圆锥曲线定值定点问题【最新】
(完整版)圆锥曲线的最大值、定问题
圆锥曲线最值、定值、范围一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac 的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP→+OQ→与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.。
圆锥曲线专题——定值定点问题(附解析)
第1页(共15页)圆锥曲线专题——定值定点问题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A 、B 两点,且22OA OBb k k a=-,判断AOB ∆的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.【解答】解:(1)椭圆的短半轴长为半径的圆与直线0x y -=相切,∴b ==又222a b c =+,12c e a ==, 解得24a =,23b =,故椭圆的方程为22143x y +=.()II 设1(A x ,1)y ,2(B x ,2)y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩化为222(34)84(3)0k x mkx m +++-=, △22226416(34)(3)0m k k m =-+->,化为22340k m +->.∴122834mkx x k +=-+,21224(3)34m x x k -=+.22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 34OA OB k k =-,第2页(共15页)∴121234y y x x =-,121234y y x x =-, 222223(4)34(3)34434m k m k k --=-++,化为22243m k -=,||AB==又11)4d==-=,1||2S AB d ===22342k +=== (1)求椭圆E 的标准方程;(2)过F 作直线l 与椭圆交于A 、B 两点,问:在x 轴上是否存在点P ,使PA PB 为定值,若存在,请求出P 点坐标,若不存在,请说明理由.【解答】解:(1)由题意知1c =,过F 且与x 轴垂直的弦长为3,则223b a =,即222()3a c a -=,则2a =,b∴椭圆E 的标准方程为22143x y +=;(2)假设存在点P 满足条件,设其坐标为(,0)t ,设1(A x ,1)y ,2(B x ,2)y ,当l 斜率存在时,设l 方程为(1)y k x =-,联立22(1)3412y k x x y =-⎧⎨+=⎩,整理得:2222(43)84120k x k x k +-+-=,△0>恒成立.第3页(共15页)2122843k x x k ∴+=+,212241243k x x k -=+. ∴1(PA x t =-,1)y ,2(PB x t =-,2)y .∴222212121212()()(1)()()PA PB x t x t y y k x x k t x x k t =--+=+-++++22222222(1)(412)()8()(43)43k k k t k k t k k +--++++=+, 2222(485)3(12)43t t k t k --+-=+, 当PA PB 为定值时,2248531243t t t ---=,118t ∴=, 此时223121354364t PA PB t -==-=-. 当l 斜率不存在时,11(8P ,0),3(1,)2A ,3(1,)2B -.3(8PA =-,3)2,3(8PB =-,3)2-,∴13564PA PB =-, ∴存在满足条件的点P ,其坐标为11(8,0). 此时PA PB 的值为13564-. 3.已知点(2,1)M 在抛物线2:C y ax =上,A ,B 是抛物线上异于M 的两点,以AB 为直径的圆过点M .(1)证明:直线AB 过定点;(2)过点M 作直线AB 的垂线,求垂足N 的轨迹方程. 【解答】证明:(Ⅰ)点(2,1)M 在抛物线2:C y ax =上,14a ∴=,解得14a =,第4页(共15页)∴抛物线的方程为24x y =,由题意知,故直线AB 的斜率存在,设直线AB 的方程为y kx m =+,设1(A x ,1)y ,2(B x ,2)y ,联立得24x yy kx m⎧=⎨=+⎩,消y 可得2440x kx m --=,得124x x k +=,124x x m =,由于MA MB ⊥,∴0MA MB =,即1212(2)(2)(2)(2)0x x y y --+--=,即121212122()()50x x x x y y y y -++-++=,(*)1212()2y y k x x m +=++,22121212()y y k x x km x x m =+++,代入(*)式得224865k k m m +=-+,即22(22)(3)k m +=-, 223k m ∴+=-,或223k m +=-,即25m k =+,或21m k =-+,当25m k =+时,直线AB 方程为(2)5y k x =++,恒过定点(2,5), 经验证,此时△0>,符合题意,当21m k =-+时,直线AB 方程为(2)5y k x =++,恒过定点(2,1),不合题意,∴直线AB 恒过点(2,5)-,(Ⅱ)由(Ⅰ)设直线AB 恒过定点(2,5)R -,则点N 的轨迹是以MR 为直径的圆且去掉(2,1)±,方程为22(3)8x y +-=,1y ≠.第5页(共15页)4.如图已知椭圆22221(0)x y a b a b+=>>的离心率为32,且过点(0,1)A .(1)求椭圆的方程;(2)过点A 作两条互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 恒过定点P .并求点P 的坐标.【解答】解:(1)因为椭圆22221(0)x y a b a b+=>>3,且过点(0,1)A .所以1b =,3c a =, 所以2a =,1b =所以椭圆C 的方程为:2214x y +=⋯(3分)(2)直线MN 恒过定点3(0,)5P -,下面给予证明:设直线1l 的方程为1y kx =+,联立椭圆方程,消去y 得;22(41)80k x kx ++=,解得222814,4141M M k k x y k k -=-=++ 同理可得:22284,(844N N k k x y k k -==⋯++则直线MN 的斜率22222221441414885414k k k k k k k k k k k ----++'==--++,第6页(共15页)则直线MN 的方程为22221418()41541k k ky x k k k ---=+++,即22222141813()4154155k k k k y x x k k k k ---=++=-++,则直MN 过定点3(0,)5-.故直线MN 恒过定点P 3(0,)5-.⋯(12分)B .(1)证明:直线AB 过定点;面积.【解答】解:(1)证明:22x y =的导数为y x '=,设切点1(A x ,1)y ,2(B x ,2)y ,即有2112x y =,2222x y =,切线DA 的方程为111()y y x x x -=-,即为2112x y x x =-,切线DB 的方程为2222x y x x =-,联立两切线方程可得121()2x x x =+,可得121122y x x ==-,即121x x =-, 直线AB 的方程为2112112()2x y y y x x x x --=--, 即为211211()()22x y x x x x -=+-,第7页(共15页)可化为1211()22y x x x =++,可得AB 恒过定点1(0,)2;(2)法一:设直线AB 的方程为12y kx =+, 由(1)可得122x x k +=,121x x =-, AB 中点21(,)2H k k +,由H 为切点可得E 到直线AB 的距离即为||EH ,15||-= 解得0k =或1k =±, 即有直线AB 的方程为12y =或12y x =±+, 由12y =可得||2AB =,四边形ADBE 的面积为12(12)32ABE ABD S S ∆∆+=⨯⨯+=; 由12y x =±+,可得||1444AB =+=,此时1(1,)2D ±-到直线AB11|1|++= 5(0,)2E到直线AB15||-= 则四边形ADBE的面积为142ABE ABD S S ∆∆+=⨯⨯=;法二:(2)由(1)得直线AB 的方程为12y tx =+.第8页(共15页)由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是122x x t +=,121x x =-,21212()121y y t x x t +=++=+,212|||2(1)AB x x t =-=+.设1d ,2d 分别为点D ,E 到直线AB的距离,则1d =2d =因此,四边形ADBE的面积2121||()(2S AB d d t =+=+. 设M 为线段AB 的中点,则21(,)2M t t +.由于EM AB ⊥,而2(,2)EM t t =-,AB 与向量(1,)t 平行,所以2(2)0t t t +-=.解得0t =或1t =±.当0t =时,3S =;当1t =±时,S =综上,四边形ADBE 的面积为3或(1)求椭圆方程;(2)过直线2y =上的点P 作椭圆的两条切线,切点分别为B ,C ①求证:直线BC 过定点; ②求OBC ∆面积的最大值;【解答】(1)解:椭圆22221(0)x y a b a b+=>>过点(2,1)A ,离心率e =,第9页(共15页)∴22411a b +=,c a = 28a ∴=,22b =,∴椭圆方程为22182x y +=;(2)①证明:设0(P x ,2),1(B x ,1)y ,2(C x ,2)y ,则切线11:182x x y y PB +=,22:182x x y y PC +=, 0(P x ,2)代入,可得直线BC 的方程为018x xy +=, ∴直线BC 过定点(0,1);②018x xy +=代入椭圆方程可得2200(1)4016x x x x +--=, 0122116x x x x∴+=+,12204116x x x -=+,1201||2OBCS x x ∆∴=-=, 令2016u x =+,则1216OBC S ∆=,OBC ∴∆面积的最大值为2.(1)求抛物线C 的方程;(2)动直线:1()l x my m R =+∈与抛物线C 相交于A ,B 两点,问:在x 轴上是否存在定点||||DA DBDA DB +与向量OD 共线(其中存在,求出点D 的坐标;若不存在,请说明理由.第10页(共15页)【解答】解:(1)抛物线2:2(0)C y px p =>的焦点为(2p,0), 准线方程为2px =-, 即有05||22p pPF x =+=,即02x p =, 则2164p =,解得2p =,则抛物线的方程为24y x =;(2)在x 轴上假设存在定点(,0)D t (其中0)t ≠,使得||||DA DB DA DB +与向量OD 共线, 由||DA DA ,||DBDB 均为单位向量,且它们的和向量与OD 共线, 可得x 轴平分ADB ∠, 设1(A x ,1)y ,2(B x ,2)y ,联立1x my =+和24y x =,得2440y my --=,△216(1)0m =+>恒成立.124y y m +=,124y y =-.①设直线DA 、DB 的斜率分别为1k ,2k , 则由ODA ODB ∠=∠得,第11页(共15页) 121221121212()()()()y y y x t y x t k k x t x t x t x t -+-+=+=---- 122112121212(1)(1)2(1)()()()()()y my t y my t my y t y y x t x t x t x t +-++-+-+==----, 12122(1)()0my y t y y ∴+-+=,②联立①②,得4(1)0m t -+=,故存在1t =-满足题意,综上,在x 轴上存在一点(1,0)D -,使得x 轴平分ADB ∠, 即||||DA DB DA DB +与向量OD 共线. 8.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;率均存在且斜率之和为2-,证明:直线l 过定点.【解答】解:(1)由圆22:(2)1M x y ++=,可知圆心(2,0)M -,半径1;圆22:(2)49N x y -+=,圆心(2,0)N ,半径7.设动圆的半径为R ,动圆P 与圆M 外切并与圆N 内切,||||1(7)8PM PN R R ∴+=++-=, 而||4NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为半长轴长的椭圆, 4a ∴=,2c =,22212b a c =-=.∴曲线C 的方程为2211612x y +=.第12页(共15页)(2)证明:直线l 的斜率不存在时,设直线l 的方程为:x t =,(44)t -. 1(,)A t y ,2(,)B t y ,120y y +=.2AQ BQ k k +====-.解得t =此时直线l的方程为:x =.直线l 的斜率存在时,设直线l 的方程为:y kx m =+,.设1(A x ,1)y ,2(B x ,2)y . 联立2211612y kx m x y =+⎧⎪⎨+=⎪⎩,化为:222(34)84480k x kmx m +++-=. 则122834km x x k +=-+,212244834m x x k -=+,12122AQ BQ y y k k x x --+=+=-,11y kx m =+,22y kx m =+.化为:1212(22)()0k x x m x x ++-+=,代入化为:k =∴直线l的方程为:y m =+.第13页(共15页)令23x =,可得23y =-.可得直线l 过定点(23,23)-.9.如图,椭圆222:1(02)4x y E b b+=<<,点(0,1)P 在短轴CD 上,且2PC PD =- (Ⅰ)求椭圆E 的方程及离心率;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.第14页(共15页)【解答】解:(Ⅰ)由已知,点C ,D 的坐标分别为(0,)b -,(0,)b . 又点P 的坐标为(0,1),且2PC PD =-,即212b -=-, 解得23b =.∴椭圆E 方程为22143x y +=. 221c a b =-,∴离心率12e =; (Ⅱ)当直线AB 的斜率存在时,设直线AB 的方程为1y kx =+,A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y .联立221431x y y kx ⎧+=⎪⎨⎪=+⎩,得22(43)880k x kx ++-=. 其判别式△0>,122843k x x k -+=+,122843x x k -=+. 从而,12121212[(1)(1)]OA OB PA PB x x y y x x y y λλ+=+++-- 21212(1)(1)()1k x x k x x λ=+++++22228(1)(1)4342234343k k k k λλλ-++-+-==--++,第15页(共15页)当2λ=时,24223743k λλ---=-+, 即7OA OB PA PB λ+=-为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时2347OA OB PA PB OC OD PC PD λ+=+=--=-, 故存在常数2λ=,使得OA OB PA PB λ+为定值7-.。
第8章 命题探秘2 第1课时 圆锥曲线中的定点、定值问题 课件(共39张PPT)
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
法二:设T(x,y),Mx3,14x23,Nx4,14x24.
由xx2324= =44yy34, 得(x3+x4)(x3-x4)=4(y3-y4),
所以x3+4 x4=xy33--xy44. 设Q(x,y5),则直线MN的斜率k=yx5--12,
所以直线AB过定点0,21. (2)略.
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
02
典型考题·技法突破
技法一 技法二 技法三 技法四
直接推理解决直线过定点问题 直接推理解决曲线过定点问题 定直线的方程问题 直接推理解决定值问题
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
点评:动直线l过定点问题的基本思路 设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t= mk,得y=k(x+m),故动直线过定点(-m,0).
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
[思维流程]
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
[解] (1)设A(x1,y1),B(x2,y2). 因为F0,p2,所以过F且斜率为1的直线的方程为y=x+p2. 由y=x+p2, 消去y并整理,得x2-2px-p2=0,易知Δ>0.
圆锥曲线定点定值及其他常用结论个人整理,已经没错误
圆锥曲线定点定值及其他常用结论一、直线过定点问题过定点模型:是圆锥曲线上的两动点,是一定点,其中分别为的倾斜角,则有下面的结论:、为定值直线恒过定点;、为定值直线恒过定点;、直线恒过定点.方法:要证明直线过定点,只需要找到与之间的关系即可.确定定点,可以证明任意两个斜率相等即可.二、定值问题基本思路:转化为与两点相关的斜率与的关系式的关系式代数式形式的定值(多个参数)结论:①若代数式表达式结果为分式,且为定值,则系数对应成比例;形如,若,则该式为定值,与无关;(注意是变量,具有任意性,是主元)②若代数式表达式结果为整式,则无关参数的系数为0.例如:,当即时,该式为定值与无关. (注意是变量,具有任意性,是主元)三、椭圆经典结论1、过椭圆(上任一点任意作两条倾斜角互补的直线交椭圆于两点,则直线有定向且(常数).(求偏导可得到)(类似结论适合于双曲线,抛物线)2、设椭圆()的两个焦点为(异于长轴端点)为椭圆上任意一点,在中,记,,,则有.3. 椭圆与直线有公共点的充要条件是4.已知椭圆(),为坐标原点,为椭圆上两动点,且.(对原点张直角)1); 2)的最大值为; 3)的最小值是.4)直线PQ必经过一个定点;5)点到直线的距离为定值:.5 . 过椭圆()的右焦点作直线交椭圆于两点,弦的垂直平分线交轴于,则.类比.过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则.6.设椭圆(a>b>0),M(m,0)或(0,m)为其对称轴上除中心,顶点外的任一点,过M引一条直线与椭圆相交于P、Q两点,则直线AP、AQ(AA为对称轴上的两顶点)的交点N在直线:(或)上.(用极点与极线直接写出来)7、椭圆中的过定点模型:是椭圆上异于的两动点,其中分别为的倾斜角,则可以得到下面几个充要的结论:(手电筒模型)直线恒过定点类比.给定双曲线C:,对C上任意给定的点,它的任一直角弦必须经过定点(.8、抛物线中的过定点模型:是抛物线上异于的两动点,其中分别为的倾斜角,则可以得到下面充要的结论:(手电筒模型)直线恒过定点特别地直线恒过定点.9、设点是椭圆()上异于长轴端点的任一点,为其焦点记,则 (1). (2).(双曲线(a>0,b>0)中,,其中θ=∠FPF.)10.椭圆的参数方程是,椭圆上的动点可设对于抛物线上的动点的坐标可设为,(抛物线独有的一点两设)以简化计算.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上)(4).双曲线焦点到渐近线的距离总是.顶点到渐近线的距离为(5).双曲线称为等轴双曲线,其渐近线方程为,离心率.抛物线常用设为过抛物线焦点的弦,,直线的倾斜角为,则1. 2.3. 4. 5 .圆锥曲线的切线问题(用极点与极线直接写出来)(证明需要求偏导)1.过圆C:(x-a)+(y-b)=R上一点P(x,y)的切线方程为(x-a)(x-a)+(y-b)(y-b)=R.2. 若在椭圆上,则以为切点的切线的椭圆的切线方程是.3.若在双曲(a>0,b>0)上,则过的双曲线的切线方程是.4.已知点M(x,y)在抛物线C:y=2px(p≠0)上时,M为切点的切线l:yy=p(x+x).(切点弦结论完全相同,用极点与极线直接写出来)圆锥曲线的中点弦问题(点差法)(广义的垂径定理)(也适合于相切情况)AB 是椭圆的不平行于对称轴的弦,M为AB的中点,则=e-1,即。
圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题
圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。
专题01 圆锥曲线中的定点、定值问题
高中数学 ︵ 圆锥曲线 ︶培优篇定点、定值问题曲线过定点某个量为定值用参数表示曲线方程 用参数表示该量令参数系数为0或某值,解出相应的x 、y 的值 令参数系数为0或某值化简使该量为定值选参、用参、消参,求出定点或定值高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学︵ 圆锥曲线 ︶培优篇 2|||1AF .高中数学 ︵ 圆锥曲线 ︶培优篇 方法联立,第一种,假设直线AB 的方程,第二种假设直线P 2A 和P 2B . 满分解答(1) 根据椭圆对称性可得,P 1(1,1),P 4(1,)不可能同时在椭圆上,P 3(–1,),P 4(1,)一定同时在椭圆上,因此可得椭圆经过P 2(0,1),P 3(–1,),P 4(1,). 把P 2,P 3坐标代入椭圆方程得2221=13141b a b,,解得224,1a b ,故椭圆C 的方程为2214x y ;(2)解1 ①当直线l 的斜率不存在时,设:l x m ,(,),(,)A A A m y B m y ,此时221121A A P A P B y y k k m m m,解得2m ,此时直线l 过椭圆右顶点,不存在两个交点,故不满足.②当直线l 的斜率存在时,设:(1)l y kx t t ,1122(,),(,)A x y B x y ,则2214y kx t x y ,,消去y 得 222(14)8440k x tkx t , 2216(41)k t ,2121222841,1414tk t x x x x k k,此时 22121211P A P B y y k k x x21212112()()x kx t x x kx t x x x21212(1)()(1)(8)224(1)t x x t kt k k x x t. 由于1t ,所以22222111P A P B kt kk k k t t ,即21t k ,此时32(1)t ,存在1t ,使得0 成立,22222高中数学 ︵ 圆锥曲线 ︶培优篇所以直线l 的方程为(2)1y k x ,直线l 必过定点(2,1) .解2 由题意可得直线2P A 与直线2P B 的斜率一定存在,不妨设直线2P A 为1y kx , 则直线2P B 为 11y k x .由22114y kx x y ,,得224180k x kx ,设 11,A x y , 22,B x y 此时可得:222814,4141k k A k k,同理可得 22281141,411411k k B k k.此时可求得直线l 的斜率为:2222212122141144141181841411ABk k k k y y k k x x k k k ,化简可得2112AB k k,此时满足12k .当12k 时,,A B 两点重合,不合题意.当12k 时,直线方程为: 22221814414112k k y x k k k, 即2244112k k x y k,当2x 时,1y ,因此直线恒过定点 2,1 .思路点拨第(1)题只需证明0AC BC.第(2)题要先求圆的方程,令y=0即可求出在y 轴上弦长.求圆方程可以用标准式方程,也可以用一般式方程.当然,本题还可以利用相交弦定理来解.高中数学 ︵ 圆锥曲线 ︶培优篇 满分解答(1)设 12,0,,0A x B x ,则12,x x 是方程220x mx 的根,所以1212,2x x m x x ,则 1212,1,112110AC BC x x x x.所以不会能否出现AC ⊥BC 的情况.(2)解1 由于过A ,B ,C 三点的圆的圆心必在线段AB 垂直平分线上,设圆心 00,E x y ,则12022x x mx. 由EA EC得 22221212100+122x x x x x y y,化简得 1201122x x y ,所以圆E 的方程为22221112222m m x y.令0x 得121,2y y ,所以过A ,B ,C 三点的圆在y 轴上截得的弦长为 123 .所以,过A ,B ,C 三点的圆在y 轴上截得的弦长为定值解2 由于BC 的中点坐标为21(.22x ,可得BC 的中垂线方程为221()22xy x x . 由(1)可得12x x m ,所以AB 的中垂线方程为2mx .联立2221(22m x x y x x ,,又22220x mx , 可得212m x y ,,所以过,,A B C 三点的圆的圆心坐标为1(,)22m,半径2r ,故圆在y 轴上截得的弦长为3 ,即过A B C ,,三点的圆在y 轴上的截得的弦长为定值.解3 设圆的方程为220x y Dx Ey F , 令0y ,得20x Dx F ,由题意,2D m F ,把0,1x y 代入圆的方程,得10E F ,即1E .故圆的方程为:2220x y mx y .高中数学 ︵ 圆锥曲线 ︶培优篇 11令0x ,得220y y ,所以121,2y y ,故12|||1(2)|3y y .所以过,,A B C 三点的圆在y 轴上截得的弦长为定值3.解4设过A ,B ,C 三点的圆与y 轴的另一个交点为D ,由122x x 可知原点O 在圆内,由相交弦定理可得122OD OC OA OB x x ,又1OC ,所以2OD ,所以,过A ,B ,C 三点的圆在y 轴上截得的弦长为3OC OD ,为定值.思路点拨第(1)题可以直接求出a、b;第(2)题用参数表示AN BM ,可以设 00,P x y ,用00x y 、做参数,也可以设 2cos ,sin P , 用做参数. 满分解答(1)由已知,1,122c ab a ,又222a b c ,解得2,1,a b c 所以椭圆的方程为2214x y .(2)解1 设椭圆上一点 00,P x y ,则220014x y .由于直线PA 的方程: 0022y y x x ,令0x ,得0022M y y x, 所以00212y BM x; 直线PB 的方程:0011y y x x ,令0y ,得001N x x y, 所以0021x AN y. 因为220014x y ,所以220044x y ,从而高中数学 ︵ 圆锥曲线 ︶培优篇 120000002200000000002222214448422x y x y x y x y x y x y x y x y2200000000004444484=422y y x y x y x y x y .故AN BM 为定值.解2 设椭圆 上一点 2cos ,sin P ,则直线P A 的方程: sin 22cos 2y x,令0x ,得sin 1cos M y, 所以sin cos 11cos BM;直线PB 的方程:sin 112cos y x,令 0y ,得2cos 1sin N x, 所以2sin 2cos 21sin AN.2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM。
专题14 圆锥曲线中的定值定点问题(解析版)
专题14 圆锥曲线中的定值定点问题1.(2022·全国·高考真题(文))已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)- 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T ,由MT TH =得到(5,H -.求得HN 方程:(22y x =+-,过点(0,2)-. ①若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++- 可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=, 将(*)代入,得222241296482448482436480,k k k k k k k +++---+--= 显然成立,综上,可得直线HN 过定点(0,2).-2.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【解析】 【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方程结合弦长公=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +=⋅=,所以MN所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN =3.(2022·青海·海东市第一中学模拟预测(理))已知椭圆M :22221x y a b +=(a >b>0AB为过椭圆右焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点()2,0P ,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,当12111k k +=时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.【答案】(1)22142x y += (2)存在,()2,4-- 【解析】 【分析】(1)由题意求出,,a b c ,即可求出椭圆M 的方程.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y ,联立直线l 的方程与椭圆方程()()222242x y x -+=--,得()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭,则12114114n k k m +=-=+,化简得14m n +=-,即可求出直线l 恒过的定点. (1)因为22221x y a b +=(a >b >0222b a =, 所以a =2,c =b M 的方程为22142x y +=.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y , 由椭圆的方程2224x y +=,得()()222242x y x -+=--.联立直线l 的方程与椭圆方程,得()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+,即()()()221424220m x n x y y +-+-+=,()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭, 所以12121222114114x x nk k y y m--+=+=-=+, 化简得14m n +=-,代入直线l 的方程得()1214m x m y ⎛⎫-+--= ⎪⎝⎭, 即()1214m x y y ---=,解得x =-2,y =-4,即直线l 恒过定点()2,4--. 4.(2022·上海松江·二模)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为1F 、2F ,且122F F =,直线l 交椭圆Γ于不同的两点M 和N . (1)求椭圆Γ的方程;(2)若直线l 的斜率为1,且以MN 为直径的圆经过点A ,求直线l 的方程; (3)若直线l 与椭圆Γ相切,求证:点1F 、2F 到直线l 的距离之积为定值.【答案】(1)22143x y +=;(2)2y x =-或27y x =-; (3)证明见解析. 【解析】 【分析】(1)根据焦距及椭圆的顶点求出,a b 即可得出;(2)设直线l 的方程为 y x b =+,联立方程,由根与系数的关系及0AM AN ⋅=求解即可;(3)分直线斜率存在与不存在讨论,当斜率不存在时直接计算可得,当斜率存在时,设直线l 的方程为y kx b =+,根据相切求出,b k 关系,再由点到直线的距离直接计算即可得解.(1)①1222F F c == ①1c =,①2a =,由222a b c =+ 得241=+b ,①22=34=b a ,所以椭圆Γ的方程:22143x y +=;(2)①直线l 的斜率为1,故可设直线l 的方程为 y x b =+, 设1(M x ,1)y ,2(N x ,2)y由22143y x bx y =+⎧⎪⎨+=⎪⎩ 可得22784120x bx b ++-=, 则1287b x x +=-,2124127b x x -=,①以MN 为直径的圆过右顶点A ,①0AM AN ⋅=,①1212(2)(2)0x x y y --+= ①21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++2241282(2)4077b bb b -=⋅--⋅++=,整理可得271640b b ++=,①2b =-或27b =-,①2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-, 当2b =-或27b =-时,均有0∆>所以直线l 的方程为2y x =-或27y x =-. (3)椭圆Γ左、右焦点分别为1(1,0)F -、2(1,0)F①当直线l 平行于y 轴时,①直线l 与椭圆Γ相切,①直线l 的方程为2x =±, 此时点1F 、2F 到直线l 的到距离分别为121,3d d ==,①123d d ⋅=. ①直线l 不平行于y 轴时,设直线l 的方程为 y kx b =+,联立2234120y kx b x y =+⎧⎨+-=⎩,整理得222(34)84120k x kbx b +++-=, 222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-,①直线l 与椭圆Γ相切,①0∆=,①2234b k =+ ①1(1,0)F -到直线l的距离为1d ,2(1,0)F -到直线l的距离为2=d①2222212222(34)33111k bk k k d d k k k --++⋅=====+++, ①点1F 、2F 到直线l 的距离之积为定值由3.5.(2022·上海浦东新·二模)已知12F F 、分别为椭圆E :22143x y+=的左、右焦点, 过1F 的直线l 交椭圆E于,A B 两点.(1)当直线l 垂直于x 轴时,求弦长AB ; (2)当2OA OB ⋅=-时,求直线l 的方程;(3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线6x =于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定点坐标. 【答案】(1)3(2))1y x =+(3)证明见解析;定点()()4080,,,【解析】 【分析】(1)将1x =-代入椭圆方程求解即可;(2)由(1)知当直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立直线与椭圆的方程,得出()22223484120k xk x k +++-=,设()()1122A x y B x y ,,,可得韦达定理,代入2OA OB ⋅=-计算可得斜率;(3)分析当直线l 的斜率不存在时,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,再以CD 为直径的圆的方程,令0y =,代入韦达定理化简可得定点 (1)由题知()110F -,,将1x =-代入椭圆方程得332y AB =±∴=, (2)由(1)知当直线l 的斜率不存在时,331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,此时14OA OB =,不符合题意,舍去∴直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立()221431x y y k x ⎧+=⎪⎨⎪=+⎩得()22223484120k x k x k +++-=,设()()1122A x y B x y ,,,,则2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩, 由()()()()2222222221212121212122224128512111()1343434k k k OA OB x x y y x x k x k x k x xk x x k kk k k k k ----=+=+++=++++=+++=+++,解得22k k ==,∴直线l 的方程为)1y x =+..(3)①当直线l 的斜率不存在时,()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为112y x =-+,C 点坐标为()62-,, 直线BT 的方程为112y x =-,D 点坐标为()62,,以CD 为直径的圆方程为()2264x y -+=,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,令0y =,得48x x ==,.即圆过点()()4080,,,. ①当直线l 的斜率存在时,同(2)联立,直线AT 的方程为()1122y y x x =--, C 点坐标为11462y x ⎛⎫ ⎪-⎝⎭,,同理D 点坐标为22462y x ⎛⎫⎪-⎝⎭,,以CD 为直径的圆的方程为()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭,令0y =,得()2121212161236024y y x x x x x x -++=-++,由()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++, 得212320x x -+=,解得48x x ==,,即圆过点()()4080,,,. 综上可得,以CD 为直径的圆恒过定点()()4080,,,. 6.(2022·上海长宁·二模)已知,A B 分别为椭圆222Γ:1(1)x y a a+=>的上、下顶点,F 是椭圆Γ的右焦点,M 是椭圆Γ上异于,A B 的点.(1)若π3AFB ∠=,求椭圆Γ的标准方程 (2)设直线:2l y =与y 轴交于点P ,与直线MA 交于点Q ,与直线MB 交于点R ,求证:PQ PR ⋅的值仅与a 有关(3)如图,在四边形MADB 中,MA AD ⊥,MB BD ⊥,若四边形MADB 面积S 的最大值为52,求a 的值.【答案】(1)2214x y +=(2)证明见解析 (3)2a = 【解析】 【分析】(1)根据已知判断AFB △形状,然后可得;(2)设()11,M x y ,表示出直线AM 、BM 的方程,然后求Q 、R 的坐标,直接表示出所求可证; (3)设()11,M x y ,()44,D x y ,根据已知列方程求解可得14,x x 之间关系,表示出面积,结合已知可得. (1)因为AF BF =,π3AFB ∠=,所以AFB △是等边三角形, 因为2AB =,AF a =,所以2a =,得椭圆的标准方程为2214x y +=.(2)设()11,M x y ,()2,2R x ,()3,2Q x , 因为()0,1A ,()0,1B -所以直线AM 、BM 的方程分别为 111:1AM y l y x x -=+, 111:1BM y l y x x +=-, 所以12131x x y =+,1311x x y =-, 又221121x y a-=所以2211221331x PQ PR x x a y ⋅===-,所以PQ PR ⋅的值仅与a 有关. (3)设()11,M x y ,()44,D x y , 因为MA DA ⊥,MB DB ⊥,所以()()1414110x x y y +--=,()()1414110x x y y +++= 两式相减得41y y =-,带回原式得214110x x y +-=,因为221121x y a+=,所以142x x a =-, 1412111MAB DABS SSx x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭因为S 的最大值为52 ,所以152a a += ,得2a =.7.(2022·福建省福州格致中学模拟预测)圆O :224x y +=与x 轴的两个交点分别为()12,0A -,()22,0A ,点M 为圆O 上一动点,过M 作x 轴的垂线,垂足为N ,点R 满足12NR NM = (1)求点R 的轨迹方程;(2)设点R 的轨迹为曲线C ,直线1x my =+交C 于P ,Q 两点,直线1A P 与2A Q 交于点S ,试问:是否存在一个定点T ,当m 变化时,2A TS 为等腰三角形【答案】(1)2214x y +=(2)存在,证明见解析 【解析】 【分析】(1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,根据题意得0x x =,012y y =,再代入圆224x y +=即可求解;(2)先判断斜率不存在的情况;再在斜率存在时,设直线l 的方程为1x my =+,与椭圆联立得:()224230m y my ++-=,12224m y y m -+=+,12234y y m -=+,再根据题意求解判断即可. (1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,又12NR NM =,可得0x x =,012y y =, 即0x x =,02y y =代入22004x y +=可得()2224x y +=,化简得:2214x y +=,故点R 的轨迹方程为:2214x y +=.(2)根据题意,可设直线l 的方程为1x my =+, 取0m =,可得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭, 可得直线1A P的方程为y x =+,直线2A Q的方程为y x =-联立方程组,可得交点为(1S ;若1,P ⎛ ⎝⎭,Q ⎛ ⎝⎭,由对称性可知交点(24,S , 若点S 在同一直线上,则直线只能为l :4x =上,以下证明:对任意的m ,直线1A P 与直线2A Q 的交点S 均在直线l :4x =上. 由22114x my x y =+⎧⎪⎨+=⎪⎩,整理得()224230m y my ++-= 设()11,P x y ,()22,Q x y ,则12224m y y m -+=+,12234y y m -=+ 设1A P 与l 交于点()004,S y ,由011422y y x =++,可得10162y y x =+ 设2A Q 与l 交于点()004,S y ',由022422y y x '=--,可得20222y y x '=-,因为()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+- ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-, 因为00y y '=,即0S 与0S '重合, 所以当m 变化时,点S 均在直线l :4x =上,因为()22,0A ,()4,S y ,所以要使2A TS 恒为等腰三角形,只需要4x =为线段2A T 的垂直平分线即可,根据对称性知,点()6,0T . 故存在定点()6,0T 满足条件.8.(2022·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,椭圆C 的左、右顶点分别为A ,B ,上顶点为D ,1AD BD ⋅=-. (1)求椭圆C 的方程;(2)斜率为12的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P (直线l 不经过点P ),使得直线PM 与直线PN 的倾斜角互补,若存在这样的点P ,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭【解析】 【分析】(1)利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; (2)设直线l 的方程为12y x m =+,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知(),0A a -,(),0B a ,()0,D b ,所以(),AD a b =,(),BD a b =-,所以2221AD BD a b c ⋅=-+=-=-,解得1c =. 又椭圆C 的离心率为12,所以22a c ==,b故椭圆C 的方程为22143x y +=.(2)假设存在这样的点P ,设点P 的坐标为()00,x y ,点M ,N 的坐标分别为()11,x y ,()22,x y ,设直线l 的方程为12y x m =+. 联立方程221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 后整理得2230x mx m ++-=.()222431230m m m ∆=--=->,得22m -<<, 有12212,3.x x m x x m +=-⎧⎨=-⎩ 若直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+---- ()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----.所以0000230,230,x y y x -=⎧⎨-=⎩解得001,32x y =⎧⎪⎨=⎪⎩或001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭.9.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知椭圆()2222:10x y C a b a b +=>>的两个焦点分别为1F 和2F ,椭圆C 上一点到1F 和2F 的距离之和为4,且椭圆C(1)求椭圆C 的方程;(2)过左焦点1F 的直线l 交椭圆于A 、B 两点,线段AB 的中垂线交x 轴于点D (不与1F 重合),是否存在实数λ,使1AB DF λ=恒成立?若存在,求出λ的值;若不存在,请说出理由.【答案】(1)2214x y +=(2)存在,λ=【解析】 【分析】(1)由椭圆的定义可求得a 的值,根据椭圆的离心率求得c 的值,再求出b 的值,即可得出椭圆C 的方程; (2)分析可知,直线l 不与x 轴垂直,分两种情况讨论,一是直线l 与x 轴重合,二是直线l 的斜率存在且不为零,设出直线l 的方程,与椭圆方程联立,求出AB 、1DF ,即可求得λ的值. (1)解:由椭圆的定义可得24a =,则2a =,因为c ea ==c∴=1b ==, 因此,椭圆C 的方程为2214x y +=.(2)解:若直线l 与x 轴垂直,此时,线段AB 的垂直平分线为x 轴,不合乎题意; 若直线l 与x 轴重合,此时,线段AB 的垂直平分线为y 轴,则点D 与坐标原点重合,此时,143AB DF λ==若直线l 的斜率存在且不为零时,设直线l 的方程为)0x my m =≠,设点()11,A x y 、()22,B x y , 联立2244x my x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>,由韦达定理可得12y y +=,12214y y m =-+, 则()121222m y y x x ++= 所以,线段AB的中点为M ⎛ ⎝⎭, 所以,线段AB的垂直平分线所在直线的方程为y m x ⎛=- ⎝⎭,在直线方程y m x ⎛=- ⎝⎭中,令0y =可得x =,故点D ⎛⎫ ⎪ ⎪⎝⎭,所以,)21214m DF m +==+,由弦长公式可得()22414m AB m +==+,因此,()2221414m ABDF m λ+===+综上所述,存在λ=1AB DF λ=恒成立. 10.(2022·河南安阳·模拟预测(文))已知椭圆2222:1(0)C b b x a a y +>>=上一个动点N 到椭圆焦点(0,)F c 的距离的最小值是2,且长轴的两个端点12,A A 与短轴的一个端点B 构成的12A A B △的面积为2.(1)求椭圆C 的标准方程;(2)如图,过点4(0,)M -且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线1A P 与直线2A Q 的交点T 在定直线上.【答案】(1)2214y x +=(2)证明见解析 【解析】 【分析】(1)根据题意得到22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,再解方程组即可.(2)首先设直线:4l y kx =-,()11,P x y ,()22,Q x y ,与椭圆联立,利用韦达定理得到12284kx x k +=+,122124x x k =+.1112:2PA y l y x x ++=,2222:2QA y l y xx --=,根据2123y y +=--,即可得到1y =-,从而得到直线1A P 与直线2A Q 的交点T 在定直线1y =-上. (1)由题知:22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪⎩,即:椭圆22:14+=y C x(2)设直线:4l y kx =-,()11,P x y ,()22,Q x y ,()10,2A -,()20,2A ,()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩. 12284k x x k +=+,122124x x k =+. 则1112:2PA y l y x x ++=,2222:2QA y l y x x --=, 则()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----, 因为()1212212342k kx x x x k ==++, 所以()()12212121213232123293362x x x x x y y x x x x x +--+===---++-,解得1y =-. 所以直线1A P 与直线2A Q 的交点T 在定直线1y =-上.11.(2022·安徽省舒城中学三模(理))已知椭圆22:184x y Γ+=,过原点O 的直线交该椭圆Γ于A ,B 两点(点A 在x 轴上方),点()4,0E ,直线AE 与椭圆的另一交点为C ,直线BE 与椭圆的另一交点为D .(1)若AB 是Γ短轴,求点C 坐标;(2)是否存在定点T ,使得直线CD 恒过点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)82(,)33;(2)存在,8(,0)3T .【解析】 【分析】(1)两点式写出直线AE ,联立椭圆方程并结合韦达定理求出C 坐标; (2)设00(,)A x y 有00:(4)4=--y AE y x x ,联立椭圆求C 坐标,同理求D 坐标,讨论00x ≠、00x =,判断直线CD 恒过定点即可. (1)由题设,(0,2)A ,而()4,0E ,故直线AE 为240x y +-=,联立22:184x y Γ+=并整理得:23840y y -+=,故83A C y y +=,而2A y =,所以23C y =,代入直线AE 可得284233C x =-⨯=,故C 坐标为82(,)33.(2)设00(,)A x y ,则00:(4)4=--y AE y x x , 由()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩,故2220202(4)8(4)+-=-y x x x , 由韦达定理有20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-, 所以00833C x x x -=-,故003C y y x =-,同理得:00833D x x x +=+,003D y y x -=+,当00x ≠时,取8(,0)3T ,则0000003383833TCy x yk x x x -==----,同理003TD y k x =-, 故,,T C D 共线,此时CD 过定点8(,0)3T .当00x =时,83C D x x ==,此时CD 过定点8(,0)3T .综上,CD 过定点8(,0)3T .12.(2022·广东茂名·二模)已知圆O :x 2+y 2=4与x 轴交于点(2,0)A -,过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过6(,0)5-作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)2212x y +=;(2)证明见解析. 【解析】 【分析】(1)运用相关点法即可求曲线C 的方程;( 2)首先对直线l 的斜率是否存在进行讨论,再根据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS 的斜率12,k k ,再根据斜率的表达式进行化简运算,得出结论. (1)设N (x 0,y 0),则H (x 0,0), ①N 是MH 的中点,①M (x 0,2y 0),又①M 在圆O 上,2200(2)4y x +=∴,即220014x y +=; ①曲线C 的方程为:2214x y +=;(2)①当直线l 的斜率不存在时,直线l 的方程为:65x =-,若点P 在轴上方,则点Q 在x 轴下方,则6464(,),(,)5555P Q ---,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,①64(,)55S ,1244001551,,6642255APAS k k k k --======-++124k k ∴=;若点P 在x 轴下方,则点Q 在x 轴上方, 同理得:646464(,),(,),(,)555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++,①k 1=4k 2;①当直线l 的斜率存在时,设直线l 的方程为:6,5x my =-,由6,5x my =-与2214x y +=联立可得221264(4)0525m m y y +--=, 其中22144644(4)02525m m ∆=+⨯+⨯>,设1122(,),(,)P x y Q x y ,则22(,)S x y --,则1212221264525,44m y y y y m m -+==++,①112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+- 则121122121216()2542()5y my k y x k x y my y --=⋅=++121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++,①k 1=4k 2. 13.(2022·安徽·合肥市第八中学模拟预测(文))生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点1F 射出的光线经过椭圆镜面反射到上焦点2F ,这束光线的总长度为4,且反射点与焦点构成的三角e < (1)求椭圆C 的标准方程;(2)若从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线4y =上的M 、N两点,若AB 连线过椭圆的上焦点2F ,试问,直线BM 与直线AN 能交于一定点吗?若能,求出此定点:若不能,请说明理由.【答案】(1)22143y x +=(2)能,定点为(0,85)【解析】 【分析】(1)由条件列方程求,,a b c 可得椭圆方程; (2)联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为22221(0)y x a b a b+=>>,则24a =,122c b ⨯⨯222a b c =+又e <所以21a b c ===,,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为1y kx =+,由221431y x y kx ⎧+=⎪⎨⎪=+⎩,得22(34)690k x kx ++-=, 222(6)36(34)1441440k k k ∆=++=+>设()()1122A x y B x y ,,,,则121222693434k x x x x k k --+==++,.. 由对称性知,若定点存在,则直线BM 与直线AN 交于y 轴上的定点,由114y y x x y ⎧=⎪⎨⎪=⎩得1144x M y ⎛⎫ ⎪⎝⎭,,则直线BM 方程为211121444()4y x y x x y x y --=--, 令0x =,则 122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又12123()2x x kx x +=, 则21212112214()4()83554()()22x x x x y x x x x x x --===-++-,所以,直线BM 过定点(0,85),同理直线AN 也过定点8(0,)5.则点(0,85)即为所求点.14.(2022·全国·模拟预测)设椭圆()222:10416x y C b b+=<<的右焦点为F ,左顶点为A .M 是C 上异于A的动点,过F 且与直线AM 平行的直线与C 交于P ,Q 两点(Q 在x 轴下方),且当M 为椭圆的下顶点时,2AM FQ =.(1)求椭圆C 的标准方程;(2)设点S ,T 满足PS SQ =,FS ST =,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. 【答案】(1)22116x = (2)证明见解析 【解析】 【分析】(1)由向量的坐标运算用,b c 表示出Q 点坐标,代入椭圆方程求得参数b ,得椭圆方程; (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .直线方程代入椭圆方程应用韦达定理得12y y +,利用向量相等的坐标表示求得T 点坐标,得出T 点坐标满足一个椭圆方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,(4,)AM b =-,则12,22b FQ AM ⎛⎫==- ⎪⎝⎭. 设C 的焦距为2c ,则2,2b Q c ⎛⎫+- ⎪⎝⎭,即2,2b Q ⎫-⎪⎭.因为Q 在C上,故)2211164+=,解得()22162b =-=则椭圆C的标准方程为22116x =. (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .联立直线PQ 和C 的方程,消x得()22220y +-.12y y +=1212()2x x m y y c +=++= 由PS SQ =得S 为弦PQ的中点,故S ⎛.由FS ST =得S 是线段FT的中点,故T .设T 的坐标为(), x y,则x c =,y c =,故2211x y c c ⎛⎫⎫=== ⎪⎪⎝⎭⎝⎭,即2221x c =, 这表明T 在中心为原点,(,0)c ±为长轴端点,0,⎛⎫ ⎪ ⎪⎝⎭为短轴端点的椭圆上运动,故T到两焦点,0⎛⎫ ⎪ ⎪⎝⎭的距离之和为定值.代入得两焦点坐标为(()4,0±-.综上所述,平面上存在两定点()4-,()4-+,使得T 到这两定点距离之和为定值.15.(2022·上海交大附中模拟预测)已知椭圆221214x y F F Γ+=:,,是左、右焦点.设M 是直线()2l x t t =>:上的一个动点,连结1MF ,交椭圆Γ于()0N N y ≥.直线l 与x 轴的交点为P ,且M 不与P 重合.(1)若M 的坐标为58⎫⎪⎪⎝⎭,,求四边形2PMNF 的面积; (2)若PN 与椭圆Γ相切于N 且1214NF NF ⋅=,求2tan PNF ∠的值; (3)作N 关于原点的对称点N ',是否存在直线2F N ,使得1F N '上的任一点到2F N求出直线2F N 的方程和N 的坐标,若不存在,请说明理由. 【答案】(3)存在;y x =;126N ⎫⎪⎪⎝⎭【解析】 【分析】(1)根据点斜式方程可得1:MF l y x =,再联立椭圆方程得到12N ⎫⎪⎭,再根据2112PMNF PF M NF F S S S =-△△求解即可;(2)设:()PN l y k x t =-,根据相切可知,直线与椭圆方程联立后判别式为0,得到2214k t =-,再根据1214NF NF ⋅=,化简可得t =12N ⎫⎪⎭,再根据直角三角形中的关系求解2tan PNF ∠的值即可;(3)设()00,N x y ,表达出2NF l,再根据22O NF d -=列式化简可得2148k =,结合k =程即可求得N 和直线2F N 的方程 (1)由题意,()1F,故15MF k ==,所以1:MF l y x =与椭圆方程联立2214x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,可得:213450x +-=,即(130x x +=,又由题意N x >,故解得x =12N ⎫⎪⎭,故121122NF F S =⋅=△且11528PF M S ==△则2112PMNF PF M NF F S S S =-=△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立2214()x y y k x t ⎧+=⎪⎨⎪=-⎩,可得:()22222148440k x k tx k t +-+-=由相切,()22216140k k t∆=+-=,则2214kt =-同时有韦达定理21228214N k t x x x k +==+,代入2214k t =-有2244414Nt t x t -=+-,化简得4N x t =,故2222414N Nx t y t-=-=而222122122134N Nt NF NF x y t -⋅=+-==,解得2t =>则12N ⎫⎪⎭,所以2NF x ⊥轴,故在直角三角形2PNF中,2223tan 12PF PNF NF ∠===(3)由于N 与N ',1F 与2F 是两组关于原点的对称点,由对称性知 四边形12F NF N '是平行四边形,则2NF 与1N F '是平行的, 故1F N '上的任一点到2F N 的距离均为两条平行线间的距离d .设()00,N x y,其中0(x ∈,易验证,当0x 时,2NF 与1N F '之间的距离为k =2(:NF y l k x =,即0kx y -=,发现当0x22O NF d d -==221914k k =+,整理得2148k =代入k =(220048y x =,代入220014x y =-整理得20013450x --=,即(00130x x -=由于0(x ∈,所以0x =126N ⎫⎪⎪⎝⎭,故1k =, 则2F N l的直线方程为y x =16.(2022·全国·模拟预测(理))已知椭圆C :()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,直线AB的斜率为O 到直线AB(1)求C 的方程;(2)直线l 交C 于M ,N 两点,90MBN ∠=︒,证明:l 恒过定点.【答案】(1)22143x y +=(2)证明见解析【解析】 【分析】(1)题意得(,0),(0,)A a B b ,根据AB斜率,可得b a =AB 的方程,根据点到直线距离公式,可求得a 值,进而可得b 值,即可得答案.(2)分析得直线l 的斜率存在,设1122,(,),(,)y kx m M x y N x y =+,与椭圆联立,可得关于x 的一元二次方程,根据韦达定理,可得1212,x x x x +表达式,进而可得12y y 、12y y +的表达式,根据90MBN ∠=︒,可得0MB NB ⋅=,根据数量积公式,化简计算,可得m 值,分析即可得证(1)由题意得(,0),(0,)A a B b , 所以直线AB的斜率为b a =-b a = 又直线AB的方程为)y x a =-20y +=, 所以原点O 到直线AB的距离d ==,解得2a =,所以b =22143x y +=.(2)由椭圆的对称性可得,直线l 的斜率一定存在,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得222(34)84120k x kmx m +++-=, 所以21212228412,3434km m x x x x k k --+==++, 所以22221212122312()34m k y y k x x km x x m k -=+++=+,121226()234m y y k x x m k +=++=+, 因为90MBN ∠=︒,所以MB BN ⊥,因为B,所以1122(,3),()MB x yNB x y =--=-,所以22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++, 整理得2730m --=,解得m =或7m =-,因为B ,所以m舍去, 所以直线l 的方程为y kx =0,⎛ ⎝⎭,得证17.(2022·全国·模拟预测(理))已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,1A ,2A 分别为左、右顶点,1B ,2B 分别为上、下顶点.若四边形1122B F B F212F F ,212B B ,212A A 成等差数列.(1)求椭圆C 的标准方程;(2)过椭圆外一点P (P 不在坐标轴上)连接1PA ,2PA ,分别与椭圆C 交于M ,N 两点,直线MN 交x 轴于点Q .试问:P ,Q 两点横坐标之积是否为定值?若为定值,求出定值;若不是,说明理由. 【答案】(1)22132x y +=;(2)32P Q x x =为定值,理由见解析. 【解析】 【分析】(1)应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.(2)由题意分析知1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设直线1PA ,2PA 联立椭圆求M ,N 的坐标及P 点横坐标,应用点斜式写出直线MN ,令0y =求Q 横坐标,即可得结论. (1)由题设知:2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩,可得22321a b ⎧=⎪⎨⎪=⎩, 所以椭圆标准方程为22132x y +=. (2)由题意,1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设1PA为(y k x =,联立椭圆方程整理得:22229(23)302k k x x +++-=,所以1M A x x +=1A x =M x == 设2PA为(y m x =,联立椭圆方程整理得:22229(23)302m m x x +-+-=,所以2N A x x +=2A x =N x ==所以M y k =⋅=Ny m =⋅=, 联立直线1PA 、2PA可得:P x =,直线MN为2()[23m k y x km +=⋅-,令0y =,则Q x =,所以32P Q x x ==为定值.18.(2022·山西·太原五中二模(文))已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于A B 、和C D 、,记得到的平行四边形ACBD 的面积为S .(1)设()()1122,,,A x y C x y ,用A C 、的坐标表示点C 到直线1l 的距离,并证明12212S x y x y =-; (2)请从①①两个问题中任选一个作答 ①设1l 与2l 的斜率之积12-,求面积S 的值.①设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变. 【答案】(1)(2)见解析 【解析】 【分析】(1)讨论10x ≠和10x =,分别写出直线1l 的方程,由距离公式即可求得点C 到直线1l 的距离,由面积公式即可证明12212S x y x y =-;(2)若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式求解即可;若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式得到S 的表达式,平方整理,由含42,k k 的项系数为0即可求解. (1)当10x ≠时,直线1l 的方程为:11y y x x =,则点C 到直线1l的距离为d ==当10x =时,直线1l 的方程为:0x =,则点C 到直线1l 的距离为2d x =,也满足d则点C 到直线1l2AB AO ==则1212112222S AB d x y x x x y y y =⋅==--=;(2)若选①,设1122121:,:,2l y k x l y k x k k ===-,设()()1122,,,A x y C x y ,直线1l 与椭圆联立12221y k x x y =⎧⎨+=⎩可得()221121k x+=,同理直线2l 与椭圆联立可得()222121k x +=,不妨令120,0x x >>,则11x y =,22x y ===,则12212S x y x y ==-== 若选①,设12:,:m l y kx l y x k ==,设()()1122,,,A x y C x y ,直线1l 与椭圆联立2221y kx x y =⎧⎨+=⎩可得()22121k x +=,则212112x k =+,同理可得2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭,则1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅1222m m k x x k k k ==-=-⋅,两边平方整理得()24222222224(48)240Sk S S m m k m S m -++++-=,由面积S 与k 无关,可得2222240480S S S m m ⎧-=⎨++=⎩,解得12S m ⎧=⎪⎨=-⎪⎩,故12m =-时,无论1l 与2l 如何变动,面积S 保持不变.19.(2022·福建·厦门一中模拟预测)已知A ,B 分别是椭圆2222:1(0)x y C a b a b +=>>的右顶点和上顶点,||AB =AB 的斜率为12-.(1)求椭圆的方程;(2)直线//l AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于点C ,D .证明: (i )OCM 的面积等于ODN △的面积;(ii )22||||CM MD +为定值.【答案】(1)2214x y +=(2)(i )证明见解析;(ii )证明见解析 【解析】【分析】(1)根据(,0)A a ,(0,)B b,由||AB =AB 的斜率为12-求解;(2)设直线l 的方程为12y x m =-+,得到(2,0)M m ,(0,)N m ,与椭圆方程联立,根据11|2|||2=OCM S m y ,21||||2=ODN S m x ,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+利用韦达定理求解. (1) 解:A 、B 是椭圆22221(0)x y a b a b+=>>的两个顶点,且||AB =AB 的斜率为12-,由(,0)A a ,(0,)B b,得||AB == 又0102b b k a a -==-=--,解得2a =,1b =, ∴椭圆的方程为2214x y +=; (2)设直线l 的方程为12y x m =-+,则(2,0)M m ,(0,)N m ,联立方程221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y ,整理得222220x mx m -+-=.22248(4)3240m m m ∆=--=->, 得28m <设1(C x ,1)y ,2(D x ,2)y . 122x x m ∴+=,21222x x m =-.所以11|2|||2=OCM S m y ,21||||2=ODN S m x 则有112222|2||2|||1||||||-====OCMODNS y m x x Sx x x OCM ∴的面积等于ODN 的面积;2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+,2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+,()()221212125551042x x x x m x x m =+--++, ()2222552210102m m m m =---+5=. 20.(2022·北京市第十二中学三模)已知椭圆2222:1(0)x y M a b a b +=>>过点(2,0)A(1)求椭圆M 的方程;(2)已知直线(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A )两个不同的点,直线AB ,AC 分别与y 轴交于点P 、Q ,O 为坐标原点,求()k OP OQ +的值.【答案】(1)22142x y +=(2)45【解析】 【分析】(1)直接由A 点坐标及离心率求得椭圆方程即可;(2)联立直线与椭圆求得2212122212184,2121k k x x x x k k --+==++,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算()k OP OQ +即可. (1)由题意知:2,c a a ==c =2222b a c =-=,则椭圆M 的方程为22142x y +=;(2)联立直线与椭圆22(3)142y k x x y =+⎧⎪⎨+=⎪⎩,整理得()222221121840k x k x k +++-=,()()422214442118440160k k k k ∆=-+-=-+>,即k <<(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A)两点,则0k << 设1122(,),(,)B x y C x y ,则1222,22x x -<<-<<,2212122212184,2121k k x x x x k k --+==++,1122(3),(3)y k x y k x =+=+, 易得直线AB ,AC 斜率必然存在,则11:(2)2y AB y x x =--,令0x =,得11202y y x =>-,则112(0,)2y P x -,同理可得222(0,)2y Q x -,且22202y x >-, 则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅ ⎪⎝⎭+-+----222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=.。
圆锥曲线中的定值、定点、定直线问题大题分类精练(学生版)
圆锥曲线中的定值、定点、定直线问题目录题型1 圆锥曲线中的定值问题题型2 圆锥曲线中的定点问题题型3 圆锥曲线中的定直线问题题型归纳【题型1圆锥曲线中的定值问题】1(2023·江西·高三南昌第三中学校考阶段练习)设x ,y ∈R ,向量i ,j分别为平面直角坐标内x轴,y 轴正方向上的单位向量,若向量a =x +3 i +y j ,b =x -3 i +y j ,且a+b =4.(1)求点M x ,y 的轨迹C 的方程;(2)设椭圆E :x 216+y 24=1,曲线C 的切线y =kx +m 交椭圆E 于A 、B 两点,试证:△OAB 的面积为定值.2(2023·全国·模拟预测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),其离心率为32,直线y =12被椭圆截得的弦长为23.(1)求椭圆C 的标准方程.(2)圆x 2+y 2=45的切线交椭圆C 于A ,B 两点,切点为N ,求证:AN ⋅NB 是定值.3(2023·内蒙古·高三校联考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,离心率e =12,过点1,32.(1)求C 的方程;(2)直线l 过点M 0,1 ,交椭圆于A 、B 两点,记N 0,3 ,并设直线NA 、直线NB 的斜率分别为k NA 、k NB ,证明:k NA +k NB =0.4(2023·辽宁大连·高三大连市金州高级中学校考期中)已知抛物线C 1的顶点在原点,对称轴为坐标轴,且过-1,1 ,1,2 ,2,-2 ,-1,-2 四点中的两点.(1)求抛物线C 1的方程;(2)若直线l 与抛物线C 1交于M ,N 两点,与抛物线C 2:y 2=4x 交于P ,Q 两点,M ,P 在第一象限,N ,Q 在第四象限,且NQ MP=2,求PQ MN的值.5(2023·河北保定·统考二模)已知椭圆C的中心在原点,焦点在x轴上,长轴长为短轴长的2倍,若椭圆C经过点P2,2,(1)求椭圆C的方程;(2)若A,B是椭圆上不同于点P的两个动点,直线PA,PB与x轴围成底边在x轴上的等腰三角形,证明:直线AB的斜率为定值.6(2023·上海·高三上海市进才中学校考期中)双曲线C:x2a2-y2b2=1a>0,b>0的离心率为3,圆O:x2+y2=2与x轴正半轴交于点A,点T2,2在双曲线C上.(1)求双曲线C的方程;(2)过点T作圆O的切线交双曲线C于两点M、N,试求MN的长度;(3)设圆O上任意一点P处的切线交双曲线C于两点M、N,试判断PM⋅PN是否为定值?若为定值,求出该定值;若不是定值,请说明理由.7(2023·全国·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个顶点为A 2,0 ,D ,E 是C 上关于原点O 对称的两点,且直线AD ,AE 的斜率之积为14.(1)求C 的标准方程.(2)设Q 是C 上任意一点,过Q 作与C 的两条渐近线平行的直线,与x 轴分别交于点M ,N ,判断x 轴上是否存在点G ,使得GM GN 为定值.【题型2圆锥曲线中的定点问题】8(2023·湖南·校联考模拟预测)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的长轴长为26,且其离心率小于22,P 为椭圆C 上一点,F 1、F 2分别为椭圆C 的左、右焦点,△F 1PF 2的面积的最大值为22.(1)求椭圆C 的标准方程;(2)A 为椭圆C 的上顶点,过点D 0,-1 且斜率为k 的直线l 与椭圆C 交于M ,N 两点,直线l 1为过点D 且与AM 平行的直线,设l 1与直线y =-52的交点为Q .证明:直线QN 过定点.9(2023·云南大理·统考一模)已知双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 ,其渐近线方程为x ±2y=0,点22,1 在Γ上.(1)求双曲线Γ的方程;(2)过点A 2,0 的两条直线AP ,AQ 分别与双曲线Γ交于P ,Q 两点(不与点A 重合),且两条直线的斜率之和为1,求证:直线PQ 过定点.10(2023·江西南昌·高三江西师大附中校考期中)在平面直角坐标系XOY 中,已知两定点P (1,1)、Q (1,4),点R 满足OR =13OQ +23OP且在焦点在x 轴正半轴的抛物线E 上. 过Q 作一斜率存在的直线交E 于A 、B 两点,连接BP 交抛物线E 于点C .(1)求抛物线E 的标准方程;(2)判断直线AC 是否恒过定点,若是请求出该定点坐标,若不是请说明理由.11(2023·广东惠州·高三校考阶段练习)在平面直角坐标系xOy 中,顶点在原点,以坐标轴为对称轴的抛物线C 经过点2,4 .(1)求C 的方程;(2)若C 关于x 轴对称,焦点为F ,过点4,2 且与x 轴不垂直的直线l 交C 于M ,N 两点,直线MF 交C 于另一点A ,直线NF 交C 于另一点B ,求证:直线AB 过定点.12(2023·福建泉州·统考模拟预测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率是22,上、下顶点分别为A ,B .圆O :x 2+y 2=2与x 轴正半轴的交点为P ,且PA ⋅PB=-1.(1)求E 的方程;(2)直线l 与圆O 相切且与E 相交于M ,N 两点,证明:以MN 为直径的圆恒过定点.13(2023·云南昆明·昆明一中校考模拟预测)已知双曲线C:x2a2-y2b2=1a>0,b>0的左右焦点分别为F1,F2,左顶点的坐标为-2,0,离心率为7 2.(1)求双曲线C的方程;(2)A1,A2分别是双曲线的左右顶点,T是双曲线C上异于A1,A2的一个动点,直线TA1,TA2分别于直线x=1交于Q1,Q2两点,问以Q1,Q2为直径的圆是否过定点,若是,求出此定点;若不是,请说明理由.14(2023·江西九江·统考一模)已知过点P(2,0)的直线l与抛物线E:y2=2px(p>0)交于A,B两点,过线段AB的中点M作直线MN⊥y轴,垂足为N,且PM⊥PN.(1)求抛物线E的方程;(2)若C为E上异于点A,B的任意一点,且直线AC,BC与直线x=-2交于点D,R,证明:以DR为直径的圆过定点.【题型3圆锥曲线中的定直线问题】15(2023·四川成都·校联考二模)已知A 1-3,0 和A 23,0 是椭圆η:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线l 与椭圆η相交于M ,N 两点,直线l 不经过坐标原点O ,且不与坐标轴平行,直线A 1M 与直线A 2M 的斜率之积为-59.(1)求椭圆η的标准方程;(2)若直线OM 与椭圆η的另外一个交点为S ,直线A 1S 与直线A 2N 相交于点P ,直线PO 与直线l 相交于点Q ,证明:点Q 在一条定直线上,并求出该定直线的方程.16(2023·江苏常州·校考一模)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的短轴长为22,离心率为22.(1)求椭圆C 的方程;(2)过点P 4,1 的动直线l 与椭圆C 相交于不同的A ,B 两点,在线段AB 上取点Q ,满足AP ⋅QB =AQ ⋅PB ,证明:点Q 总在某定直线上.17(2023·广东广州·高三统考阶段练习)已知在平面直角坐标系中,动点Q x ,y 到F 3,0 的距离与它到直线x =53的距离之比为355,Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点P 53,1作直线l 与曲线C 交于不同的两点M 、N (M 、N 在y 轴右侧),在线段MN 上取异于点M 、N 的点H ,且满足MP PN=MH HN,证明:点H 恒在一条直线上.18(2023·全国·高三专题练习)已知双曲线E :x 2a 2-y 24=1a >0 的中心为原点O ,左、右焦点分别为F 1,F 2,离心率为355.(1)求实数a 的值.(2)若点P 坐标为0,4 ,过点P 作动直线l 与双曲线右支交于不同的两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM PN=MH HN.证明:点H 恒在一条定直线上.19(2023·吉林长春·统考一模)过抛物线E:y2=2px(p>0)焦点F,斜率为-1的直线l与抛物线交于A、B两点,|AB|=8.(1)求抛物线E的方程;(2)过焦点F的直线l ,交抛物线E于C、D两点,直线AC与BD的交点是否在一条直线上.若是,求出该直线的方程;否则,说明理由.20(2023·全国·模拟预测)已知在平面直角坐标系xOy中,抛物线M:y=mx2的焦点F与椭圆C:x2 a2+y2b2=1a>b>0的一个顶点重合,抛物线M经过点Q1,14,点P是椭圆C上任意一点,椭圆C的左、右焦点分别为F1,F2,且∠F1PF2的最大值为2π3.(1)求椭圆C和抛物线M的标准方程;(2)过抛物线M上在第一象限内的一点N作抛物线M的切线,交椭圆C于A,B两点,线段AB的中点为G,过点N作垂直于x轴的直线,与直线OG交于点E,求证:点E在定直线上.。
圆锥曲线中定点定值问题
定点、定值问题一、定点问题:题型一:三大圆锥曲线中的顶点直角三角形斜边所在的直线过定点例题1:抛物线22(0),.y px p A B =>在抛物线上,OA OB ⊥,求证:直线AB 过定点。
例题2:椭圆223412,x y +=直线:l y kx m =+与椭圆交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点。
求证:直线l 过定点,并求出定点的坐标。
2(,0)7例题3:已知焦点在x 轴上的椭圆过点(0,1),求离心率为2,Q 为椭圆的左顶点, (1) 求椭圆的标准方程;(2) 若过点6(,0)5-的直线l 与椭圆交于,A B 两点。
(i ) 若直线l 垂直x 轴,求AQB ∠的大小; (ii ) 若直线l 不垂直x 轴,是否存在直线l 使得AQB ∆为等腰三角形?如果存在,求出l的方程;如果不存在,请说明理由。
例题4:已知定点(1,0),(2,0)A F -,定直线1:2l x =不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍,设P 点的轨迹为E ,过点F 的直线交E 于,B C 两点,直线,AB AC 分别交l 于点,M N 。
(1) 求E 的方程;(2) 试判断以MN 为直径的圆是否过点F ,并说明理由。
变式训练:抛物线22(0),..y px p A B =>在抛物线上运动,00(,)P x y 是抛物线上的定点,直线,PA PB 的斜率之积为定值0m ≠求证:直线AB 过定点,并求出此定点。
题型二:三大圆锥曲线中,若过焦点的弦为AB ,则焦点所在的轴上存在唯一的定点N ,使得NA NB ∙为定值。
例题1:已知椭圆22221x y a b +=(0)a b >>的右焦点为(1,0)F 且点(-在椭圆上。
(1)求椭圆的标准方程;(2)已知动直线l 过点F 与椭圆交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB ∙=-恒成立?如果存在,求出Q 的坐标;如果不存在,请说明理由。
(完整版)圆锥曲线定点问题
[解] (1)如图,设动圆圆心 O1(x,y),由题意,|O1A|=|O1M|, 当 O1 不在 y 轴上时,过 O1 作 O1H⊥MN 交 MN 于 H,则 H 是 MN 的中点,
∴|O1M|= x2+42,
又|O1A|= x-42+y2, ∴ x-42+y2= x2+42, 化简得 y2=8x(x≠0). 又当 O1 在 y 轴上时,O1 与 O 重合,点 O1 的坐标(0,0)也满足 方程 y2=8x, ∴动圆圆心的轨迹 C 的方程为 y2=8x. (2)证明:由题意,设直线 l 的方程为 y=kx+b(k≠0),P(x1, y1),Q(x2,y2),
练习:如图,已知椭圆 C:xa22+y2=1(a>1)的上顶点为 A, 右焦点为 F,直线 AF 与圆 M:x2+y2-6x-2y+7= 0 相切. (1)求椭圆 C 的方程; (2)若不过点 A 的动直线 l 与椭圆 C 相交于 P、Q 两点, 且A→P·A→Q=0,求证:直线 l 过定点,并求出该定点 N 的坐标.
(1)解 因为抛物线 y2=2px(p>0)的焦点坐标为(1,0),
所以p2=1,所以 p=2.所以抛物线 C 的方程为 y2=4x. (2)证明 ①当直线 AB 的斜率不存在时,设 At42,t, Bt42,-t.因为直线 OA,OB 的斜率之积为-12, 所以tt2·-t2t=-12,化简得 t2=32.
圆锥曲线中的定点问题
基本思想: 设直线为y kx b 方法一:找到k与b的关系, 例如b 2k 则直线过(2,0) 方法二:通过计算可以求出b的值. 方法三:通过特殊位置找到定点,再证 明对任意情况都成立
【例 1-1】 已知抛物线 C:y2ቤተ መጻሕፍቲ ባይዱ2px(p>0)的焦点 F(1,0),O 为坐 标原点,A,B 是抛物线 C 上异于 O 的两点. (1)求抛物线 C 的方程; (2)若直线 OA,OB 的斜率之积为-12,求证:直线 AB 过 x 轴上 一定点.
高考数学复习:圆锥曲线的定点、定值、定直线
高考数学复习:圆锥曲线的定点、定值、定直线【热点聚焦】纵观近几年的高考试题,圆锥曲线的定点、定值、定直线问题是热点之一.从命题的类型看,主要是大题.一般说来,考查直线与椭圆、双曲线、抛物线的位置关系问题,综合性较强,涉及方程组联立,根的判别式、根与系数的关系、弦长、面积、参数、几何量为定值,或定点在某直线上、定直线过某点等.难度往往大些.【重点知识回眸】(一)定值问题1.定义:定值问题是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.3.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.4.定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)定点问题1.求解圆锥曲线中的定点问题的两种思路:(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组()0g()0f x y x y =⎧⎨=⎩,,;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.2.求解圆锥曲线中的定点问题的方法(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y .常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可②若等式为含k 的分式,00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)3.一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转.(三)定直线问题探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T 的坐标(包含参数),再消去参数,即得动点T 在定直线上;方法二是相关点法,即先设出动点T 的坐标为(x,y),根据题设条件得到已知曲线上的动点R 的坐标,再将动点R 的坐标代入已知的曲线方程,即得动点T 在定直线上.【典型考题解析】热点一定值问题【典例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.【典例2】如图,已知抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||MN MN -为定值,并求此定值.【典例3】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值.【典例4】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH = .证明:直线HN 过定点.【典例5】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【典例6】已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).【典例7】设椭圆的焦点在x 轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.【典例8】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅= ,证明:直线PQ 过定点.【典例9】设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右两个焦点,O 为坐标原点,若点P 在双曲线C 的右支上,且1122,OP OF PF F == 的面积为3.(1)求双曲线C 的渐近线方程;(2)若双曲线C 的两顶点分别为()()12,0,,0A a A a -,过点2F 的直线l 与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.1.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2.在平面直角坐标系中,动点(),M x y 与定点()5,0F 的距离和M 到定直线16:5l x =的距离的比是常数54,设动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设()2,0P ,垂直于x 轴的直线与曲线C 相交于,A B 两点,直线AP 和曲线C 交于另一点D ,求证:直线BD 过定点.3.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,右焦点F.(1)求双曲线C 的方程;(2)若12,A A 分别是C 的左、右顶点,过F 的直线与C 交于,M N 两点(不同于12,A A ).记直线12,A M A N 的斜率分别为12,k k ,请问12k k 是否为定值?若是定值,求出该定值;若不是,请说明理由.4.已知椭圆C :()222210x y a b a b+=>>的左焦点为()11,0F -,上、下顶点分别为A ,B ,190AF B ∠=︒.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM OP OQ =+uuu r uu u r uuu r ,证明:四边形OPMQ 的面积为定值.5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.6.已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.7.在直角坐标系xOy 中,已知定点(0,1)F ,定直线:3l y =-,动点M 到直线l 的距离比动点M 到点F 的距离大2.记动点M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设0(2,)P y 在C 上,不过点P 的动直线1l 与C 交于A ,B 两点,若90APB ∠=︒,证明:直线1l 恒过定点.8.椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,M 为直线3x =-上任意一点,过F 作MF 的垂线交椭圆C 于点P ,Q .证明:OM 经过线段PQ 的中点N .(其中O 为坐标原点)9.已知椭圆E :()222210x y a b a b +=>>的离心率为2,短轴长为2.(1)求E 的方程;(2)过点()4,0M -且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MB NBMC NC =,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为1k ,2k ,求证:12k k 为定值.10.已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标11.已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,圆O :222x y a +=,过F 且垂直于x 轴的直线被椭圆C 和圆O.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线1l ,2l ,记1l ,2l 的斜率分别为1k ,2k ,直线OP 的斜率为3k ,证明:()123k k k +为定值.12.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.圆锥曲线的定点、定值、定直线答案【典例1】解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2),所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x .由题意可知直线l 的斜率存在且不为0,设直线l 的方程为y =kx +1(k ≠0).由241y x y kx ⎧=⎨=+⎩得()222410k x k x +-+=.依题意()2224410k k ∆=--⨯⨯>,解得k<0或0<k<1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =.直线PA 的方程为()112211y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--.同理得点N 的纵坐标为22121N kx y x -+=+-.由=QM QO λ ,=QN QO μ得=1M y λ-,1N y μ=-.所以()()()2212121212122224211111111=21111111M N k x x x x x x k k y y k x k x k x x k k λμ-+-+--+=+=+=⋅=⋅------.所以11λμ+为定值.【典例2】(1)依题意可设AB 的方程为2y kx =+,代人24x y =,得()242x kx =+,即2480x kx --=,设()()1122,,,A x y B x y ,则有128x x =-,直线AO 的方程为11,y y x BD x =的方程为2x x =,解得交点D 的坐标为1221,y x x x ⎛⎫⎪⎝⎭,注意到128x x =-及2114x y =,则有1121211824y x x y y x y -===-,因此D 点在定直线2y =-上()0x ≠.(2)依题意,切线l 的斜率存在且不等于0.设切线l 的方程为()0y ax b a =+≠,代人24x y =得,即2440x ax b --=.由0∆=得()24160a b +=,化简整理得2b a =-.故切线l 的方程可写为2y ax a =-.分别令2,2y y ==-,得12,N N 的坐标为1222,2,,2N a N a a a ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭,则22222212248MN MN a a a a ⎛⎫⎛⎫-=-+-+= ⎪ ⎪⎝⎭⎝⎭,即2221MN MN -为定值8.【典例3】(1)由题意得:(,0)2pF ,因为点B 的横坐标为4,且B 在x 轴的上方,所以B ,因为AB 的斜率为43,4342=-,整理得:80p +=,即0=,得2p =,抛物线C 的方程为:24y x =.(2)由(1)得:(4,4)B ,(1,0)F ,淮线方程1x =-,直线l 的方程:4(1)3y x =-,由24(1)34y x y x⎧=-⎪⎨⎪=⎩解得14x =或4x =,于是得1(,1)4A -.设点2(,)4n P n ,又题意1n ≠±且4n ≠±,所以直线PA :41114y x n ⎛⎫+=- ⎪-⎝⎭,令1x =-,得41n y n +=--,即41n HE n +=--,同理可得:444n HG n -=+,444414n n HG HE n n +-⋅=-⋅=-+.热点二定点问题【典例4】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T ,由MT TH =得到(5,H -+.求得HN 方程:(2)23y x =+-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【典例5】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)[方法一]:设而求点法证明:设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022*******22000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.[方法二]【最优解】:数形结合设(6,)P t ,则直线PA 的方程为(3)9ty x =+,即930-+=tx y t .同理,可求直线PB 的方程为330--=tx y t .则经过直线PA 和直线PB 的方程可写为(93)(33)0-+--=tx y t tx y t .可化为()22292712180-+-+=txy txy ty .④易知A ,B ,C ,D 四个点满足上述方程,同时A ,B ,C ,D 又在椭圆上,则有2299x y -=-,代入④式可得()2227912180--+=t y txy ty .故()227912180⎡⎤--+=⎣⎦y t y tx t ,可得0y =或()227912180--+=t y tx t .其中0y =表示直线AB ,则()227912180--+=t y tx t 表示直线CD .令0y =,得32x =,即直线CD 恒过点3,02⎛⎫ ⎪⎝⎭.【整体点评】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.第二问的方法一最直接,但对运算能力要求严格;方法二曲线系的应用更多的体现了几何与代数结合的思想,二次曲线系的应用使得计算更为简单.【典例6】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =.(Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=.故:12124,4x x k x x +=-=-.设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-,直线OM 的方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭,易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+- ⎪⎝⎭,圆的半径为:1222x x -,且:()1212122222x x k x x x x ++==,12222x x -==,则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).热点三定直线问题【典例7】(1)由题意21c =,得12c =,而221(1)4a a --=,所以2253,88a b ==所以椭圆的标准方程为2288153x y +=(2)设0000(,)(0,0)P x y x y >>,12(,0),(,0)F c F c -直线2PF 的直线方程为00y x c y x c -=-,当0x =时,00cy y x c-=⋅-,故Q 点坐标00(0,)cy x c-⋅-,由题意110F P FQ ⋅=得0000(,)(,)0cx c y c y x c-+⋅=-即2000()0cy x c c x c+-=-解得又P 点在曲线上,22002211x y a a +=-,解得2200,1x a y a ==-则P 点在定直线1x y +=.【典例8】(1)由题设1c =,又12||2F F c =,112||||AF A F a ==,若内切圆半径为r ,则外接圆半径为2r ,所以112()222r a c c b ⨯+=⨯⨯,即()r a c bc +=,222(2)4c r b r +-=,而222a b c =+,即24a rb =,综上,22()4a a c b c +=,即222(1)444a a b a +==-,可得2a =,所以24a =,23b =,则22:143x y C +=.(2)当直线斜率都存在时,令DE 为1x ky =-,联立22:143x y C +=,整理得:22(34)690k y ky +--=,且2144(1)0k ∆=+>,所以2634D E k y y k +=+,则28()234D E D E x x k y y k +=+-=-+,故2243,33)44(kk k P -++,由0DE MN ⋅= ,即DE MN ⊥,故MN 为1y x k =--,联立22:143x y C +=,所以2236(4)90y y k k ++-=,有2634M N k y y k +=-+,则228234M N M N y y k x x k k ++=--=-+,故22243,(34)34k kQ k k +--+,所以274(1)PQ k k k =-,则PQ 为222374()344(1)34k k y x k k k -=++-+,整理得2(74)4(1)k x k y +=-,所以PQ 过定点4(,0)7-;当一条直线斜率不存在时,P Q 对应1,O F ,故PQ 即为x 轴,也过定点4(,0)7-;综上,直线PQ 过定点.【典例9】(1)由12OP OF ==得2c =,且12PF PF ⊥所以12122,1.32PF PF a PF PF ⎧-=⎪⎨=⎪⎩()22221212124162PF PF c PF PF PF PF +===-+即241216a +=解得1,a =又2224,a b c b +===故双曲线的渐近线方程为by x a=±=.(2)由(1)可知双曲线的方程为2213y x -=.(i )当直线l 的斜率不存在时,()()2,3,2,3M N -,直线1A M 的方程为1y x =+,直线2A N 的方程为33y x =-+,联立直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫⎪⎝⎭,(ii )当直线l 的斜率存在时,易得直线l 不和渐近线平行,且斜率不为0,设直线l 的方程为()(()()112220,,,,,y k x k k M x y N x y =-≠≠,联立()22213y k x y x ⎧=-⎪⎨-=⎪⎩得()222234430,k x k x k -+--=221212224430,,33k k x x x x k k +∴>+==-- ∴直线1A M 的方程为()1111y y x x =++,直线2A N 的方程为()2211yy x x =--,联立直线1A M 与直线2A N 的方程可得:()()21121111y x x x y x ++=--,两边平方得()()2222122121111y x x x y x ++⎛⎫= ⎪-⎝⎭-,又()()1122,,,M x y N x y 满足2213yx -=,()()()()()()()()()()()()222221212112122222121212121231111111111311x x y x x x x x x x x x x x x x y x xx-+++++++∴===---++---.22222222222222434143433394344343133k k k k k k k k k k k k k k ++++++---===++-+--+--,2119,12x x x +⎛⎫∴=∴= ⎪-⎝⎭,或2x =,(舍去).综上,Q 在定直线上,且定直线方程为12x =.解答题1.(Ⅰ)因为椭圆的右焦点为(1,0),所以1225;因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=.(Ⅱ)设1122(,),(,)P x y Q x y 联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k -=+++=+.直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-.因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0=t ,所以直线方程为y kx =,所以直线l 恒过定点(0,0).2.(154=,即222162516(5)5x y x ⎛⎫-+=- ⎪⎝⎭,整理得221169x y -=;(2)解:设()11,A x y ,()11,B x y -,()22,D x y ,显然直线AP 斜率不为0,设直线AP 方程为2x my =+,联立2211692x y x my ⎧-=⎪⎨⎪=+⎩,消去x 并整理得()22916361080m y my -+-=,由题设29160m -≠且()22Δ(36)41089160m m =+⨯->,化简得243m >且2169m ≠,由韦达定理可得12236916m y y m -+=-,122108916y y m -=-,直线BD 的方程是()211121y y y y x x x x ++=--,令0y =得()()()21112212112112121222x x y y my y my x y x y x xy y y y y y -++++=+==+++()1212121212221082222836my y y y y y m m y y y y m++==⨯+=⨯+=++,所以直线BD 过定点()8,0.3.(1)设C 的半焦距为c ,由题意可知32c e a ==,又222+=a b c ,双曲线C 的一条渐近线方程为b y x a=bc a b =,故2225b c a =-=,所以229,4c a ==,所以双曲线C 的方程为22145x y -=.(2)由(1)可知()()()123,0,2,0,2,0F A A -.设直线MN 的方程为3x my =+,点()11,M x y ,点()22,N x y ,则11223,3x my x my =+=+.由221,453,x y x my ⎧-=⎪⎨⎪=+⎩得()225430250,m y my -++=,所以1212223025,5454m y y y y m m -+==--.121212,22y yk k x x ==+-,所以()()()()121211112122121212222122552y x y my y k x my y y y k x y my y my y y x -+++====+++-.又1212222530,5454my y y y m m -==---,所以22212222530545425554m my k m m m k y m -+---=+-22225154.255554my m m y m ---==-+-综上,12k k 为定值,且1215k k =-.4.(1)解:依题意1c =,又190AF B ∠=︒,所以1b c ==,所以a ,所以椭圆方程为2212x y +=.(2)证明:设(),M x y ,()11,P x y ,()22,Q x y ,因为OM OP OQ =+uuu r uu u r uuu r,所以四边形OPMQ 为平行四边形,且1212x x x y y y =+⎧⎨=+⎩,所以()()22121212x x y y +++=,即2212112122221222x x y y x x y y ⎛⎫⎛⎫+++ ⎪⎭+ ⎝⎝+⎭=⎪,又221112x y +=,222212x y +=,所以121212x x y y +=-,若直线PQ 的斜率不存在,M 与左顶点或右顶点重合,则P Q x x =P Q y y ==所以12222OPMQ P P S x y =⨯⨯,若直线PQ 的斜率存在,设直线PQ 的方程为y kx t =+,代入椭圆方程整理得()222124220k xktx t +++-=,所以()228210k t∆=+->,122412kt x x k -+=+,21222212t x x k -=+,所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t222222241212t kt k kt t k k --⎛⎫=⋅+⋅+ ⎪++⎝⎭所以()22222224212211212t kt k kt t k k --⎛⎫+⋅+⋅+=- ⎪++⎝⎭,整理得22412t k =+,又12PQ x =-=又原点O 到PQ的距离d所以12POQS PQ d==,将22412t k=+代入得4POQS==,所以2POOP Q QMSS==综上可得,四边形OPMQ的面积为定值2.5.(1)解:设圆心(),C x y,圆的半径为R,则()()22222220R x x y=+=-+-,整理得24y x=.所以动圆圆心的轨迹方程为24y x=.(2)证明:抛物线的方程为24y x=,设2,4yD y⎛⎫⎪⎝⎭,121,4yE y⎛⎫⎪⎝⎭,222,4yF y⎛⎫⎪⎝⎭,则直线EF的方程为()1211221244y yy y x xy y--=--,得2111211121212124444x y y y xx xy yy y y y y y y y+-=-+=+++++,又2114y x=,所以直线EF的方程为1212124y yxyy y y y=+++.同理可得直线DE的方程为1010104y yxyy y y y=+++,直线DF的方程为022024y yxyy y y y=+++因为直线DE过点()3,2B--,所以()1101222y y y-=+;因为直线DF过点()2,1C,所以()22081y y y-=-.消去0y,得()121210433y y y y=++.代入EF的方程,得12411033y xy y⎛⎫=++⎪+⎝⎭,所以直线EF恒过一个定点110,33⎛⎫- ⎪⎝⎭.6.(1)由2y=-,可得()1F,∴c=,∴2a=,22b=,∴椭圆C 的方程为22142x y +=.(2)设()()1122,,,A x y B x y ,由22142y kx m x y =+⎧⎪⎨+=⎪⎩,可得()222214240+++-=k x mkx m ,∴()()()2224421240mk k m ∆=-+->,可得2242m k <+,2121222424,2121mk m x x x x k k -+=-=++,由直线1F A 与1F B 关于x 轴对称,∴110F A F B k k +=0=,∴((()(()(122112210y x y x kx m x kx m x ++=+++++,即()12122)0kx x m x x ++++=,∴2222442)202121m mk k m k k -⎛⎫⨯++-+= ++⎝⎭,可得m =,所以直线l方程为(y k x =+,恒过定点()-.7.(1)因为动点M 到直线l 的距离比到F 的距离大2,故M 到F 的距离与M 到直线:1m y =-的距离相等,所以M 的轨迹C 是以F 为焦点m 为准线的抛物线,因此2:4C x y =,C 是顶点为原点开口向上的抛物线.(2)因为P 在C 上故()2,1P ,设221212:,,,,44x x AB y kx b A x B x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,联立方程24y kx bx y=+⎧⎨=⎩,可得2440x kx b --=,()()21212161601,4,42k b x x k x x b =+>+==- ,2212121144122PA PBx x k k x x --⋅=⋅=---,将(2)代入化简得:25b k =+或21b k =-+,以上均可满足(1)式,所以直线方程为:()25y k x =++或()21y k x =-+,直线分别过定点()2,5-或()2,1,又()2,1P ,所以直线1l 恒过定点()2,5-.8.(1)解:由题意可得2c =,短轴的两个端点与长轴的一个端点构成正三角形,可得2a b,即有a =,又2224c a b =-=,解得a =,b ,所以椭圆方程为22162x y +=;(2)证明:设(3,)M m -,11(,)P x y ,22(,)Q x y ,PQ 的中点为00(,)N x y ,MF k m =-,由(2,0)F -,可设直线PQ 的方程为2x my =-,代入椭圆方程可得22(3)420m y my +--=,即有12243m y y m +=+,12223y y m =-+,则()212121222412224433m x x my my m y y m m -+=-+-=+-=-=++,于是2262,33m N m m ⎛⎫-⎪++⎝⎭,则直线ON 的斜率3ON mk =-,又3OM mk =-,可得OM ON k k =,则O ,N ,M 三点共线,即有OM 经过线段PQ 的中点.9.(1)由椭圆E :()222210x y a b a b +=>>2,可知22c b a =,则22231,44b a a -=∴=,故E 的方程为2214x y +=;(2)证明:由题意可知直线l 的斜率一定存在,故设直线l 的方程为(4)y k x =+,设11223300(,),(,),(,),(,)B x y C x y N x y P x y ,联立2214(4)x y y k x ⎧+=⎪⎨⎪=+⎩,可得2222(41)326440k x k x k +++-=,22116(112)0,012k k ∆=->∴<<,则2212122232644,4141k k x x x x k k --+==++,所以220002222164164,,(,)414114)4(41k k k kx y x P k k k k k --==∴++++=+,又MB NBMCNC=,所以31122344x x x x x x -+=+-,解得2222121233212264432424()41411,3328841k k x x x x k k x y k k x x k --⨯+⨯++++===-=-++++,从而(1,3)N k -,故03120313(3)44y y k k k x x k ⋅=⋅=-⨯-=,即12k k 为定值.10.(1)由线段RS22b a =又c a =22212a b a -=,解得222,1,a b ⎧=⎨=⎩所以C 的标准方程为2212x y +=.(2)由PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭,可知PF 平分APB ∠,∴0PA PB k k +=.设直线AB 的方程为x my t =+,()11,A my t y +,()22,B my t y +,由2222x my t x y =+⎧⎨+=⎩得()2222220m y mty t +++-=,()22820m t ∆=-+>,即222m t >-,∴12222mt y y m -+=+,212222t y y m -=+,∴1212022PA PB y y k k my t my t +=+=+-+-,∴()()1212220my y t y y +-+=,∴()()222220m t t mt ---⋅=,整理得()410m t -=,∴当1t =时,上式恒为0,即直线l 恒过定点()1,0Q .11.(1)设椭圆C 的半焦距为()0c c >,过F 且垂直于x 轴的直线被椭圆C 所截得的弦长分223b a =;过F 且垂直于x 轴的直线被圆O所截得的弦长分别为=,又222a cb -=,解得a b ⎧⎪⎨⎪⎩C 的方程为22132x y +=.(2)设()()0000,0≠P x y x y ,则22003x y +=.①设过点P 与椭圆C 相切的直线方程为()00y y k x x -=-,联立()2200236x y y y k x x ⎧+=⎪⎨-=-⎪⎩得()()()2220000326320k x k y kx x y kx ⎡⎤++-+--=⎣⎦,则()()()22200006432320k y kx k y kx ⎡⎤∆=--⨯+⨯--=⎡⎤⎣⎦⎣⎦,整理得()22200003220x k x y k y --+-=.②由题意知1k ,2k 为方程②的两根,由根与系数的关系及①可得0000012220002223x y x y x k k x y y +===---.又因为030OP y k k x ==,所以()001230022x y k k k y x +=-⋅=-,所以()123k k k +为定值2-.12.(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()222124260k x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m kmk km k m k k-⎛⎫++---+-+= ⎪++⎝⎭,整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由·0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.[方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny +=.将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--.代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法三]:建立曲线系A 点处的切线方程为21163x y⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k ×=-.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数).用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭.对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -.因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+-- 2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =.又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP ==所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法;方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny +=,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.。
2023年高考备考圆锥曲线中的定值定点问题(含答案)
高考材料高考材料专题14 圆锥曲线中的定值定点问题1.〔2023·全国·高考试题〔文〕〕已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过两点.()30,2,,12A B ⎛--⎫⎪⎝⎭(1)求E 的方程;(2)设过点的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足.证()1,2P -MT TH =明:直线HN 过定点.(答案)(1)22143y x +=(2) (0,2)-(解析) (分析)〔1〕将给定点代入设出的方程求解即可;〔2〕设出直线方程,与椭圆C 的方程联立,分情况商量斜率是否存在,即可得解.(1)解:设椭圆E 的方程为,过,221mx ny +=()30,2,,12A B ⎛--⎫⎪⎝⎭则,解得,,41914n m n =⎧⎪⎨+=⎪⎩13m =14n =所以椭圆E 的方程为:.22143y x +=(2),所以,3(0,2),(,1)2A B --2:23+=AB y x ①假设过点的直线斜率不存在,直线.代入, (1,2)P -1x =22134x y +=可得,,代入AB 方程,可得(1,MN223y x =-,由得到.求得HN 方程:(3,T MT TH =(5,H -+,过点. (22y x =-(0,2)-②假设过点的直线斜率存在,设. (1,2)P -1122(2)0,(,),(,)kx y k M x y N x y --+=联立得, 22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩22(34)6(2)3(4)0k x k k x k k +-+++=可得,, 1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩且1221224(*)34kx y x y k -+=+联立可得 1,223y y y x =⎧⎪⎨=-⎪⎩111113(3,),(36,).2y T y H y x y ++-可求得此时,1222112:()36y y HN y y x x y x x --=-+--将,代入整理得, (0,2)-12121221122()6()3120x x y y x y x y y y +-+++--=将代入,得 (*)222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-2.〔2023·全国·高考试题〕已知椭圆C 的方程为,右焦点为.22221(0)x y a b a b +=>>F 〔1〕求椭圆C 的方程;〔2〕设M ,N 是椭圆C 上的两点,直线与曲线相切.证明:M ,N ,F 三点共线的充要条件是MN 222(0)x y b x +=>||MN =(答案)〔1〕;〔2〕证明见解析.2213xy +=(解析) (分析)〔1〕由离心率公式可得,即可得解;a =2b 〔2充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得():,0MN y kx b kb =+<221b k =+,即可得解.=1k =±(详解)〔1〕由题意,椭圆半焦距 c =c e a ==a =又,所以椭圆方程为;2221b a c =-=2213x y +=〔2〕由〔1〕得,曲线为,221(0)x y x +=>当直线的斜率不存在时,直线,不合题意; MN :1MN x =当直线的斜率存在时,设,MN ()()1122,,,M xy N x y 必要性:假设M ,N ,F 三点共线,可设直线即,(:MN y k x =0kxy -=由直线与曲线,解得,MN 221(0)x y x +=>11k =±联立可得,所以,(2213y x x y ⎧=±⎪⎨⎪+=⎩2430x -+=121234x x x x +=⋅=,高考材料高考材料所以必要性成立;充分性:设直线即, ():,0MN y kx b kb =+<0kx y b -+=由直线与曲线,所以,MN 221(0)x y x +=>1=221b k =+联立可得, 2213y kx b x y =+⎧⎪⎨+=⎪⎩()222136330k x kbx b +++-=所以, 2121222633,1313kb bx x x x k k-+=-⋅=++===化简得,所以,()22310k -=1k =±所以,所以直线或,1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =y x =-所以直线过点,M ,N ,F 三点共线,充分性成立; MN F 所以M ,N ,F 三点共线的充要条件是||MN =3.〔2023·青海·海东市第—中学模拟预测〔理〕〕已知椭圆M :〔a >b >0,AB 为过椭圆右22221x y a b +=焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)假设直线l 与椭圆M 交于C ,D 两点,点,记直线PC 的斜率为,直线PD 的斜率为,当()2,0P 1k 2k 12111k k +=时,是否存在直线l 恒过肯定点?假设存在,请求出这个定点;假设不存在,请说明理由.(答案)(1)22142x y +=(2)存在, ()2,4--(解析) (分析)〔1〕由题意求出,即可求出椭圆M 的方程.,,a b c 〔2〕设直线l 的方程为m (x -2)+ny =1,,,联立直线l 的方程与椭圆方程()11,C x y ()22,D x y ,得,则,化简得,即可求()()222242x y x -+=--()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭12114114n k k m +=-=+14m n +=-出直线l 恒过的定点. (1)因为〔a >b >0,过椭圆右焦点的弦长的最小值为,22221x y a b +=222b a=所以a =2,,所以椭圆M 的方程为.c b =22142x y +=(2)设直线l 的方程为m (x -2)+ny =1,,, ()11,C x y ()22,D x y 由椭圆的方程,得.2224x y +=()()222242x y x -+=--联立直线l 的方程与椭圆方程,得,()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+即,, ()()()221424220m x n x y y +-+-+=()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭所以, 12121222114114x x nk k y y m--+=+=-=+化简得,代入直线l 的方程得,14m n +=-()1214m x m y ⎛⎫-+--= ⎪⎝⎭即,解得x =-2,y =-4,即直线l 恒过定点. ()1214m x y y ---=()2,4--4.〔2023·上海松江·二模〕已知椭圆的右顶点坐标为,左、右焦点分别为、,且2222:1(0)x y a b a bΓ+=>>(2,0)A 1F 2F ,直线交椭圆于不同的两点和.122F F =l ΓM N (1)求椭圆的方程;Γ(2)假设直线的斜率为,且以为直径的圆经过点,求直线的方程; l 1MN A l (3)假设直线与椭圆相切,求证:点、到直线的距离之积为定值.l Γ1F 2F l (答案)(1);22143x y +=(2)或; 2y x =-27y x =-(3)证明见解析. (解析) (分析)〔1〕依据焦距及椭圆的顶点求出即可得出;,a b 〔2〕设直线的方程为 ,联立方程,由根与系数的关系及求解即可;l y x b =+0AM AN ⋅=〔3〕分直线斜率存在与不存在商量,当斜率不存在时直接计算可得,当斜率存在时,设直线的方程为 ,l y kx b =+依据相切求出关系,再由点到直线的距离直接计算即可得解. ,b k (1)∵ ∴,1222F F c ==1c =∵,由 得,∴2a =222a b c =+241=+b 22=34=b a ,高考材料高考材料所以椭圆的方程:;Γ22143x y +=(2)∵直线的斜率为,故可设直线的方程为 , l 1l y x b =+设,,,1(M x 1)y 2(N x 2)y 由 可得, 22143y x b x y =+⎧⎪⎨+=⎪⎩22784120x bx b ++-=则,,1287b x x +=-2124127b x x -=∵以为直径的圆过右顶点,∴,∴MN A 0AM AN ⋅=1212(2)(2)0x x y y --+=∴21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++,整理可得,2241282(2)4077b b b b -=⋅--⋅++=271640b b ++=∴或,2b =-27b =-∵, 2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-当或时,均有2b =-27b =-0∆>所以直线的方程为或. l 2y x =-27y x =-(3)椭圆左、右焦点分别为、Γ1(1,0)F -2(1,0)F ①当直线平行于轴时,∵直线与椭圆相切,∴直线的方程为, l y l Γl 2x =±此时点、到直线的到距离分别为,∴. 1F 2F l 121,3d d ==123d d ⋅=②直线不平行于轴时,设直线的方程为 ,l y l y kx b =+联立,整理得, 2234120y kx b x y =+⎧⎨+-=⎩222(34)84120k x kbx b +++-=,222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-∵直线与椭圆相切,∴,∴ l Γ0∆=2234b k =+∵到直线的距离为到直线的距离为,1(1,0)F -l 1=d 2(1,0)F -l 2=d ∴,123d d ⋅=∴点、到直线的距离之积为定值由.1F 2F l 35.〔2023·上海浦东新·二模〕已知分别为椭圆:的左、右焦点, 过的直线交椭圆于两12F F 、E 22143x y+=1F l E ,A B 点.(1)当直线垂直于轴时,求弦长;l x AB(2)当时,求直线的方程;2OA OB ⋅=-l (3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定6x =点坐标. (答案)(1)3 (2))1y x =+(3)证明见解析;定点 ()()4080,,,(解析) (分析)〔1〕将代入椭圆方程求解即可;1x =-〔2〕由〔1〕知当直线的斜率存在,设直线的方程为:,联立直线与椭圆的方程,得出l l ()1y k x =+,设可得韦达定理,代入计算可得斜率;()22223484120k xk x k +++-=()()1122A x y B x y ,,,2OA OB ⋅=-〔3〕分析当直线的斜率不存在时,由椭圆的对称性知假设以CD 为直径的圆恒过定点则定点在轴上,再以CD 为l x 直径的圆的方程,令,代入韦达定理化简可得定点 0y =(1)由题知,将代入椭圆方程得 ()110F -,1x =-332y AB =±∴=,(2)由〔1〕知当直线的斜率不存在时,此时,不符合题意,舍去l 331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,OA ·OB =14直线的斜率存在,设直线的方程为:,∴l l ()1y k x =+联立得,设,则, ()221431x y y k x ⎧+=⎪⎨⎪=+⎩()22223484120k x k x k +++-=()()1122A x y B x y ,,,2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩由OA ·OB =x 1x 2+y 1y 2=x 1x 2+k (x 1+1)k (x 2+1)=(1+k 2)x 1x 2+k 2(x 1+x 2)+k 2=(1+k 2)4k2‒123+4k 2+k2‒8k 23+4k 2,解得+k 2=‒5k 2‒123+4k 2=‒222k k ==,直线的方程为..∴l )1y x =+(3)①当直线的斜率不存在时, l ()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为,C 点坐标为, 112y x =-+()62-,直线BT 的方程为,D 点坐标为,以CD 为直径的圆方程为,由椭圆的对称性知假设以112y x =-()62,()2264x y -+=CD 为直径的圆恒过定点则定点在轴上,令,得即圆过点. x 0y =48x x ==,.()()4080,,,高考材料高考材料②当直线的斜率存在时,同〔2〕联立,直线AT 的方程为, l ()1122y y x x =--C 点坐标为,同理D 点坐标为,以CD 为直径的圆的方程为11462y x ⎛⎫ ⎪-⎝⎭,22462y x ⎛⎫ ⎪-⎝⎭,,()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭令,得,0y =()2121212161236024y y x x x x x x -++=-++由, ()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++得,解得,即圆过点. 212320x x -+=48x x ==,()()4080,,,综上可得,以CD 为直径的圆恒过定点. ()()4080,,,6.〔2023·上海长宁·二模〕已知分别为椭圆的上、下顶点,是椭圆的右焦点,是椭圆,A B 222Γ:1(1)xy a a+=>F ΓM上异于的点.Γ,A B(1)假设,求椭圆的标准方程 π3AFB ∠=Γ(2)设直线与轴交于点,与直线交于点,与直线交于点,求证:的值仅与有关 :2l y =y P MA Q MB R PQ PR ⋅a (3)如图,在四边形中,,,假设四边形面积S 的最大值为,求的值.MADB MA AD ⊥MB BD ⊥MADB 52a (答案)(1)2214x y +=(2)证明见解析 (3) 2a =(解析) (分析)〔1〕依据已知推断形状,然后可得;AFB △〔2〕设,表示出直线、的方程,然后求Q 、R 的坐标,直接表示出所求可证; ()11,M x y AM BM 〔3〕设,,依据已知列方程求解可得之间关系,表示出面积,结合已知可得. ()11,M x y ()44,D x y 14,x x (1)因为,,所以是等边三角形, AF BF =π3AFB ∠=AFB △因为,,所以,2AB =AF a =2a =得椭圆的标准方程为.2214x y +=(2)设,,, ()11,M x y ()2,2R x ()3,2Q x 因为,()0,1A()0,1B -所以直线、的方程分别为AM BM , 111:1AM y l y x x -=+, 111:1BM y l y x x +=-所以,, 12131x x y =+1311x x y =-又221121x y a-=所以, 2211221331x PQ PR x x a y ⋅===-所以的值仅与有关. PQ PR ⋅a (3)设,, ()11,M x y ()44,D x y 因为,,MA DA ⊥MB DB ⊥所以,()()1414110x x y y +--=()()1414110x x y y +++=高考材料高考材料两式相减得,41y y =-带回原式得,214110x x y +-=因为,所以, 221121x y a+=142x x a =-1412111MAB DAB S S S x x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭A A 因为的最大值为 ,所以 ,得.S 52152a a +=2a =7.〔2023·福建省福州格致中学模拟预测〕圆:与轴的两个交点分别为,,点为圆O 224x y +=x ()12,0A -()22,0A M 上一动点,过作轴的垂线,垂足为,点满足O M x N R 12NR NM =(1)求点的轨迹方程;R (2)设点的轨迹为曲线,直线交于,两点,直线与交于点,试问:是否存在一个定点R C 1x my =+C P Q 1A P 2A Q S T ,当变化时,为等腰三角形m 2A TS (答案)(1)2214x y +=(2)存在,证明见解析 (解析) (分析)〔1〕设点在圆上,故有,设,依据题意得,,再代入圆()00,M x y 224x y +=22004x y +=(),R x y 0x x =012y y =即可求解;〔2〕先推断斜率不存在的情况;再在斜率存在时,设直线的方程为,与椭圆联立224x y +=l 1x my =+得:,,,再依据题意求解推断即可. ()224230m y my ++-=12224m y y m -+=+12234y y m -=+(1)设点在圆上, ()00,M x y 224x y +=故有,设,又,可得,, 2204x y +=(),R x y 12NR NM =0x x =012y y =即,0x x =02y y =代入可得,22004x y +=()2224x y +=化简得:,故点的轨迹方程为:.2214x y +=R 2214x y +=(2)依据题意,可设直线的方程为,l 1x my =+取,可得,, 0m=P ⎛ ⎝1,Q ⎛ ⎝可得直线的方程为的方程为1APy x =+2AQ y x =-联立方程组,可得交点为;(14,S 假设,,由对称性可知交点,1,P ⎛ ⎝Q ⎛ ⎝(24,S 假设点在同一直线上,则直线只能为:上,S l 4x =以下证明:对任意的,直线与直线的交点均在直线:上. m 1A P 2A Q S l 4x =由,整理得 22114x my x y =+⎧⎪⎨+=⎪⎩()224230m y my ++-=设,,则, ()11,P x y ()22,Q x y 12224m y y m -+=+12234y y m -=+设与交于点,由,可得 1A P l ()004,S y 011422y y x =++10162y y x =+设与交于点,由,可得, 2A Q l ()004,S y '022422y y x '=--20222y y x '=-因为 ()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+-, ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-因为,即与重合, 00y y '=0S 0S '所以当变化时,点均在直线:上,m S l 4x =因为,,所以要使恒为等腰三角形,只需要为线段的垂直平分线即可,依据对称性()22,0A ()4,S y 2A TS 4x =2A T 知,点.()6,0T 故存在定点满足条件.()6,0T 8.〔2023·全国·模拟预测〕已知椭圆的离心率为,椭圆C 的左、右顶点分别为A ,B ,上顶点()2222:10x y C a b a b+=>>12为D ,.1AD BD ⋅=-(1)求椭圆C 的方程;(2)斜率为的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P 〔直线l 不经过点P 〕,使得直线PM 与直线PN 12的倾斜角互补,假设存在这样的点P ,请求出点P 的坐标;假设不存在,请说明理由.(答案)(1)22143x y +=(2)存在,点P 的坐标为或31,2⎛⎫ ⎪⎝⎭31,2⎛⎫-- ⎪⎝⎭(解析) (分析)高考材料高考材料〔1〕利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; 〔2〕设直线l 的方程为,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为12y x m =+零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知,,,(),0A a -(),0B a ()0,D b 所以,,所以,解得. (),AD a b = (),BD a b =- 2221AD BD a b c ⋅=-+=-=- 1c =又椭圆C 的离心率为,所以,1222a c ==b ==故椭圆C 的方程为.22143x y +=(2)假设存在这样的点P ,设点P 的坐标为,点M ,N 的坐标分别为,,设直线l 的方程为()00,x y ()11,x y ()22,x y . 12y x m =+联立方程消去y 后整理得.221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩2230x mx m ++-=,得,()222431230m m m ∆=--=->22m -<<有 12212,3.x x m x x m +=-⎧⎨=-⎩假设直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以 01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+----()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----.()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----所以解得或0000230,230,x y y x -=⎧⎨-=⎩001,32x y =⎧⎪⎨=⎪⎩001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为或.31,2⎛⎫ ⎪⎝⎭31,2⎛⎫-- ⎪⎝⎭9.〔2023·内蒙古·海拉尔第二中学模拟预测〔文〕〕已知椭圆的两个焦点分别为和,椭圆()2222:10x y C a b a b +=>>1F 2F 上一点到和的距离之和为,且椭圆C 1F 2F 4C (1)求椭圆的方程;C (2)过左焦点的直线交椭圆于、两点,线段的中垂线交轴于点〔不与重合〕,是否存在实数,使1F l A B AB x D 1F λ恒成立?假设存在,求出的值;假设不存在,请说出理由.1AB DF λ=λ(答案)(1)2214x y +=(2)存在,λ=(解析) (分析)〔1〕由椭圆的定义可求得的值,依据椭圆的离心率求得的值,再求出的值,即可得出椭圆的方程; a c b C 〔2〕分析可知,直线不与轴垂直,分两种情况商量,一是直线与轴重合,二是直线的斜率存在且不为零,设l x l x l 出直线的方程,与椭圆方程联立,求出、,即可求得的值. l AB 1DF λ(1)解:由椭圆的定义可得,则,因为,则, 24a =2a=ce a ==c ∴=1b ==因此,椭圆的方程为.C 2214x y +=(2)解:假设直线与轴垂直,此时,线段的垂直平分线为轴,不符合题意; l x AB x 假设直线与轴重合,此时,线段的垂直平分线为轴,则点与坐标原点重合,lx AB y D 此时,1AB DF λ===假设直线的斜率存在且不为零时,设直线的方程为,设点、,l l )0x my m =≠()11,Ax y ()22,B x y 联立可得, 2244xmy x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>由韦达定理可得, 12y y +=12214yy m =-+则()121222my y x x ++==所以,线段的中点为, AB M ⎛ ⎝高考材料高考材料所以,线段的垂直平分线所在直线的方程为,AB y m x ⎛=- ⎝在直线方程中,令可得y m x ⎛=-+ ⎝0y=x =故点,D ⎛⎫ ⎪ ⎪⎝⎭,()22414m m +=+因此,. ()221414m AB DF m λ+===+综上所述,存在,使得恒成立.λ=1AB DF λ=10.〔2023·河南安阳·模拟预测〔文〕〕已知椭圆上一个动点N 到椭圆焦点的距离的最2222:1(0)C bb x a a y +>>=(0,)Fc 小值是,且长轴的两个端点与短轴的一个端点B 构成的的面积为2.212,A A 12A A B △(1)求椭圆C 的标准方程;(2)如图,过点且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线与直线的交点T 在定直线4(0,)M -1A P 2A Q 上.(答案)(1)2214y x +=(2)证明见解析 (解析) (分析)〔1〕依据题意得到,再解方程组即可.22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩〔2〕首先设直线,,,与椭圆联立,利用韦达定理得到,.:4l y kx =-()11,P x y ()22,Q x y 12284k x x k +=+122124x x k =+,,依据,即可得到,从而得到直线与直线的交点1112:2PA y l y x x ++=2222:2QA y l y x x --=2123y y +=--1y =-1A P 2A Q T 在定直线上. 1y =-(1)由题知:,解得,即:椭圆22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩21a b c ⎧=⎪=⎨⎪=⎩22:14+=y C x (2)设直线,,,,, :4l y kx =-()11,P x y ()22,Q x y ()10,2A -()20,2A . ()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩,. 12284k x x k +=+122124x x k =+则,, 1112:2PA y l y x x ++=2222:2QA y l y x x --=则, ()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----因为, ()1212212342k kx x x x k ==++所以,解得. ()()12212121213232123293362x x x x x y y x x x x x +--+===---++-1y =-所以直线与直线的交点在定直线上.1A P 2A Q T 1y =-11.〔2023·安徽省舒城中学三模〔理〕〕已知椭圆,过原点的直线交该椭圆于,两点〔点在22:184x y Γ+=O ΓA B A x轴上方〕,点,直线与椭圆的另一交点为,直线与椭圆的另一交点为.()4,0E AE C BE D高考材料高考材料(1)假设是短轴,求点C 坐标;AB Γ(2)是否存在定点,使得直线恒过点?假设存在,求出的坐标;假设不存在,请说明理由.T CD T T (答案)(1);82(,)33(2)存在,.8(,0)3T (解析) (分析)〔1〕两点式写出直线,联立椭圆方程并结合韦达定理求出C 坐标; AE 〔2〕设有,联立椭圆求C 坐标,同理求坐标,商量、,推断直线恒过00(,)A x y 00:(4)4=--y AE y x x D 00x ≠00x =CD 定点即可. (1)由题设,,而,故直线为,(0,2)A ()4,0E AE 240x y +-=联立并整理得:,故,而,22:184x y Γ+=23840y y -+=83A C y y +=2A y =所以,代入直线可得,故C 坐标为.23C y =AE 284233C x =-⨯=82(,)33(2)设,则, 00(,)A x y 00:(4)4=--y AE y x x 由,故, ()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩2220202(4)8(4)+-=-y x x x 由韦达定理有, 20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-所以,故,同理得:,,00833C x x x -=-003C y y x =-00833D x x x +=+03D y y x -=+当时,取,则,同理, 00x ≠8(,0)3T 0000003383833TCy x yk x x x -==----003TD y k x =-故共线,此时过定点.,,T C D CD 8(,0)3T 当时,,此时过定点.00x =83C D x x ==CD 8(,0)3T 综上,过定点.CD 8(,0)3T 12.〔2023·广东茂名·二模〕已知圆O :x 2+y 2=4与x 轴交于点,过圆上一动点M 作x 轴的垂线,垂足为H ,(2,0)A -N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.6(,0)5-(答案)(1);2212x y +=(2)证明见解析. (解析) (分析)〔1〕运用相关点法即可求曲线C 的方程;( 2)首先对直线的斜率是否存在进行商量,再依据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS l 的斜率,再依据斜率的表达式进行化简运算,得出结论. 12,k k (1)设N 〔x 0,y 0〕,则H 〔x 0,0〕, ∵N 是MH 的中点,∴M 〔x 0,2y 0〕,又∵M 在圆O 上,,2200(2)4y x +=∴即; 220014x y +=∴曲线C 的方程为:;2214x y +=(2)①当直线l 的斜率不存在时,直线l 的方程为:,65x =-假设点P 在轴上方,则点Q 在x 轴下方,则,6464(,),(,5555P Q ---直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称, ∴,64(,55S1244001551,,6642255APAS k k k k --======-++;124k k ∴=假设点P 在x 轴下方,则点Q 在x 轴上方,高考材料高考材料同理得:,646464(,(,(,555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++∴k 1=4k 2;②当直线l 的斜率存在时,设直线l 的方程为:,6,5x my =-由与联立可得, 6,5x my =-2214x y +=221264(4)0525m m y y +--=其中,22144644(4)02525m m ∆=+⨯+⨯>设,则,则,1122(,),(,)P x y Q x y 22(,)S x y --1212221264525,44m y y y y m m -+==++∴ 112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+-则121122121216()2542()5y my k y x k x y my y --=⋅=++,∴k 1=4k 2. 121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++13.〔2023·安徽·合肥市第八中学模拟预测〔文〕〕生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点射出的光线1F 经过椭圆镜面反射到上焦点,这束光线的总长度为42F 离心率e <(1)求椭圆C 的标准方程;(2)假设从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线上的M 、N 两点,假4y =设AB 连线过椭圆的上焦点,试问,直线BM 与直线AN 能交于肯定点吗?假设能,求出此定点:假设不能,请说2F 明理由.(答案)(1)22143y x +=(2)能,定点为〔0,〕85(解析) (分析)〔1〕由条件列方程求可得椭圆方程;,,a b c〔2〕联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为,22221(0)y x a b a b+=>>则,24a =122c b ⨯⨯=222ab c =+又e <所以,21a b c ===,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为,由,得, 1y kx =+221431y x y kx ⎧+=⎪⎨⎪=+⎩22(34)690k x kx ++-=222(6)36(34)1441440k k k ∆=++=+>设,则.. ()()1122A x y B x y ,,,121222693434k x x x x k k --+==++由对称性知,假设定点存在,则直线BM 与直线AN 交于y 轴上的定点,由得,则直线BM 方程为, 114y y xx y ⎧=⎪⎨⎪=⎩1144x M y ⎛⎫ ⎪⎝⎭,211121444()4y xy x x y x y --=--令,则0x =122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又, 12123()2x x kx x +=则,21212112214()4()83554()()22x x x x y x x x x x x --===-++-所以,直线BM 过定点〔0,〕,同理直线AN 也过定点.858(0,5则点〔0,〕即为所求点.8514.〔2023·全国·模拟预测〕设椭圆的右焦点为F ,左顶点为A .M 是C 上异于A 的动点,过()222:10416x y C b b+=<<F 且与直线AM 平行的直线与C 交于P ,Q 两点〔Q 在x 轴下方〕,且当M 为椭圆的下顶点时,.2AM FQ =高考材料高考材料(1)求椭圆C 的标准方程;(2)设点S ,T 满足,,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. PS SQ = FS ST =(答案)(1)2116x =(2)证明见解析 (解析) (分析)〔1〕由向量的坐标运算用表示出点坐标,代入椭圆方程求得参数,得椭圆方程; ,b c Q b 〔2〕设,直线PQ 的斜率不为0,设其方程为,设.(), 0F c x m y c =+1122(,),(,)P x y Q x y 直线方程代入椭圆方程应用韦达定理得,利用向量相等的坐标表示求得点坐标,得出点坐标满足一个椭圆12y y +T T 方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,,则.(4,)AM b =- 12,22b FQ AM ⎛⎫==- ⎪⎝⎭ 设C 的焦距为2c ,则,即.2,2b Q c ⎛⎫+- ⎪⎝⎭2,2b Q ⎫-⎪⎭因为Q 在C,解得.114=()22162b =-=则椭圆C 的标准方程为. 2116x =(2)设,直线PQ 的斜率不为0,设其方程为,设.(), 0F c x m y c =+1122(,),(,)P x y Q x y 联立直线PQ 和C 的方程,消x 得.()22220y ++-=,12y y +=1212()2x x m y y c +=++=由得S 为弦PQ 的中点,故. PS SQ = S由得S是线段FT 的中点,故.FS ST =T设T 的坐标为,则,,故(), xy x c =y c=,即,2211x y c c ⎛⎫⎫== ⎪⎪⎝⎭⎭221x c +=这说明T 在中心为原点,为长轴端点,为短轴端点的椭圆上运动,故T 到两焦点的(,0)c ±0,⎛⎫ ⎪ ⎪⎝⎭,0⎛⎫ ⎪ ⎪⎝⎭距离之和为定值.代入得两焦点坐标为.(()4,0±-综上所述,平面上存在两定点,,使得T 到这两定点距离之和为定值.()4-()4-+15.〔2023·上海交大附中模拟预测〕已知椭圆是左、右焦点.设是直线上的一221214x y F F Γ+=:,,M ()2l x t t =>:个动点,连结,交椭圆于.直线与轴的交点为,且不与重合.1MF Γ()0N N y ≥l x P M P(1)假设的坐标为,求四边形的面积; M 58⎫⎪⎪⎭,2PMNF (2)假设与椭圆相切于且,求的值;PN ΓN 1214NF NF ⋅= 2tan PNF ∠(3)作关于原点的对称点,是否存在直线,使得上的任一点到N N '2F N 1F N '2F N 的方程和的坐标,假设不存在,请说明理由.2F N N(答案)(3)存在;; y x =126N ⎫⎪⎪⎭(解析) (分析)〔1〕依据点斜式方程可得,再联立椭圆方程得到,再依据求解1:MF l y x =12N ⎫⎪⎭2112PMNF PF M NF F S S S =-△△即可;〔2〕设,依据相切可知,直线与椭圆方程联立后判别式为0,得到,再依据,:()PN l y k x t =-2214k t =-1214NF NF ⋅=化简可得,再依据直角三角形中的关系求解的值即可;t =12N ⎫⎪⎭2tan PNF ∠〔3〕设,表达出,再依据列式化简可得,结合()00,N x y 2NF l 22O NF d -=2148k =k =和直线的方程N 2F N高考材料高考材料(1)由题意,,故()1F1MF k ==1:MF l y x =与椭圆方程联立 ,可得:,即,又由题意,故2214x y y x⎧+=⎪⎪⎨⎪=⎪⎩213450x+-=(130xx +=N x >解得,故且x =12N ⎫⎪⎭121122NF F S =⋅=△11528PF M S ==△则 2112PMNF PF M NF F S S S =-△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立,可得:2214()x y y k x t ⎧+=⎪⎨⎪=-⎩()22222148440k x k tx k t +-+-=由相切,,则 ()22216140k k t ∆=+-=2214k t =-同时有韦达定理,代入有,化简得,故 21228214N k t x x x k +==+2214k t =-2244414N t t x t -=+-4N x t =2222414N N x t y t -=-=而,解得 222122122134N N t NF NF x y t -⋅=+-==2t =>则,所以轴,故在直角三角形中,12N ⎫⎪⎭2NF x ⊥2PNF A 222tan PF PNF NF ∠===(3)由于N 与,与是两组关于原点的对称点,由对称性知N '1F 2F 四边形是平行四边形,则与是平行的,12F NF N '2NF 1N F '故上的任一点到的距离均为两条平行线间的距离d .1F N '2F N 设,其中,易验证,当时,与之间的距离为()00,N xy 0(x ∈0=x 2NF 1N F 'k =则,即,2(:NF y l k x =0kx y -=发觉当时,,整理得 0≠x 22O NF d d -===221914k k =+2148k =代入,代入整理得,即由k =(220048y x =220014x y =-20013450x --=(00130x x -=于,所以,故0(x ∈0x=126N ⎫⎪⎪⎭k ==则的直线方程为 2F Nly x =16.〔2023·全国·模拟预测〔理〕〕已知椭圆:的右顶点为A ,上顶点为,直线的斜率为C ()222210x y a b a b+=>>B AB ,原点到直线O AB (1)求的方程;C (2)直线交于,两点,,证明:恒过定点.l C M N 90MBN ∠=︒l (答案)(1)22143x y +=(2)证明见解析 (解析) (分析)〔1〕题意得,依据AB 斜率,可得AB 的方程,依据点到直线距离公式,可求得a (,0),(0,)A a B b b a =值,进而可得b 值,即可得答案.〔2〕分析得直线l 的斜率存在,设,与椭圆联立,可得关于x 的一元二次方程,依据韦1122,(,),(,)y kx m M x y N x y =+达定理,可得表达式,进而可得、的表达式,依据,可得,依据数量1212,x x x x +12y y 12y y +90MBN ∠=︒0MB NB⋅=积公式,化简计算,可得m 值,分析即可得证 (1)由题意得,(,0),(0,)A aB b 所以直线AB 的斜率为b a =-b a =又直线AB的方程为, )y x a =-20y +=所以原点到直线的距离, O AB d 2a =所以.b =22143x y +=(2)由椭圆的对称性可得,直线l 的斜率肯定存在,设直线l 的方程为, 1122,(,),(,)y kx m M x y N x y =+联立方程,消去y 可得, 22143x y y kx m ⎧+=⎪⎨⎪=+⎩222(34)84120k x kmx m +++-=所以, 21212228412,3434km m x x x x k k --+==++所以,, 22221212122312()34m k y y k x x km x x m k-=+++=+121226()234m y y k x x m k +=++=+高考材料高考材料因为,所以,90MBN ∠=︒MB BN ⊥因为,所以,B 1122(),()MB x y NB x y =-=--所以,22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++ 整理得,解得或,2730m --=m=m =因为,所以B m 所以直线l 的方程为,得证y kx =0,⎛ ⎝17.〔2023·全国·模拟预测〔理〕〕已知椭圆的左、右焦点分别为,,,分别为左、2222:1(0)x y C a b a b+=>>1F 2F 1A 2A 右顶点,,分别为上、下顶点.假设四边形,且,,成等差数列. 1B 2B 1122B F B F 212F F 212B B 212A A (1)求椭圆的标准方程;C (2)过椭圆外一点(不在坐标轴上)连接,,分别与椭圆交于,两点,直线交轴于点.试P P 1PA 2PA C M N MN x Q 问:,两点横坐标之积是否为定值?假设为定值,求出定值;假设不是,说明理由. P Q (答案)(1);22132x y +=(2)为定值,理由见解析. 32P Q x x =(解析) (分析)〔1〕应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.〔2〕由题意分析知,所在直线斜率均存在且不为0、斜率和差均不为0,设直线,联立椭圆求,1PA 2PA 1PA 2PA M 的坐标及点横坐标,应用点斜式写出直线,令求横坐标,即可得结论.N P MN 0y =Q (1)由题设知:,可得, 2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩22321a b ⎧=⎪⎨⎪=⎩所以椭圆标准方程为.22132x y +=(2)由题意,,所在直线斜率均存在且不为0、斜率和差均不为0,1PA 2PA 设为,联立椭圆方程整理得:, 1PA (y k x =22229(23)302k k x x +++-=所以1M A x x +=1A x =M x ==设为,联立椭圆方程整理得:,2PA (y m x =22229(23)302m m x x+-+-=所以, 2N A x x +=2Ax=N x =所以M y k=⋅=N y m =⋅=联立直线、可得:,1PA 2PA P x=直线为,令,则 MN2()[23m k y x km +=⋅-0y =Q x =所以为定值.32P Q x x ==18.〔2023·山西·太原五中二模〔文〕〕已知椭圆,过原点的两条直线和分别与椭圆交于和,2221x y +=1l 2l A B △C D △记得到的平行四边形的面积为.ACBD S (1)设,用的坐标表示点到直线的距离,并证明; ()()1122,,,A x y C x y A C △C 1l 12212S x y x y =-(2)请从①②两个问题中任选一个作答 ①设与的斜率之积,求面积的值.1l 2l 12-S ②设与的斜率之积为.求的值,使得无论与如何变动,面积保持不变.1l 2l m m 1l 2l S (答案)(1)(2)见解析 (解析) (分析)〔1〕商量和,分别写出直线的方程,由距离公式即可求得点到直线的距离,由面积公式即可证明10x ≠10x =1l C 1l ;12212S x y x y =-〔2〕假设选①,设出直线和的方程,联立椭圆求出的坐标,结合〔1〕中面积公式求解即可;假设选②,设1l 2l A C △出直线和的方程,联立椭圆求出的坐标,结合〔1〕中面积公式得到的表达式,平方整理,由含的项1l 2l A C △S 42,k k 系数为0即可求解. (1)高考材料高考材料当时,直线的方程为:,则点到直线的距离为10x ≠1l 11y y x x =C 1l d当时,直线的方程为:,则点到直线的距离为,也满足10x =1l 0x =C 1l 2d x =d 则点到直线;因为C 1l2AB AO ==则;21211222S AB d x x x y y y =⋅=--=(2)假设选①,设,设,直线与椭圆联立可得1122121:,:,2l y k x l y k x k k ===-()()1122,,,A x y C x y 1l 12221y k x x y =⎧⎨+=⎩,()221121k x+=同理直线与椭圆联立可得,不妨令,则2l ()222121k x +=120,0x x >>11x y =,22x y====则122S x y x =-假设选②,设,设,直线与椭圆联立可得,则12:,:m l y kx l y x k ==()()1122,,,A x y C x y 1l 2221y kx x y =⎧⎨+=⎩()22121k x +=,212112x k =+同理可得,则2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅,两边平方整理得1222m m k x x k k ==-⋅,()24222222224(48)240Sk S S m m k m S m -++++-=由面积与无关,可得,解得,故时,无论与如何变动,面积保持不S k 2222240480S S S m m ⎧-=⎨++=⎩12S m ⎧=⎪⎨=-⎪⎩12m =-1l 2l S 变.19.〔2023·福建·厦门一中模拟预测〕已知,分别是椭圆的右顶点和上顶点,,A B 2222:1(0)x y C a b a b+=>>||AB =直线的斜率为.AB 12-(1)求椭圆的方程;(2)直线,与,轴分别交于点,,与椭圆相交于点,.证明: //l AB x y M N C D 〔i 〕的面积等于的面积;OCM A ODN △〔ii 〕为定值.22||||CM MD +(答案)(1)2214x y +=(2)〔i 〕证明见解析;〔ii 〕证明见解析 (解析) (分析)〔1〕依据,,由,直线的斜率为求解;(,0)A a (0,)B b ||AB =AB 12-〔2〕设直线的方程为,得到,,与椭圆方程联立,依据,l 12y x m =-+(2,0)M m (0,)N m 11|2|||2=A OCM S m y ,利用韦达定理求解. 21||||2=A ODN S m x 2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+(1)解:、是椭圆的两个顶点,A B 22221(0)x y a b a b+=>>且,直线的斜率为,||AB =AB 12-由,,得 (,0)A a (0,)B b ||AB ==又,解得,, 0102b b k a a -==-=--2a =1b =椭圆的方程为; ∴2214x y +=(2)设直线的方程为,则,,l 12y x m =-+(2,0)M m (0,)N m 联立方程消去,整理得.221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩y 222220x mx m -+-=, 得22248(4)3240m m m ∆=--=->28m <设,,,.1(C x 1)y 2(D x 2)y高考材料高考材料,.122x x m ∴+=21222x x m =-所以, 11|2|||2=A OCM S m y 21||||2=A ODN S m x 则有 112222|2||2|||1||||||-====A A OCMODNS y m x x Sx x x 的面积等于的面积;OCM ∴A ODN A ,,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+, ()()221212125551042x x x x m x x m =+--++ . ()2222552210102m m m m =---+5=20.〔2023·北京市第十二中学三模〕已知椭圆过点2222:1(0)x y M a b a b +=>>(2,0)A (1)求椭圆M 的方程;(2)已知直线在x 轴上方交椭圆M 于B ,C 〔异于点A 〕两个不同的点,直线AB ,AC 分别与y 轴交于点P 、(3)y k x =+Q ,O 为坐标原点,求的值.()k OP OQ +(答案)(1)22142x y +=(2) 45(解析) (分析)〔1〕直接由点坐标及离心率求得椭圆方程即可;A 〔2〕联立直线与椭圆求得,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算2212122212184,2121k k x x x x k k --+==++即可.()k OP OQ +(1)由题意知:,则椭圆M 的方程为;2,c a a ==c =2222b a c =-=22142x y +=(2)联立直线与椭圆,整理得,22(3)142y k x x y =+⎧⎪⎨+=⎪⎩()222221121840k x k x k +++-=,()()422214442118440160k k kk ∆=-+-=-+>即在x 轴上方交椭圆M 于B ,C〔异于点A 〕两点,则 k <<(3)y k x =+0k <<设,则,,, 1122(,),(,)B x y C x y 1222,22x x -<<-<<2212122212184,2121k k x x x x k k --+==++1122(3),(3)y k x y k x =+=+易得直线AB ,AC 斜率必定存在,则,令,得,则,同理可得11:(2)2y AB y x x =--0x =11202y y x =>-112(0,)2y P x -,且, 222(0,2y Q x -22202y x >-则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅⎪⎝⎭+-+----. 222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=高考材料高考材料。
2024高考数学常考题型 圆锥曲线中定点定值定直线问题(解析版)
第23讲圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。
考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C的长轴长为:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由..【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011y y =.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在点4,03M ⎛⎫⎪⎝⎭,可使得直线MP 与MQ 的斜率之积为定值,该定值为920-.【分析】(1)设()00,P x y 、圆的方程222()(0)x y b r r +-=>,代入()3,0-、()00,x y 及()10,A y 可解得101y y =,即可证;(2)设(,0)(3)M m m ≠,由A ,P ,Q 三点共线AP AQ k k =得Q y ,即可表示出MP MQ k k ⋅讨论定值是否存在.【详解】(1)由2214x y +=可得()13,0F -,()23,0F 设()00,P x y ,则220044x y +=,设圆的方程为2220()(0)+-=>x y b r r ,代入()13,0F -及()00,x y ,得()2202220003b rx y b r⎧+=⎪⎨+-=⎪⎩,两式相减,得22220000000003443113222⎛⎫+--+-===- ⎪⎝⎭x y y y b y y y y ,所以圆的方程为022230+--=x y b y 即22001330x y y y y ⎛⎫++--= ⎪⎝⎭,令0x =,得2001330y y y y ⎛⎫+--= ⎪⎝⎭,由10y >,可得101y y =,即011y y =.5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【答案】(1)22182x y +=(2)证明见解析【分析】(1)将22y b =代入曲线C 的方程中求得||2AB a =,继而由三角形的面积公式得4ab =.再由椭圆的对称性和椭圆的定义得()22442a +=+,由此可求得C 的标准方程;(2)设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,得出直线PD 的方程,直线QE 的方程,联立直线PD 与直线QE 的方程,求得点M 的坐标,继而求得12M M y x =-,可得证.(1)解:将22y b =代入2222:1(0)x y C a b a b +=>>中,解得22x a =±,则||2AB a =,所以1ABF 的面积为1222222ab a b ⨯⨯==,所以4ab =.①设C 的右焦点为2F ,连接2AF ,由椭圆的对称性可知12BF AF =,所以1ABF 的周长为()1112||||22AB AF BF AB AF AF a ++=++=+,所以()22442a +=+,②由①②解得22a =,2b =,所以C 的标准方程为22182x y +=.(2)解:设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。
圆锥曲线中的定点、定值问题
圆锥曲线中的定点、定值问题
1、几个常见的定点模型
若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.
(1)对于椭圆()上异于右顶点的两动点,,
以为直径的圆经过右顶点,则直线过定点.
同理,当以为直径的圆过左顶点时,直线过定点.
(2)对于双曲线上异于右顶点的两动点,,以为直径的圆经过右顶点,则直线过定点.同理,对于左顶点,则定点为.
(3)对于抛物线上异于顶点的两动点,,
若,则弦所在直线过点.
同理,抛物线上异于顶点的两动点,,若,则直线过定点.
2、几个常见的定值模型
在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点(非顶点)与曲线上的两动点,满足直线与的斜率互为相反数(倾斜角互补),则直线的斜率为定值.
(1)在椭圆中:已知椭圆,定点()在椭圆上,设,是椭圆上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(2)在双曲线:中,定点()在双曲线上,设,是双曲线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(3)在抛物线:,定点()在抛物线上,设,是抛物线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
3、解题导语
解决定点、定值问题的关键是检测数学运算的能力,所以只
要细致、耐心的计算就可以得到答案。
又因为此种问题找得分点比较容易,所以千万不要放弃。
圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学
七、圆锥曲线中的平行弦的问题
在前面一、推论:“若圆锥曲线为圆,直线AB交C于A、B两点,的斜率分别为,当时,为定值,”给出了平移图像法、一般法、参数方程法等多种证明方法。现在我们对一、推论
31.采用另一种思维方式探究如下:设点是圆上的一定点,过点P作x轴的
2. 当 时, 【1】化为: 。即 时,为定值,,
3.当)时,,得, ,,即 ,
,即 。 得:
; 【2】
即: 或 (因为直线AB不过点P,舍去)AB的方程为化为: 即 由得 即直线AB恒过定点( )。
3. 当时, 由 【2】化为: , , , 即:。(因为直线AB不过点P,舍去)或;,即 为定值.
1.当时,, , ,
,即: , ,
化为:, (因为直线AB不过点P,舍去)或。, ; 【6】AB的方程为化为: 即 由得 即当时,直线AB恒过定点( )。
2.当 时, 【6】化为:; 即当时,为定值,。
3.当时, 即, ,,即 ,
, ; 【7】 ,化为:, (因为直线AB不过点P,舍去)或。由,
2.当时,直线AB恒过定点(
3.当时,为定值
4.当时,即直线AB恒过定点( ). 及其证法已知点(其中 是圆锥曲线上的一个定点,过点作直线分别与圆锥曲线C相交于点A、 则必定存在以下结论:
二、椭圆、双曲线、抛物线、圆中的定点、定值问题的统一结论
1.当时,为定值,
2.当时,直线AB恒过定点( )
圆锥曲线中的定点、定值问题的
结论及多种证明方法
主讲人:某某某老师
某某学校
山东东营 徐新华 大家都知道,圆锥曲线的很多重要结论,特别是圆锥曲线的定点、定值问题并没有列入高中数学教材,但它们一直确是高考数学试题中考察的重要内容。本文件中,从多个角度、采用多种方法对圆锥曲线的定点、定值问题的结论作出了证明,并力求对证明过程给予最大化的展示。需要说明的是,个别证法有相当大的难度,其证明过程也极为复杂,因此叙述也就比较详细具体。
2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。
2025高考数学一轮复习-44.1-圆锥曲线中的定值与定点问题【课件】
44.1-圆锥曲线中的定值与定点问题
举题说法 定点问题
1 已知点 P(4,3)在双曲线 C:ax22-yb22=1(a>0,b>0)上,过点 P 作 x 轴的平行线, 分别交双曲线 C 的两条渐近线于 M,N 两点,且|PM|·|PN|=4.
(1) 求双曲线C的方程;
【解答】因为点 P(4,3)在双曲线上,所以1a62-b92=1.过点 P 作 x 轴的平行线 y=3,与 y=±bax 相交于 M,N 两点,不妨取 M3ba,3,则 N-3ba,3,所以4-3ba×4+3ba =16-9ba22=a21a62 -b92=a2=4,所以 a=2. 代入1a62-b92=1,解得 b= 3,所以双曲线 C 的方程为x42-y32=1.
①【k解1+答】k2=若选1;①②:设k1kA2(=x1,1.y1),B(x2,y2).联立x42-y32=1, 得(3-4k2)x2-8kmx-4m2
y=kx+m, -12=0,所以 3-4k2≠0,Δ=(-8km)2-4(3-4k2)(-4m2-12)>0,即 m2+3-4k2> 0,x1+x2=3-8km4k2,x1x2=-34-m24-k212(*).
定直线问题
2 已知双曲线 C 的中心为坐标原点,左焦点为(-2 5,0),离心率为 5.
(1) 求C的方程;
【解答】设双曲线 C 的方程为ax22-by22=1(a>0,b>0).由焦点坐标可知 c=2 5.由 e= ac= 5,可得 a=2,则 b= c2-a2=4,故双曲线 C 的方程为x42-1y62 =1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线问题的解题规律可以概括为:“联立方程求交点,韦达定理求弦长,根的分布范围,曲线定义不能忘,引参、用参巧解题,分清关系思路畅、数形结合关系明,选好,选准突破口,一点破译全局活。
定点、定直线、定值专题(2012*荷泽一模〉已知直线1:y=x+AZ&. I.!a|O:x-+y-=5.椭圆E:牛+牛二i过圆O上任意一点P作椭换1E的两条切线,若切线都存在斜率,求证两切线斜率之枳为宦值.2. (2012・自贡三模):过点0)作不打y轴垂直的直线1交该椭于M、5 4N两点,A为椭圆的左顶点-试判断ZMAN的大小是否为怎值,并说明理由・2 23.(2013•川山二模〉设A(XI,yi). B (x?, y2> 是椭PilA;+^=b(a>b:>0)上的两点,己知向量二(:丄竺),二(二2竺).且W恳二0・若椭圆的离心率巴出.短轴长为2, ba ba 2O为坐标原点:(I)求椭岡的方程:(11 )若直线AB过椭鬪的焦点F (0, C), Cc为半焦距),求直线AB的斜率k的值:(llf)试问:△AOB的iflf枳是否为怎值?如果是,请给予证明;如果不是.请说明理由.4.已知椭鬪C的中心在原点,傑点在X轴上,长轴长是短轴长的近倍.且椭圆C经过点M(2, V2).(1)求椭鬪C的标准方程:(2》过鬪0: 二3卜的任意一点作圆的一条切线椭鬪C 交于A 、B 两点.求证:35.已知平面上的动点P(x, y)及两定点A ( -2, 0), B (2, 0).直线PA. PB 的斜率分 ki* k2 且k J • k 2= -求动点P 的轨迹C 的方程:设直线h 戸kx+m 仃曲线C 交于不同的两点M. N ・②若直线BM. BN 的斜率都存在并满足kBM.kBif-亍 证明直线I 过定点,并求出这个 富点.2 2 -6. (2011>新疆模拟)已知椭圆C ;青+丫5二1(a>b>0)的离心率为丄,以原点为圆心,椭 aD 2圆的短半轴为半径的圆与直线x-y+V6=0相切.(I )求椭圆C 的方程;(II)设P(4, 0), A. B 是椭圆C 上关于X 轴对称的任意两个不同的点,连接PB 交椭圆 C 于另一点E,证明直线AE 与X 轴相交于窪点Q :7.已知椭圆Q 的离心率为2,它的一个焦点和抛物线y2=-4x 的焦点重合.(1)求椭鬪Q 的方程;2+ y ― 1 (a>b>0)上过点(xo ,yo>的切线方程为X2 ygy2 —+ ~72 a b① 过直线1: x=4上点M 引椭圜Q 的两条切线,切点分别为A, B.求证:直线AB 恒过是 点C ;② 是否存在实数入使得iAq+|BC|=x>jACHpC!>若存在,求出入的值:若不存在,说明理由・2 c 过椭圆c :刍+y2=i 的右焦点F 作直线I 交椭圆C fA 、B 两点,交y 轴于M 点,若 5亦二X 1万,旋二X 2丽,求证:入1+入2为定值.别是 (1)(2)①若OM 丄ON <0为坐标原点).证明点O 到直线I 的距离为定值,并求出这个定值=1-9.椭圆有两顶点A ( - 1, 0)、B (U 0),过尖焦点F (0, 1)的宜线I与椭圆交于C、D 两点,井与X轴交于点P.直线AC打直线BD交于点Q.(I )当ICDI=^|逅时,求直线I的方程;(11)当点P异于A、B两点时,求证:W-OQ为企值.2 210. (2008>闸北区二模)如图,椭圆C:务+厶5=1(a>b>0), A H A?为椭圆C的左、a r右顶点•(I)设^为椭圆C的左焦点,证明:当且仅当椭圆C上的点P在椭圆的左、右顶点时IPFil 取得最小值与最大值:(II)若椭圆C l:的点到焦点距离的最大值为3,最小值为1.求椭圆C的标准方程:(III)若直线I: y=kx十m与(II)中所述椭圆C相交于A, B两点(A, B不是左右顶点), 且满足AA2丄BA2,求证:直线1过世点,并求出该;4^点的坐标・难题H. (2012*南京一模)在平面宜角坐标系xoy中,已知抛物线y-=2px横坐标为4的点到该抛物线的焦点的距离为5.(1)求抛物线的标准方程;(2)设点C是抛物线上的动点,若以C为圆心的圆在y轴上截得的弦长为4,求证:圆C 过定点•12.在四边形ABCD中,已知A CO, 0), D (0, 4〉,点B在x轴匕BC〃AD,且对角线AC 丄BD.(I )求点C的轨迹方程:(II)若点P是直线y=2x - 5上任意一点,过点P作点C的轨迹的两切线PE、PF, E、F 为切点,M为EF的中点.求证:PM丄X轴:(III)在(II)的条件下,宜线EF是否恒过一运点?若是,请求出这个宦点的坐标:若不是,请说明理由.1、已知椭圆c的中心在坐标原点,焦点在X轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(I)求椭圆C的标准方程;(II)若直线l:y = kx + m与椭圆C相交于A, B两点(A B不是左右顶点),且以为直径的圆过椭圆C的右顶点,求证:直线/过定点, 并求出该定点的坐标.2、已知椭圆C的离心率长轴的左右端点分别为A.(-2.0), 筏(2.0)。
( I )求椭圆C的方程;(II)设直线x = my + l与椭圆C交于P、Q两点,直线A』与Ag交于点S°试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。
3、已知椭圆E的中心在原点,焦点在X轴上,椭圆上的点到焦点的距离的最小值为72-H离心率为c = ¥・(I)求椭圆E的方程;(II)过点(14)作宜线£交E于P、Q两点,试问:在X轴上是否存在一个定点M, MPNQ为定值?若存在,求出这个定点M的坐标;若不存在,请说明理由.4已知椭圆的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,亦丽与:=(3,一1)共线.(I )求椭圆的离心率;(U)设M为椭圆上任意一点,且皿=人刃+“丽(入“已尺),证明5、已知椭圆C:話=1(心>0), Z为其左、右两焦点,A 为右顶点,/为左准线•过片的直线f:x = my-c与椭圆交于只2两点, 且有AP^AQ = — (a + c)~ >2(1)求椭圆c的离心率e的最小值.(2)若丽rJ = M,范C7=N,求证:M、N两点的纵坐标之积为定值6、在平面直角坐标系my中,设点F(b 0),直线/:% = -!,点P在直线/上移动,是线段PF与y轴的交点,RQ丄FP、PQ丄1・(I)求动点e的轨迹的方程;(II)记2的轨迹的方程为£,过点F作两条互相垂直的曲线£的弦AB. CD,设AB、CD的中点分别为M, N.求证:直线MN必过定点R(3Q) •2 27、椭圆G 二+许=1(">/>>0)的左、右焦点分别为F1、F1,右顶点为A, P为椭圆C上任意一点.已知的最大值为3,最小值为2・(1)求椭圆C的方程;(2)若直线/: y = kx+ fit与椭圆C相交于M、N两点(M、N不是左右顶点),且以MN为直径的圆过点4求证:直线/过定点,并求出该定点的坐标.锥曲线解答题中的定值问题2 •已知椭圆+ = \{0 < h <2y/2)的左右焦点分别为斤,尸2,以巧坊为直8 b~径的圆经过点M (0, b) (1)求椭圆的方程(2)设直线1与椭圆交于A,B两点,顾丽=0求证:直线1在y轴上的截距为定值3•已知椭圆的两个焦点为巧(-点0)忑(更0),过片且与坐标轴怒平行的直线与椭圆相交于M,N两点,如果AMN笃的周长等于8(1)求椭圆的方程(2)若过点(1,0)的直线1与椭圆交于不同的两点P,Q,试问在X 轴上是否存在定点E (m, 0)使呢.0左恒为定值?若存在,求岀点E的坐标及定值,若不存在,请说明理由4•已知椭圆方程为罕+务=1,右焦点F (1,0), x=4上一点C(4,3Q,4 3过点F的直线1交椭圆于A,B两点,X=4与X轴交于E点(1)若直线1的倾斜角为¥ , A点的纵坐标为正数,求比讣(2)证明:直线AC和直线BC的斜率之和为定值,并求此定值5.(2009辽宁20)已知,椭圆C过点A(l,|),两个焦点为(J, 0), (1, 0)。
(I )求椭圆C的方程;(H) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF 的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
6・(2010山东理数21)如图,已知椭圆玉+学= l(QQ0)的离心率为琴,以该椭圆上的点和椭圆的左、右焦点斤,耳为顶点的三角形的周长为4(72 + 1)-等轴双曲线的顶虑是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线卩斤和PF?与椭圆的交点分别为A、B和(II)设直线卩片、卩巧的斜率分别为《、忍,证明出=1;(HI)是否存在常数八使得AB + CD — AB CD恒成立?若存在, 求几的值;若不存在,请说明理由.7. (2008浙江20)(本题15分)已知曲线C是到点P (-鳥)和到2 8 直线y=-专距离相等的点的轨迹。
£是过点Q (-1, 0)的直线,8VK M是C上(不在(上)的动点;A、B在£上,M.仕丄y 轴S A(如图)。
(I )求曲线C的方程;(II)求出直线(的方程,使得妙IQA为常数。
&(2011四川文21)过点®)的椭圆令卜“宀。
)的离心率为孕椭圆与用交于两点A(S、心。
),过点C的直细与椭圆右焦点交于另一点D,并与X轴交于点P,直线AC与直线交于点9.已知椭圆C的离心率为£ =长轴的左右端点分别为A(-2,0),A2 (2,0)(1)求椭圆C的方程(2)设直线x=my+l与椭圆交于P,Q两点,直线与交于点S,试问:当m变化时,点S是否恒在一条定直线上?10・⑵08安徽22)设椭圆C土 +計T>0)过点M S I),且着(I)求椭圆C的方程;(U)当过点P(4J)的动直线/与椭圆C相交与两不同点AB时,在线段上取点Q,满足AP.^ = AQ:PB,证明:点0总在某定直线上11 •已知F/ 分别为椭圆Y+V"的左右焦点,曲线C是以坐标原点为顶点,以为焦点的抛物线,过点斤的直线1交曲线C于X 轴上方两个不同点P,Q,点P关于X轴的对称点为M,设尸斤=兄巧0(1)若2e[2.4],求直线1的斜率的取值范围(2)求证:直线MQ过定点12已知直线"my+l过椭圆G J+Qs…的右焦点F且交椭圆C于A,B两点,点A,F,B在直线G: x = 的射影依次为点D,K,E (1)若抛物线疋=473,V的焦点为椭圆C的上顶点,求椭圆C的方程⑵对于(1)中的椭圆C,若直线I交y轴于点M,且=丽=诉,当m的值变化时,求人+/i,的值(3)连结AE,BD试探索当m变化时,直线AE,BD是否相交于一点N?13•已知抛物线v=4v及定点P(0,8), A,B是抛物线上的两动点,且乔=兄两%>0),过点A,B分别作抛物线的切线,设其交点为M (1)证明:点M的纵坐标为定值(2)是否存在定点Q,使得无论AB 怎么样运动都有ZAQP = /BQP ?并证明你的结论M(2005山东22)已知动圆过定点分且与直线一彳相切,其中p>0 ⑴求动圆圆心的轨迹方程C的方程⑵设A,B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角为a和0,当久0变化且”0为定值&(0"5)时,证明:直线AB恒过定点,并求此顶点坐标1、已知抛物线r = 2P.v的焦点为F,过点F的直线交抛物线于P、Q 两点,--- + ---FP FQ2、已知椭畔+厂(Ab〉。