:问题一:回顾总体、个体、样本、样本容量的概念问题二:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。
(为什么?)那么,应当怎样获取样本呢?【探究新知】一、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
问题三:简单随机抽样必须具备什么特点呢?问题四:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
二、抽签法和随机数法1、抽签法的定义。
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
问题五:抽签法的一般步骤是什么呢?问题六:你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?2、随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。
《简单随机抽样》示范课教案【高中数学】
《简单随机抽样》教学设计◆教学目标1.通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法;2.掌握用抽签法、随机数表法进行抽样的步骤,了解随机数表的制作方法和思想;3.在简单的实际情境中,能够根据实际问题的特点,设计恰当的抽样方法解决问题.◆教学重难点◆教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:理解等可能性的含义、抽签法和随机数法的实施步骤.◆教学过程一、新课导入情境:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.以下几种抽取方法,你认为可行吗?(1)从戴眼镜的学生中抽取10名进行严查;(2)从没有佩戴眼镜的学生中抽取10名进行检查;(3)从女生中抽取10名进行检查.显然,以上3中抽样方法都具有一定的片面性.那么,怎样抽取样本才是合理的呢?这节课我们就一起来探究!设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会抽样的必要性,为下面的学习做铺垫.二、新知探究问题1:怎样抽取样本,才能使样本更好地代表总体?答案:尽量使样本的分布能近似于总体的分布,例如,在调查学校学生的身高时,若身高在160 cm~170 cm的学生占总体的40%,那么样本中160 cm~170 cm的学生占样本容量的40%,这样得出的结论更准确.因为抽查是由部分来推断总体,所以其结果具有不确定性,在处理这个矛盾的过程中,人们经过长期的实践总结,得出了抽查的基本方法——随机抽样.定义:在抽样调查中,每个个体被抽到的可能性均相同的抽样方法,称为随机抽样.一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法通常叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法,对于不知道某些特别信息的总体,往往采用简单随机抽样.【概念巩固】下面抽取样本的方式是简单随机抽样吗?为什么?1.从无限多个个体中抽取50个个体作为样本.2.箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.3.从50个个体中一次性抽取5个个体作为样本.思路点拨:要判断所给的抽样方式是否是简单随机抽样,关键是看它们是否符合简单随机抽样的特点.答案:1.不是简单随机抽样.因为被抽取样本的总体的个体数是无限的而不是有限的;2.不是简单随机抽样.简单随机抽样是不放回抽样,而它是放回抽样;3.不是简单随机抽样.因为它是一次性抽取,而不是“逐个”抽取.总结:简单随机抽样具备以下四个特点:①总体的个体数较少,②逐个抽取,③不放回抽样,④等可能抽样.判断抽样方法是否是简单随机抽样,只需看是否符合上述四个特点,若有一条不符合就不是简单随机抽样.设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会简单随机抽样的特点,提高学生的抽象概括能力和语言表达能力.问题2:在解决实际问题时,怎样才能保证等可能抽取呢?探究:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.答案:将这45名学生进行编号;再做45个编号分别为1~45的“签”(也称“阄”),放入密封的容器或袋中(从外面看不见内部),并充分搅拌;最后从容器或袋中随机抽取10个签,记下10个签的编号,与签的编号相同的学生的视力即组成需要的样本,这种抽样方法称为抽签法.一般地,用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤是:(1)给总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽取1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.追问1:哪些步骤保证每个个体被抽到的可能性是一样的?答案:形状、大小相同的号签;不透明的箱子;搅拌均匀.追问2:抽签法有哪些优点和缺点?答案:优点:简单易行;缺点:总体容量非常大时,费时费力,不容易搅拌均匀,会导致抽样不公平.问题3:当总体中所含个体数较多时,抽签法虽然能够保证样本的代表性,但是制签的过程也比较麻烦,如何简化制签的过程呢?答案:制作一个表,这个表由0,1,2,3,4,5,6,7,8,9这10个数字组成,表中任一位置出现任一数字的概率相同,且不同位置的数字之间是独立的.这样的表称为随机数表,其中的每个数都称为“随机数”,于是,我们只要按一定的规则从随机数表中选取号码就可以了,这种抽样方法叫作随机数表法.抽签法和随机数表法都是简单随机抽样.思考:如何用随机数表法求解本节开头的问题?(1)对45名学生按01,02,03,…,45编号;(2)在随机数表中随机地确定一个数字,如第8行第29列的数字7作为开始,为便于说明,我们将附录中的6~10行摘录如下:(3)从数字7开始向右读下去,每次读两位,凡不在01~45中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到12,07,44,39,38,33,21,34,29,42这10个号码,编号为这10个号码的学生的视力即组成一个容量为10的样本.当随机地选定开始的数后,读数的方向可以向右,也可以向左、向上、向下等.追问:你能总结出用随机数表法抽取样本的步骤吗?答案:(1)对总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.总结:在用随机数法抽取样本时,应注意以下几点:(1)编号位数一致,一是为了便于查找,二是要保证每个个体被抽取的概率相等;(2)抽样时所需的随机数表可临时产生,也可以沿用已有的随机数表;(3)读数的起点、读取方向都是随机的,且事先定好.设计意图:帮助学生了解随机数表,熟悉随机数法抽取样本的过程,进一步积累基本活动经验.三、应用举例例1:(多选)下列关于简单随机抽样的叙述正确的是( )A .一定要逐个抽取B .它是一种最简单、最基本的抽样方法C .总体中的个数必须是有限的D .先被抽取的个体被抽到的可能性要大解析:由简单随机抽样的特点可以得出判断.A 、B 、C 都正确,并且在抽样过程中,每个个体被抽到的可能性都相等,不分先后.答案:ABC .例2:用随机数表法从1000 名学生男生抽取25 人参加某项运动,则某男学生被抽到的概率是_______;将1000名学生分别编号000、001、002……999,从随机数表的第5行(下表为随机数表的第5-8行)第11列开始,向右读取,则抽取的第5个样本的号码是____.5556 8526 6166 8231 2438 8455 4618 44452635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 1620解析:根据简单随机抽样的特点,每个个体被抽到的概率相同.所以某男生被抽到的概率为25÷1000×100%=2.5%;抽取出的号码分别为668、231、243、884、554,所以第五名被抽取出的学生编号为554.例3:用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A .110,110B .310,15C .15,310D .310,310 解析:根据简单随机抽样的定义知个体a 两次被抽到的可能性相同,均为310.答案:D . 四、课堂练习1.下面的抽样方法是简单随机抽样的个数是( )①某班45名同学,学校指定个子最高的5名同学参加学校的一项活动;②从2021生产线连续生产的产品中一次性抽取3个进行质检;③一儿童从玩具箱中的2022个玩具中随意拿出一件玩,玩完放回再拿一件,连续玩了5次.A .1B .2C .3D .02.总体由编号为 01,02,…,19,20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983202 9234 4935 8200 3623 4869 6938 7481A . 08B . 07C .02D .013.某总体容量为M,其中带有标记的有N个,现用简单随机抽样从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为_______.4.下列抽样试验中,适合用抽签法的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验参考答案:1.解析:①不是,因为它不是等可能;②不是,因为它是“一次性”抽取;③不是,因为它是有放回的.答案:D.2、解析:由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.答案:D.3、解析:总体中带有标记的比例是NM ,则抽取的m个个体中带有标记的个数估计为NmM.答案:NmM.4、解析:A中总体容量较大,样本量也较大,不适宜用抽签法;B中总体容量较小,样本量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D中虽然样本量较小,但总体容量较大,不适宜用抽签法.故选B.答案:B.五、课堂小结设计意图:引导学生对本节课所学知识方法有一个全面的认识,培养学生的归纳总结能力,帮助学生深化对知识的理解与掌握,体会研究解决实际问题的思路、途径、方法,为进一步学习打下坚实基础.六、布置作业教材第216页练习第1,2题.。
初中简单随机抽样教案
教案:初中简单随机抽样教学目标:1. 让学生理解随机抽样的概念,知道随机抽样的意义和作用。
2. 学会使用简单随机抽样的方法进行数据收集和分析。
3. 培养学生的观察能力、思考能力和动手能力。
教学重点:1. 随机抽样的概念和意义。
2. 简单随机抽样的方法。
教学难点:1. 随机抽样的实际操作。
教学准备:1. PPT课件。
2. 学生分组,每组准备一些小物品,如糖果、小球等。
教学过程:一、导入(5分钟)1. 利用PPT课件,展示一些生活中的随机抽样现象,如彩票抽奖、糖果包装上的随机颜色等。
2. 引导学生思考:这些现象有什么共同特点?它们的意义和作用是什么?二、自主学习(10分钟)1. 让学生阅读教材,了解随机抽样的概念和意义。
2. 学生分享学习心得,教师点评并总结。
三、课堂讲解(15分钟)1. 讲解简单随机抽样的方法,如抽签法、随机数表法等。
2. 举例说明如何使用这些方法进行数据收集和分析。
四、实践操作(15分钟)1. 学生分组,每组选择一种物品进行随机抽样。
2. 教师巡回指导,解答学生在操作过程中遇到的问题。
3. 各组汇报抽样结果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生回顾本节课所学内容,总结随机抽样的概念、意义和作用。
2. 强调随机抽样在实际生活中的应用价值。
六、课后作业(课后自主完成)1. 结合教材,思考生活中还有哪些随机抽样的现象?它们是如何实现的?2. 尝试使用简单随机抽样的方法,对身边的物品进行数据收集和分析。
教学反思:本节课通过引导学生观察生活中的随机抽样现象,让学生了解随机抽样的概念和意义。
通过课堂讲解和实践操作,让学生学会使用简单随机抽样的方法进行数据收集和分析。
在教学过程中,要注意关注学生的学习情况,及时解答学生的问题,确保学生能够掌握所学知识。
同时,要注重培养学生的观察能力、思考能力和动手能力,提高学生的学习兴趣和积极性。
简单随机抽样第1课时(导学案)(学生版)
9.1.1简单随机抽样【学习目标】1、理解简单随机抽样的概念。
2、掌握常见的两种简单随机抽样的方法。
3、能合理地从实际问题的个体中抽取样本。
【使用说明及学法指导】1.预学指导:精读教材内容,完成预学案,找出自己的疑惑;2.探究指导:小组成员依次发表观点,有组织,有记录,有展示,有点评;3.展示指导:规范审题,规范书写,规范步骤,规范运算;4.总结指导:回扣学习目标,总结本节内容.【预学案】【情境导入】在高考阅卷过程中,为了统计每一道试题的得分情况,如平均得分、得分分布情况等,如果将所有考生的每题的得分情况都统计出来,再进行计算,结果是非常准确的,但也是十分烦琐的,那么如何了解各题的得分情况呢?通常,在考生有这么多的情况下,我们只从中抽取部分考生 (比如说1000名) ,统计他们的得分情况,用他们的得分情况去估计所有考生的得分情况。
问题一:对一个确定的总体其样本唯一吗?问题二:如何科学地抽取样本?怎样使抽取的样本充分地反映总体的情况?【教材新知】知识点1 总体、个体、样本、样本容量的概念(1)总体:一般把所考察对象的某一数值指标的全体构成的集合看作总体.(2)个体:构成总体的每一个元素叫做个体.(3)样本:从总体中抽出若干个体所组成的集合叫做样本.(4)样本容量:样本中个体的个数叫做样本容量.知识点2 简单随机抽样(1)抽样时要保证每一个个体都可能被抽到,并且每一个个体被抽到的机会是均等的,满足这样的条件的抽样方法是随机抽样.(2)一般地,从元素个数为N 的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,那么,这种抽样方法叫做简单随机抽样.(3)将总体中的所有个体编号,并把号码写在形状、大小相同的号签上,然后将这些号签放在同一个不透明的盒子里并搅拌均匀,每次从中抽出一个号签,连续抽取n次,就得到一个容量为n的样本,这种方法叫抽签法.(4)事先制好数表,表中共出现0,1,2,3,…,9十个数字,且表中每个位置上的数字都是等可能出现的,这种数表称为随机数表.随机数表并不是唯一的,只要符合各个位置上等可能地出现其中各个数的要求,就可以构成随机数表.【预习自测】1、某中学进行了该学年期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是( )(A)1 000名学生是总体 (B)每个学生是个体(C)1 000名学生的成绩是一个个体 (D)样本的容量是1002.为了测量所加工一批零件的长度,抽测了其中200个零件,在这个问题中,200个零件的长度是( )(A)总体 (B)总体的容量 (C)总体的一个样本 (D)样本容量3.下列抽样方法是简单随机抽样的是( )A.从100个学生家长中一次性随机抽取10人做家访B.从38本教辅参考资料中有放回地随机抽取3本作为教学参考C.从偶数集中一次性抽取20个进行奇偶性分析D.某参会人员从最后一排20个座位中随机选择一个坐下【预习反馈】【探究案】探究一、简单随机抽样的概念例1、下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)质量监督部门从180种儿童玩具中选出18种玩具进行质量检验,在抽样过程中,从中任取一种玩具检验后再放回;(3)国家跳水队挑出最优秀的10名跳水队员,备战2020年日本东京奥运会;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出7个号签.【变式】在下列抽样方法是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,检验其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.(3)人们打桥牌时,将洗好的牌随机确定一张起始牌,按次序发牌时,对任何一家来说,都是从52张牌中抽取13张.【归纳总结】判定简单随机抽样的方法:【练习】下列抽取样本的方式是属于简单随机抽样的是()①从无限多个个体中抽取100个个体作样本;②盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后,再把它放回盒子里;③从8台电脑中不放回的随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取)A.①B.②C.③D.以上都不对探究二、抽签法的应用例2、从30名留守儿童中抽取8人进行安全教育问卷调查,请写出抽取样本的过程.【变式】现在从20名学生中抽取5名进行阅卷调查,写出抽取样本的过程.【归纳总结】证抽签法的一般步骤:【练习】某大学为了支援我国西部教育事业,决定从2012年应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法设计抽样方案.探究三、随机数表的应用例3、要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.【思考】能从本例体会下,从000开始编号的好处吗?【变式】现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?【归纳总结】1、利用随机数法抽取样本的步骤【练习】某大学为了支援我国西部教育事业,决定从2012年应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用随机数法设计抽样方案.【课后小结】。
简单随机抽样导学案(表格式)
课题 年级
简单随机抽样 高一
课型 所需课时
新授 1
授课时间 备课设计者
通过课本和生活中的具体实例理解随机抽样的必要性和重要性,正确理解随机抽样的概念,掌握简单 学习目标 机抽样的两种方法(抽签法和随机数法)的一般步骤。
学习重点
理解简单随机抽样的概念,掌握抽签法和随机数表法的一般步骤。
实际问题。
导案
过实际操作,引导学生正确 解样本的随机性,然后从文 语言到数学语言的转化,从 总结提升归纳出简单随机抽
样的概念
1:这些数据或结论从何而 来?
统计调查:全面调查、抽样 调查)
2:对比全面调查和抽样调 ,它们分别有什么优缺点? 体会“抽样”的必要性)
过“概念辨析”练习加深对 念中几个特点的正确理解。 学生在上面寻找概念中的关 点,有未注意到的特点,正 可以通过辨析补充完善。
复几次,让学生深刻掌握随 数表法。另外,通过随机抽 生回答,使课堂氛围更活跃
。
过分析简单随机抽样方法的 缺点,为后续学习留下悬念
。
”困难,造成样本代表性
样的概念
新课导入
1.共享单车在每个地铁口的存放量是多少比较合适? 2.一批炮弹的杀伤半径
问题1:这些数据或结论从 来?
(统计调查:全面调查、抽 调查)
问题2:对比全面调查和抽 查,它们分别有什么优缺点 (体会“抽样”的必要性
任务设置+ 自主探究
用抽签法从30个灯泡中逐个抽取5个进行质检吗?过程怎么设计?请同 学们相互讨论。 (1)编号:将30个灯泡编号1,2……30; (2)制签:把号码写到形状大小一样的号签上; (3)搅匀:将号签放入不透明的箱子充分搅拌,使之均匀; (4)抽签:从箱子中逐个抽取5个号签并记录; (5)取样:相应编号的5个灯泡就构成样本
2022年 《示范2.1.1 简单随机抽样》优秀教案6
第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的根底,也是统计所研究的根本问题.本章主要介绍最根本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的根本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的根底上,?课程标准?要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的根本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.本章教学时间约需7课时,具体分配如下〔仅供参考〕:随机抽样简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的时机.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应中选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题1在1936年美国总统选举前,一份颇有名气的杂志Literar Diget的工作人员做了一次民意测验调查兰顿当时任堪萨斯州州长和罗斯福当时的总统中谁将中选下一届总统为了了解公众意向,调查者通过簿和车辆登记簿上的名单给一大批人发了调查表注意在1936年和汽车只有少数富人拥有通过分析收回的调查表,显示兰顿非常受欢送,于是此杂志预测兰顿将在选举中获胜实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:你认为预测结果出错的原因是什么?由此可以总结出什么教训?〔2〕假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?〔3〕请总结简单随机抽样的定义讨论结果:1预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有和汽车的美国人只是一小局部,那时大局部人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否那么调查的结果与实际相差较大.2要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取〔这样可以保证每一袋饼干被抽到的可能性相等〕,这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.3一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本n≤N,如果每次抽取时总体内的各个个体被抽到的时机都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题1抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一局部人参加某项活动时就用过抽签法例如,高一2班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的时机均等我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生请归纳抽签法的定义总结抽签法的步骤2你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?3随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢下面通过例子来说明假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验利用随机数表抽取样本时,可以按照下面的步骤进行第一步,先将800袋牛奶编号,可以编为000,001,…,799第二步,在随机数表中任选一个数例如选出第8行第7列的数7为了便于说明,下面摘取了附表1的第6行至第10行16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20216 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读读数的方向也可以是向左、向上、向下等,得到一个三位数785,由于785799,将它去掉按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出这样我们就得到一个容量为60的样本请归纳随机数表法的步骤4当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?5请归纳随机数表法的优点和缺点.讨论结果:1一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°沉着器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.2抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.3随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,假设不在编号中,那么跳过,假设在编号中那么取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.4从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.5综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷另外,要想“搅拌均匀〞也非常困难,这就容易导致样本的代表性差应用例如例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一〔抽签法〕:①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二〔随机数表法〕:①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始见教材附录1:随机数表;③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,那么这10个号签相应的个体即为所要抽取的样本.点评:此题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练.〔1〕从无限多个个体中抽取50个个体作为样本.〔2〕从1 000个个体中一次性抽取50个个体作为样本.〔3〕将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.〔4〕箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.〔5〕福利彩票用摇奖机摇奖.解析:〔1〕中,很明显简单随机抽样是从有限多个个体中抽取,所以〔1〕不属于;〔2〕中,简单随机抽样是逐个抽取,不能是一次性抽取,所以〔2〕不属于;很明显〔3〕属于简单随机抽样;〔4〕中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以〔4〕不属于;很明显〔5〕属于简单随机抽样.答案:〔3〕〔5〕2要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02,…,30第二步,将号码分别写在一张纸条上,揉成团,制成号签第三步,将得到的号签放入不透明的袋子中,并充分搅匀第四步,从袋子中依次抽取3个号签,并记录上面的编号第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级〞游戏,其用具为四副扑克,包括大小鬼〔又称为花〕在内共216张牌,参与人数为6人并坐成一圈.“够级〞开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌〔这叫开牌〕,然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,以下说法正确的选项是〔〕A总体是240 B个体C样本是40名学生D样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中2021零件的长度,在这个问题中,2021零件的长度是〔〕A总体B个体C总体的一个样本D样本容量答案:C3.一个总体中共有2021个体,用简单随机抽样的方法从中抽取一个容量为2021本,那么某一特定个体被抽到的可能性是____________.答案:4.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一〔抽签法〕:①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二〔随机数表法〕:①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,…,099,100,…,600第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比方,选第6行第7个数“9〞,向右读第三步,从数“9〞开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,5202184,263第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,…,199,2021…,700第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比方,选第8行第1个数“6〞,向右读第三步,从数“6〞开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最根本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开来,防止在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,表达了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.。
简单随机抽样教学案 (1)
简单随机抽样一、教学目的1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.二、教学重点1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.三、教学难点掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.解析:由随机数法的抽样过程可知选出的5个个体是08,02,14,07,01,即第5个个体的编号是01.答案:D 点评:1.在利用随机数法抽样的过程中应注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.2.随机数法的特点:优点:简单易行.它很好地解决了当总体中的个体数较多时用抽签法制签难的问题.缺点:当总体中的个体数很多,需要的样本容量也很大时,用随机数法抽取样本容易重号.变式探究3设某总体是由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是________7816 6572 0802 6314 0702 4369 9728 10983204 9234 4935 8200 3623 4869 6938 7491解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,10,其中第二个和第五个都是02,重复.可知对应的数值为08,02,14,07,10,则第5个个体的编号为10.答案:10随堂自测1.下列抽样方法是简单随机抽样的是( )A .从50个零件中一次性抽取5个做质量检验B .从50个零件中有放回地抽取5个做质量检验C .从整数集中逐个抽取10个分析是奇数还是偶数D .运动员从8个跑道中随机抽取一个跑道2.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )A .①②③④B .①③④②C .③②①④D .④③①②3.下列抽样试验中,用抽签法方便的是( )A .从某工厂生产的3 000件产品中抽取600件进行质量检验B .从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验解析:A 总体容量较大,样本容量也较大,不适宜用抽签法;B 总体容量较小,样本容量也较小,可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.故选B.答案:B4.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.解析:由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位.从0000到1000,或者是从0001到1001等.答案:四5.假设要抽查某种品牌的850颗种子的发芽率,抽取60颗进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号____________________.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:第8行第2列的数3开始向右读第一个小于850的数字是301,第二个数字是637,也符合题意,第三个数字是859,大于850,舍去,第四个数字是169,符合题意,第五个数字是555,符合题意,故答案为:301,637,169,555.6、在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为( )A. 201B. 1001C. 2 003100 D . 2 0001答案:C7、现用系统抽样抽取了一个容量为30的样本,其总体中含有300个个体,则总体中的个体编号后所抽取的两个相邻号码之差可定为( )A .300B .30C .10D .不确定简单随机抽样一、学习目的1.理解并掌握简单随机抽样的定义、特点和适用范围.2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.变式探究3设某总体是由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是________7816 6572 0802 6314 0702 4369 9728 10983204 9234 4935 8200 3623 4869 6938 7491五、课堂练习1.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从整数集中逐个抽取10个分析是奇数还是偶数D.运动员从8个跑道中随机抽取一个跑道2.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为()A.①②③④B.①③④②C.③②①④D.④③①②3.下列抽样试验中,用抽签法方便的是()A.从某工厂生产的3 000件产品中抽取600件进行质量检验B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验4.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是________位.5.假设要抽查某种品牌的850颗种子的发芽率,抽取60颗进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号____________________.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 546、在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为( )A. 201B. 1001C. 2 003100 D . 2 00017、现用系统抽样抽取了一个容量为30的样本,其总体中含有300个个体,则总体中的个体编号后所抽取的两个相邻号码之差可定为( )A .300B .30C .10D .不确定8、从容量为N 的总体中抽取容量为n 的样本,若用系统抽样法,则抽样间隔为( )A.n N B .n C .[n N ] D .[n N ]+1六、课堂小结1、如何抽取样本,直接关系到对总体估计的准确程序,因此抽样时要保证每一个个体都可能被抽到,每一个个体被抽到的机会都是均等的,满足这样条件的抽样是随机抽样.2.在利用随机数法抽样的过程中应注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.3.随机数法的特点:优点:简单易行.它很好地解决了当总体中的个体数较多时用抽签法制签难的问题.缺点:当总体中的个体数很多,需要的样本容量也很大时,用随机数法抽取样本容易重号.八、教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时:2.1.1 简单随机抽样鸡东二中李媛媛
【学习目标】
一、知识与技能
⑴掌握抽签法、随机数表法的一般步骤
⑵能够从现实生活或其他学科中提出具有一定价值的统计问题
⑶在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
二、过程与方法
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
三、情感态度与价值观
通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【重点、难点分析】
学习重点:
正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
学习难点:
掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
【体验材料】有一幅小漫画,小猴让小猪买火柴,要都能划着的,小猪买回来,坚定的说,“每根都能点燃”思考:①为什么小猪没能完成任务?②咱们能帮小猪完成任务么?
【推进新课】例1:假设要在我们班选3个人和老师共进午餐,为了体现选派的公平性,你有什么办法确定具体人选?
知识点1 1.抽签法的步骤:
①给总体中的所有个体编号(号码可以从1到N);
②将1~N这N个号码写在形状、大小质地相同的号签上
③将号签放在一个不透明的容器中,搅拌均匀;
④从容器中依次,连续,不放回抽取n 次
抽签法的优缺点:
优点:简单易行,个体有均等的机会被抽中,从而能保证样本的代表性.
缺点:当总体个数较多时不方便,而且产生的样本代表性差的可能性很大.
【自主学习】先阅读课本,理解下列概念和步骤问题:
例2.要检测500克袋装牛奶每一袋质量是否达标,现从800袋牛奶中抽取60袋牛奶,进行检测卫生是否达标,怎样操作?
知识点2 1.统计有关定义:
总体:我们把要考察的对象的全体叫做总体,其中每一个考察对象叫做个体。
样本:从总体中抽出的若干个个体组成的集合叫做总体的一个样本。
个体:总体中的每一个元素叫做个体。
样本容量:样本中个体的数目叫做样本容量。
2.简单随机数法是由什么构成的,怎么产生?
即利用随机数表、随机数骰子或计算机产生的随机数。
进行抽样随机数表由数字0,1,2, (9)
成,并且每个数字在表中各个位置出现的机会都是相同的.
3.简单随机数法的步骤:
①将总体中的所有个体编号(每个号码位数一致)
②在随机数表中任选一个数作为开始;
③从选取定的数开始按一定的方向读下去;
④根据选取的号码抽取样本
思考:抽签法和随机数表法的共同特点?
(1)被抽取样本的总体中的个数是有限的;
(2)抽取的样本个体数n小于或等于总体中的个数N;
(3)样本是从总体中依次连续不放回抽取;
(4)简单随机抽样是一种等可能抽样,每个个体入样的可能性均为
N
n
知识点3
简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,这种抽样方法叫做简单随机抽样。
【合作探究】
1)从无限多个个体中抽取50个个体作为样本.
2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.是否为简单随机抽样?
【课堂小结】
1. 简单随机抽样的特点;
2.抽签法的特点:
3. 随机数法的特点 2.1.1 简单随机抽样
(1)抽签法的步骤
(2)随机数表法的步骤
(3)简单随机抽样的概念
(4)常用的简单随机抽样方法。