第二章 整式的加减--整式课件(人教版七年级上)
合集下载
人教版七年级上册整式——多项式课件
πR2 πr2 3.14152 3.14102 392.(5 cm2)
巩固练习
某公园的门票价格是:成人10元/张;学生5元/张. (1)一个旅游团有成人x人、学生y人,那么该旅游团应 付多少门票费? (2)如果该旅游团有37个成人、15个学生,那么他们应 付多少门票费?
解:(1)该旅游团应付的门票费是(10x+5y)元.
2. 不含字母的项叫做常数项.
3. 多项式里次数最高项的次数就是多项式的次数.(听“老大”的)
次数
项
3x 例如: 3 5 x 8
常数项
叫做三次三项式
4. 命名:几次几项式(数字大写) 5. 单项式与多项式统称为整式.
填空
①多项式x5 2 2x2 5x有 _4__ 项,
分别是 ____,____,____,_________,
2
7
3
3x2-y+3xy3 x4 1, 2x y.
解:
多项式 x2+y2-1 3x2-y+3xy3+x4-1 2x+y
项 x2,y2,-1 3x2,-y, 3xy3, x4,-1 2x, y
次数
2
4
1
2. 判断正误:
(1)多项式
1
2-
x2 y+2x2-y的次数是2.
(
×
)
次数是3
(2)多项式 -a+3a2的一次项系数是1.( × ) 一次项系数是-1
③多项式3a2 2a 5的次数是_2__,
它是 _二__ 次 _三__ 项式.一次项的系数_____
④多项式8m4 mn3 2m的次数是4__, 它是 _四__ 次 _三__ 项式.四次项的系数______
巩固练习
1、下列整式中哪些是多项式?是多项式的指出其项和次数:
巩固练习
某公园的门票价格是:成人10元/张;学生5元/张. (1)一个旅游团有成人x人、学生y人,那么该旅游团应 付多少门票费? (2)如果该旅游团有37个成人、15个学生,那么他们应 付多少门票费?
解:(1)该旅游团应付的门票费是(10x+5y)元.
2. 不含字母的项叫做常数项.
3. 多项式里次数最高项的次数就是多项式的次数.(听“老大”的)
次数
项
3x 例如: 3 5 x 8
常数项
叫做三次三项式
4. 命名:几次几项式(数字大写) 5. 单项式与多项式统称为整式.
填空
①多项式x5 2 2x2 5x有 _4__ 项,
分别是 ____,____,____,_________,
2
7
3
3x2-y+3xy3 x4 1, 2x y.
解:
多项式 x2+y2-1 3x2-y+3xy3+x4-1 2x+y
项 x2,y2,-1 3x2,-y, 3xy3, x4,-1 2x, y
次数
2
4
1
2. 判断正误:
(1)多项式
1
2-
x2 y+2x2-y的次数是2.
(
×
)
次数是3
(2)多项式 -a+3a2的一次项系数是1.( × ) 一次项系数是-1
③多项式3a2 2a 5的次数是_2__,
它是 _二__ 次 _三__ 项式.一次项的系数_____
④多项式8m4 mn3 2m的次数是4__, 它是 _四__ 次 _三__ 项式.四次项的系数______
巩固练习
1、下列整式中哪些是多项式?是多项式的指出其项和次数:
七年级数学上册 第二章 整式的加减 2.1 整式(第1课时)课件
第二章 整数 的加减 (zhěngshù)
2.1 整式(zhěnɡ shì)(第一课时)
第一页,共二十四页。
1.用字母表示(biǎoshì)数的意义是用字母表示(biǎoshì)数能简明 表达数量关系.
第二页,共二十四页。
2.用字母表示数的书写规则: (1)字母与字母相乘时,“×”通常省略不写或写成“·”;
第二十四页,共二十四页。
则第n个图案中的“ ”的个数是 3n+1
.(用含
有n的代数式表示).
第十二页,共二十四页。
9.按图2-1-6所示的方式(fāngshì)用火柴摆图形.
(1)填写下表:
3 5 7 9 11 (2)要摆出n(n>1且n为整数)个三角形,需要多少(duōshǎo)
根火柴?
解:(2)需要(xūyào)(2n+1)根火柴;
解:(1)采用计时制应付(yìng fù)的费用为
0.05x×60+0.02x×60=4.2x(元),
采用包月制应付的费用为
69+0.02x×60=(69+1.2x)(元).
第十五页,共二十四页。
(2)若小明估计自家(zìjiā)一个月内上网的时间为20小时,你认 为采用哪种方式较为合算?
(2)若一个月内上网的时间为20小时,
6.有一种石棉瓦(如图2-1-2),每块宽60厘米,
用于铺盖屋顶时,每相邻两块重叠部分(bù fen)的宽都 为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为
(50n+10)厘米.
第九页,共二十四页。
7.如图2-1-3是一长方形休闲广场,四角都设计一块半径相同 的四分之一圆的花坛,若圆形的半径为
(n-3m) 元;
2.1 整式(zhěnɡ shì)(第一课时)
第一页,共二十四页。
1.用字母表示(biǎoshì)数的意义是用字母表示(biǎoshì)数能简明 表达数量关系.
第二页,共二十四页。
2.用字母表示数的书写规则: (1)字母与字母相乘时,“×”通常省略不写或写成“·”;
第二十四页,共二十四页。
则第n个图案中的“ ”的个数是 3n+1
.(用含
有n的代数式表示).
第十二页,共二十四页。
9.按图2-1-6所示的方式(fāngshì)用火柴摆图形.
(1)填写下表:
3 5 7 9 11 (2)要摆出n(n>1且n为整数)个三角形,需要多少(duōshǎo)
根火柴?
解:(2)需要(xūyào)(2n+1)根火柴;
解:(1)采用计时制应付(yìng fù)的费用为
0.05x×60+0.02x×60=4.2x(元),
采用包月制应付的费用为
69+0.02x×60=(69+1.2x)(元).
第十五页,共二十四页。
(2)若小明估计自家(zìjiā)一个月内上网的时间为20小时,你认 为采用哪种方式较为合算?
(2)若一个月内上网的时间为20小时,
6.有一种石棉瓦(如图2-1-2),每块宽60厘米,
用于铺盖屋顶时,每相邻两块重叠部分(bù fen)的宽都 为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为
(50n+10)厘米.
第九页,共二十四页。
7.如图2-1-3是一长方形休闲广场,四角都设计一块半径相同 的四分之一圆的花坛,若圆形的半径为
(n-3m) 元;
人教版七年级初中数学上册第二章整式的加减-整式的加减(整式加减运算)PPT课件
b
1.5a
2b
解:小纸盒的表面积是(2ab+2bc+2ca
)c2
大纸盒的表面积是( 6ab+8bc+6ca)c2
新知探究
求 1 x 2( x 1 y 2 ) ( 3 x 1 y 2 ) 的值,其中 x 2, y 2
2
3
2
3
3
1
1 2
3
1 2
解: x 2( x y ) ( x y )
第二章 整式的加减
2.2.3 整 式 加 减 运 算
人教版七年级(初中)数学上册
授课老师:11
前 言
学习目标
1、熟练进行整式的加减运算。
2、利用去括号法则会进行整式的化简。
重点难点
重点:熟练进行整式的加减运算。
难点:利用去括号法则会进行整式的化简。
新知探究
(1)(2x-3y)+(5x+4y)
整式加减运算需注意:
A.14a+6b
B.7a+3b
C.10a+10b
D.12a+8b
提示:1.先求另一边边长。
2.长方形周长=(长+宽)*2
课堂练习
3.计算
(1) 3xy-4xy-(-2xy)
(2) (-x+2x2 +5)- (4x2 -3-6x)
课堂练习
4.填空
如果用a,b分别表示一个两位数的十位数字和个位数字,
小红买这种笔记本3本,买圆珠笔2支;
小明买这种笔记本4本,买圆珠笔3支.
问:买这些笔记本和圆珠笔,小红和小明一共花费多少钱?
分析
笔记本花费
圆珠笔花费
人教版数学七年级上册整式的加减(第1课时)课件
14.三峡水库的水位第一天连续降落a小时,每小时平均降落3 cm, 第二天连续上升2小时,每小时平均上升a cm,第三天水位又降落a cm,则这三天三峡水库的水位总的变化情况是_降__落__2_a_c_m__.
15.下列化简:①5xy-x=5y;②5ab-5ba=0;③2a2+3a2=5a4; ④-5m2n+8nm2=3m2n.其中正确的有( B )
-2
的值,其中x=
1;
2
解:(1) 2x2-5x+x2+4x-3x2 -2 = (2+1-3) x2 + (-5+4) x-2 = -x-2.
当
x
=
12时,原式=
−
1 2
-
2=
-
ห้องสมุดไป่ตู้
52.
例2 (2)求多项式 3a+abc - 13c2 - 3a + 13c2 的值,其中
a=- 16,b=2,c= -3. 解: 3a+abc - 13c2 - 3a + 13c2
解:原式=(3-1)a2+(-2+3)a+(-1-5)=2a2+a-6. (3)-5m2n+4mn2-2mn+6m2n+3mn.
解:原式=(-5+6)m2n+4mn2+(-2+3)mn=m2n+4mn2+mn.
11.已知下列式子:6ab,3xy2,12 ab,2a,-5ab,5x2y. (1)写出这些式子中的同类项; (2)求(1)中同类项的和.
A.0
B.-1 010m
C.m D.1 010m
19.若xy<0,y>0,则化简5|x|+3x= __-__2_x___.
20 .1 已 知 多 项 式 4x2 - 3mx + 2 + m的 值 与 m 的 大 小 无 关 , 则 x 的 值 为3 .
人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)
探究新知
知识点 1 同类项的概念
猴子要搬新家啦!有八只小猴子,每只身上都标有一个
单项式,你能根据这些单项式的特征将这些小猴子分到
不同的房间里吗?(用几个房间都可以)
8n
-7a2b
3ab2
2a2b
8n 6xy
5n
-3xy
-ab2
探究新知
8n 5nn
3ab2 -ab2
6xy -3xy
-7a2b 2a2b
法则
(1)系数相加;
合并同类项 (一加两不变) (2)字母连同它的指数不变.
步骤 一容
教材作业 从课后习题中选取
自主安排 配套练习册练习
3
3
巩固练习
当x=2019时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的值.
解: x4-5x2+2x3-x4+5x2-2x3+2x-1 = (x4-x4)+(-5x2+5x2)+(2x3-2x3)+2x-1 = 2x-1 当x=2019时,原式=2×2019-1=4037.
探究新知
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5 ×
(3)5y2-3y2=2 ×
(6)a+a-5a=-3a √
注:(2)(4)(5)中的单项式不是同类项,不能合并. (3)是同类项,但合并结果不对.
的同类探项究.新知
素养考点 1 合并同类项
4a2 3b2 2ab 3a2 b2.
解: 4a2 3b2 2ab 3a2 b2 找
探究新知
归纳总结
同类项的判别方法: (1)同类项只与字母及其指数有关,与系数无关,与
七年级数学上册 第二章 整式的加减 2.1 整式同步课件
【问题(wèntí)3】 (1)你能举出一个(yī ɡè)单项式的例子,并说出它 的系数和次数吗?
(2)请你写出一个(yī ɡè)单项式,并使它的系数是 -2,次数是4,那么该单项式可以是 .
2021/12/10
第二十五页,共五十页。
《倍速学习法》
练习1 下列(xiàliè)各式中哪些是单项式?
x,0 , 2,0.72a , 3, a,π,a+1,2xy.
土地段(dìduàn).列车在冻土地段(dìduàn)的行驶速度是100 km/h.列车在冻土地段行驶时,根据已知数据求出列车行 驶的路程.
(1)2 h行驶多少千米?3 h呢?8 h呢?t h呢?
(2)字母(zìmǔ) t 表示时间有什么意义?
如果用 v 表示速度,列车行驶的路程是多少?
(3)回顾以前所学的知识,你还能举出用字母表示(biǎoshì)
这台电视机现在的售价是
元;
(5)一个(yī ɡè)长方形的长是0.9 m,宽是a m ,这个长方
形的面积是
m2.
2021/12/10
第二十八页,共五十页。
《倍速学习法》
解:(1) 12n ,它的系数是12,次数是1;
(2)1 ah ,它的系数是 1 ,次数是2;
2
2
(3) a ,3 它的系数是1,次数是3;
若 (m2)x2y是n 关于 x,y 的一个
四次单项式,求m,n应满足的条件?
答案: m2,n2
2021/12/10
第三十二页,共五十页。
《倍速学习法》
【课堂(kètáng)小结】 (1)本节课学了哪些主要内容? (2)请你举例说明单项式的概念、单项式的
系数(xìshù)和次数的概念.
(2)请你写出一个(yī ɡè)单项式,并使它的系数是 -2,次数是4,那么该单项式可以是 .
2021/12/10
第二十五页,共五十页。
《倍速学习法》
练习1 下列(xiàliè)各式中哪些是单项式?
x,0 , 2,0.72a , 3, a,π,a+1,2xy.
土地段(dìduàn).列车在冻土地段(dìduàn)的行驶速度是100 km/h.列车在冻土地段行驶时,根据已知数据求出列车行 驶的路程.
(1)2 h行驶多少千米?3 h呢?8 h呢?t h呢?
(2)字母(zìmǔ) t 表示时间有什么意义?
如果用 v 表示速度,列车行驶的路程是多少?
(3)回顾以前所学的知识,你还能举出用字母表示(biǎoshì)
这台电视机现在的售价是
元;
(5)一个(yī ɡè)长方形的长是0.9 m,宽是a m ,这个长方
形的面积是
m2.
2021/12/10
第二十八页,共五十页。
《倍速学习法》
解:(1) 12n ,它的系数是12,次数是1;
(2)1 ah ,它的系数是 1 ,次数是2;
2
2
(3) a ,3 它的系数是1,次数是3;
若 (m2)x2y是n 关于 x,y 的一个
四次单项式,求m,n应满足的条件?
答案: m2,n2
2021/12/10
第三十二页,共五十页。
《倍速学习法》
【课堂(kètáng)小结】 (1)本节课学了哪些主要内容? (2)请你举例说明单项式的概念、单项式的
系数(xìshù)和次数的概念.
人教版七年级数学上册第2章2.1.1整式课件(共18张PPT)
第二章 整式的加减
2.1 整 式
第1课时 用字母表示数
情景导入,明确目标
举世瞩目的青藏铁路于2006年7月1日建成通车,实现了几代 中国人梦寐以求的愿望,
青藏铁路是世界上海拔最高、线路最长的高原铁路
情景导入,明确目标
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地
段,列车在冻土地段的行驶速度是100千米/时,列车在冻土地 段行驶时,请根据已知数据回答下列问题:
8.某城市5年前人均年收入为n元,预计今年人均收入是5年前的2倍多500元, 今年人均收入将达_________元;
9. “大润发”国庆实行七折优惠销售,则定价为m元的物品,售价为_______ 元,售价为n元的物品定价为_________元;
2小时能行驶多少千米?3小时呢?8小时呢?t小时呢?
解:2小时行驶的路程是 100×2=200(千米) 3小时行驶的路程是 100×3=300(千米) t 小时行驶的路程是 100×t =100t(千米)
学习目标
(1)理解字母表示数的意义,会用含有字母的式子表示实
际问题中的数量关系.
(2)经历用含有字母的式子表示实际问题的数量关系的 过程,体会从具体到抽象的认识过程,发展符号意识.
(1)理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.
解: 船在这条河中顺水行驶的速度是(v+2.
“大润发”国庆实行七折优惠销售,则定价为m元的物品,售价为_______元,售价为n元的物品定价为_________元;
11x+10
D.
④带分数与字母相乘时,把带分数化成假分数;
(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要 z 元,用式子表示买 3个篮球、5个排球、2个足球共需要的钱数;
2.1 整 式
第1课时 用字母表示数
情景导入,明确目标
举世瞩目的青藏铁路于2006年7月1日建成通车,实现了几代 中国人梦寐以求的愿望,
青藏铁路是世界上海拔最高、线路最长的高原铁路
情景导入,明确目标
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地
段,列车在冻土地段的行驶速度是100千米/时,列车在冻土地 段行驶时,请根据已知数据回答下列问题:
8.某城市5年前人均年收入为n元,预计今年人均收入是5年前的2倍多500元, 今年人均收入将达_________元;
9. “大润发”国庆实行七折优惠销售,则定价为m元的物品,售价为_______ 元,售价为n元的物品定价为_________元;
2小时能行驶多少千米?3小时呢?8小时呢?t小时呢?
解:2小时行驶的路程是 100×2=200(千米) 3小时行驶的路程是 100×3=300(千米) t 小时行驶的路程是 100×t =100t(千米)
学习目标
(1)理解字母表示数的意义,会用含有字母的式子表示实
际问题中的数量关系.
(2)经历用含有字母的式子表示实际问题的数量关系的 过程,体会从具体到抽象的认识过程,发展符号意识.
(1)理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.
解: 船在这条河中顺水行驶的速度是(v+2.
“大润发”国庆实行七折优惠销售,则定价为m元的物品,售价为_______元,售价为n元的物品定价为_________元;
11x+10
D.
④带分数与字母相乘时,把带分数化成假分数;
(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要 z 元,用式子表示买 3个篮球、5个排球、2个足球共需要的钱数;
人教版七年级上册数学第二章整式的加减课件-整式的加减(五)
当a=2 cm时,
窗户的面积 =
π+8
×
2
2 cm2
,
代入求值
例2.窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部
是边长相同的四个小正方形.已知下部小正方形的边长是a cm.计算:
(3)当a=2 cm时,窗户的面积是多少?(单位: cm2 )
解:窗户的面积 =
π+8 2
2
cm2
2
5
= 6 2 − − .
当x =
去括号
合并同类项
2
时,
原式 = 6 ×
1 2
2的值.书写格式2 212
1
2
写出条件
−
1
2
5
−
2
= 6×
1
4
1
−
2
−
5
=
2
−
3
.
2
代入、求值
三、典型例题
1
2
1
3
3
2
1
3
2
3
例1.求 − 2 − 2 + − + 2 的值,其中x= − 2,y= .
解: − 2 − 2 + − + 2
=
1
2
− 2 +
2 2
3
3
−
2
+
先化简
1 2
3
= − 3x+ 2 .
当 x = − 2,y=
时,
原式= −3 × − +
再求值
2
=6+
七年级数学上册 第二章 整式的加减单元复习课件
解:原式=(3-4+1)a3b3+(-12 +14 +14 )a2b+(1-2)b2+b+3=b- b2+3.因为多项式化简的结果中不含有字母 a,所以多项式的值与 a 的 取值无关
第十二页,共十七页。
考点四 整式规律探究
16.(青海中考)如图,将图1中的菱形剪开得到(dédào)图2,图中共有4个菱形;将 图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5个图中共有 ______个菱形……第13n个图中共有_______个菱形. 3n-2
第八页,共十七页。
11.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余
(shèngyú)部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则周
长是(
)
B
ቤተ መጻሕፍቲ ባይዱ
A.2m+6 B.4m+12 C.2m+3 D.m+6
第九页,共十七页。
12.求3x2+y2-5xy与4xy-x2+7y2的2倍的差. 解:5x2-13y2-13xy
第十三页,共十七页。
考点五 数学思想方法的应用 (整体思想) 17.(菏泽(hézé)中考)一组“数值转换机”按下面的程序计算,如果输入的数是 36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 _____1_5_.
第十四页,共十七页。
18.已知x+y=-2,xy=3,求2xy+x+y的值. 解:4 19.已知2x2-5x+4=5,求式子(shìzi)(15x2-18x+4)-(-3x2+19x-32)-8x的
第四页,共十七页。
5.-13 πx2y 的系数是_-__13__π_______次数是___3_____
6.3x2-y+5是_____二次______三_项式. 7.(三门峡期中(qī zhōnɡ))若3a3bnc2-5amb4c2所得的差是单项式,则这个 单项式为___-__2_a_3_b_4_c_2 ______.
第十二页,共十七页。
考点四 整式规律探究
16.(青海中考)如图,将图1中的菱形剪开得到(dédào)图2,图中共有4个菱形;将 图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5个图中共有 ______个菱形……第13n个图中共有_______个菱形. 3n-2
第八页,共十七页。
11.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余
(shèngyú)部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则周
长是(
)
B
ቤተ መጻሕፍቲ ባይዱ
A.2m+6 B.4m+12 C.2m+3 D.m+6
第九页,共十七页。
12.求3x2+y2-5xy与4xy-x2+7y2的2倍的差. 解:5x2-13y2-13xy
第十三页,共十七页。
考点五 数学思想方法的应用 (整体思想) 17.(菏泽(hézé)中考)一组“数值转换机”按下面的程序计算,如果输入的数是 36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 _____1_5_.
第十四页,共十七页。
18.已知x+y=-2,xy=3,求2xy+x+y的值. 解:4 19.已知2x2-5x+4=5,求式子(shìzi)(15x2-18x+4)-(-3x2+19x-32)-8x的
第四页,共十七页。
5.-13 πx2y 的系数是_-__13__π_______次数是___3_____
6.3x2-y+5是_____二次______三_项式. 7.(三门峡期中(qī zhōnɡ))若3a3bnc2-5amb4c2所得的差是单项式,则这个 单项式为___-__2_a_3_b_4_c_2 ______.
人教版七年级数学上册第二章 2.2 第3课时 整式的加减课件(共24张PPT)
图2-2-5
8.(1)求单项式5x2y,-2x2y,2xy2,-4x2y的和; (2)求3x2-6x+5与4x2+7x-6的和; (3)求2x2+xy+3y2与x2-xy+2y2的差. 解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2;
第二章 整式的加减 2.2 整式的加减
第3课时 整式的加减
1.整式3x2-2x+1与-2x2-x+3的和是( ) C
A.5x2-x-2
B.2x2-4x+4
C.x2-3x+4
D.x2+3x-4
2.[2019·乐清]计算6a2-5a+3与5a2+2a-1的差,结果正确的是( ) D
A.a2-3a+4
14.(1)化简:2(x2y+xy)-3(x2y-xy)-4x2y; (2)若2a10xb与-a2by是同类项,求(1)中式子的值. 解:(1)原式=2x2y+2xy-3x2y+3xy-4x2y =-5x2y+5xy; (2)由2a10xb与-a2by是同类项,得到x=15,y=1, 则原式=-15+1=45.
D.4m-2n+4
【解析】 (3m-n)-(m+n-4)=3m-n-m-n+4=2m-2n+4.
4.[2019·广元一模]一个代数式减去-2x得-2x2-2x+1,则这个代数式为( B )
A.-x2+1
B.-2x2-4x+1
C.-2x2+1
D.-2x2-4x
【解析】 这个代数式为-2x2-2x+1+(-2x)=-2x2-2x+1-2x=-2x2-4x+
13.[2019秋·德江期末]小明在计算一个多项式与2x2+3x-7的差时,因误以为是 加上2x2+3x-7而得到答案5x2-2x+4,求这个多项式及这个问题的正确答案. 解:被减式=5x2-2x+4-(2x2+3x-7) =5x2-2x+4-2x2-3x+7 =3x2-5x+11, 正确答案为3x2-5x+11-(2x2+3x-7) =3x2-5x+11-2x2-3x+7 =x2-8x+18.
8.(1)求单项式5x2y,-2x2y,2xy2,-4x2y的和; (2)求3x2-6x+5与4x2+7x-6的和; (3)求2x2+xy+3y2与x2-xy+2y2的差. 解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2;
第二章 整式的加减 2.2 整式的加减
第3课时 整式的加减
1.整式3x2-2x+1与-2x2-x+3的和是( ) C
A.5x2-x-2
B.2x2-4x+4
C.x2-3x+4
D.x2+3x-4
2.[2019·乐清]计算6a2-5a+3与5a2+2a-1的差,结果正确的是( ) D
A.a2-3a+4
14.(1)化简:2(x2y+xy)-3(x2y-xy)-4x2y; (2)若2a10xb与-a2by是同类项,求(1)中式子的值. 解:(1)原式=2x2y+2xy-3x2y+3xy-4x2y =-5x2y+5xy; (2)由2a10xb与-a2by是同类项,得到x=15,y=1, 则原式=-15+1=45.
D.4m-2n+4
【解析】 (3m-n)-(m+n-4)=3m-n-m-n+4=2m-2n+4.
4.[2019·广元一模]一个代数式减去-2x得-2x2-2x+1,则这个代数式为( B )
A.-x2+1
B.-2x2-4x+1
C.-2x2+1
D.-2x2-4x
【解析】 这个代数式为-2x2-2x+1+(-2x)=-2x2-2x+1-2x=-2x2-4x+
13.[2019秋·德江期末]小明在计算一个多项式与2x2+3x-7的差时,因误以为是 加上2x2+3x-7而得到答案5x2-2x+4,求这个多项式及这个问题的正确答案. 解:被减式=5x2-2x+4-(2x2+3x-7) =5x2-2x+4-2x2-3x+7 =3x2-5x+11, 正确答案为3x2-5x+11-(2x2+3x-7) =3x2-5x+11-2x2-3x+7 =x2-8x+18.
整式的加减(课件)七年级数学上册(人教版)
=200.
去添括号
例 两船从同一港口出发反向而行,甲船顺水,乙船逆水,两船
在静水中速度都是50千米/时,水流速度是a千米/时.
(2)2小时后甲船比乙船多航行多少千米?
解:2小时后甲船比乙船多航行(单位:km)
2(50+a)-2(50-a) =100+2a-100+2a =4a.
随堂练习
1.下列各式中与a-b-c的值不相等的是( B)
=(2+1-3)x2+(-5+4)x-2
=-x-2
当x = 1
2
;
原式=
- 1 -2 - 5
2
2
合并同类项
(2)解: 3a abc 1 c2 3a 1 c2
3
3
3 - 3a abc 1 1 c2
3 3
abc
当a= -
1,b 6
=2,c
=-3时,
原式=
- 1 2 - 3 1
去添括号
去括号法则: 1.如果括号外的因数是正数,去括号后原括号内 特别地,+各(x-项3)与的-(符-3)号可与以分原别来看的作 符1与号-1分相别同乘;(-3).利用分配律,可以将式子中的括号去掉,得+(x一3)=工一3,
-(x-3)=-z+3.
2.如果括号外的因数是负这数也,符合去以括上号发现后的原去括括号号规内律.
A.4a3+3a3=7a6 B.4a3-3a3=1
C)
-a3
D.4a3-3a3=a
随堂练习
练习3.合并下列各式中的同类项:
(1)15x+4x-10x;
(2)6x-10x2+12x2-5x;
解:原式=(15+4-10)x =9x
去添括号
例 两船从同一港口出发反向而行,甲船顺水,乙船逆水,两船
在静水中速度都是50千米/时,水流速度是a千米/时.
(2)2小时后甲船比乙船多航行多少千米?
解:2小时后甲船比乙船多航行(单位:km)
2(50+a)-2(50-a) =100+2a-100+2a =4a.
随堂练习
1.下列各式中与a-b-c的值不相等的是( B)
=(2+1-3)x2+(-5+4)x-2
=-x-2
当x = 1
2
;
原式=
- 1 -2 - 5
2
2
合并同类项
(2)解: 3a abc 1 c2 3a 1 c2
3
3
3 - 3a abc 1 1 c2
3 3
abc
当a= -
1,b 6
=2,c
=-3时,
原式=
- 1 2 - 3 1
去添括号
去括号法则: 1.如果括号外的因数是正数,去括号后原括号内 特别地,+各(x-项3)与的-(符-3)号可与以分原别来看的作 符1与号-1分相别同乘;(-3).利用分配律,可以将式子中的括号去掉,得+(x一3)=工一3,
-(x-3)=-z+3.
2.如果括号外的因数是负这数也,符合去以括上号发现后的原去括括号号规内律.
A.4a3+3a3=7a6 B.4a3-3a3=1
C)
-a3
D.4a3-3a3=a
随堂练习
练习3.合并下列各式中的同类项:
(1)15x+4x-10x;
(2)6x-10x2+12x2-5x;
解:原式=(15+4-10)x =9x
人教版数学七年级上册第二章整式的加减全章总复习课件
, =
, =
, =
×
×
×
×
=
, =
, 所以第7个数为: =
;
×
×
×
(2)由(1)可得:第n个数是
(3)根据题意可得:
=
(+)
×
,∴
;
(4)解:原式 = − + − + − +
=−
解:ab2−3a2b−3(ab2−a2b)
=ab2−3a2b−(3ab2−3a2b)
=ab2−3a2b−3ab2+3a2b
Байду номын сангаас
直接化简求值法
=−2a2b
当a=2,b=−1时,原式=−2╳22 ╳(−1)=4.
典型例题
(2).若多项式x2+2x−8=0,求2x2+4x−17的值.
分析:没有直接求出的x值,如果把x2+2x看成一个整体,
+
=
+
.
,
是第12个数;
−
+ − + ⋯+ −
+
,
典型例题
②.图形的规律.
一张长方形桌子可坐6人,按图3将桌子拼在一起.
(1)2张桌子拼在一起可坐________人,4张桌子拼在一起可坐
________人,n张桌子拼在一起可坐________人;
, =
, =
×
×
×
×
=
, =
, 所以第7个数为: =
;
×
×
×
(2)由(1)可得:第n个数是
(3)根据题意可得:
=
(+)
×
,∴
;
(4)解:原式 = − + − + − +
=−
解:ab2−3a2b−3(ab2−a2b)
=ab2−3a2b−(3ab2−3a2b)
=ab2−3a2b−3ab2+3a2b
Байду номын сангаас
直接化简求值法
=−2a2b
当a=2,b=−1时,原式=−2╳22 ╳(−1)=4.
典型例题
(2).若多项式x2+2x−8=0,求2x2+4x−17的值.
分析:没有直接求出的x值,如果把x2+2x看成一个整体,
+
=
+
.
,
是第12个数;
−
+ − + ⋯+ −
+
,
典型例题
②.图形的规律.
一张长方形桌子可坐6人,按图3将桌子拼在一起.
(1)2张桌子拼在一起可坐________人,4张桌子拼在一起可坐
________人,n张桌子拼在一起可坐________人;
七年级上册数学第二章整式全章课件
减法运算规则
相同单项式相减,系数相减,字母和字母 的指数不变。
03
整式的乘法与除法
整式的乘法规则
乘法结合律
改变整式的乘法顺 序,乘积不变。
单项式乘多项式
将单项式与多项式 中的每一项相乘。
乘法交换律
交换两个整式的位 置,乘积不变。
单项式乘单项式
将系数相乘,字母 部分分别相乘。
多项式乘多项式
将两个多项式的各 项分别相乘,合并 同类项。
因式分解的唯一性
一个多项式经过因式分解 后,其结果具有唯一性。
因式分解的方法与技巧
提公因式法
从多项式的每一项中提取公 因式,再对剩余部分进行因
式分解。
1
公式法
利用整式的公式进行因式分 解,如平方差公式、完全平
方公式等。
分组法
将多项式的项进行分组,分 别进行因式分解,再合并结 果。
十字相乘法
通过尝试不同的整数相乘, 找到能够使多项式等于0的 两个数,进而进行因式分解 。
06
整式在实际生活中的应用
整式在数学问题中的应用
代数方程
整式在代数方程中有着广泛的应 用,如一元一次方程、一元二次 方程等,通过整式可以表示未知 数,并求解方程。
几何图形
在几何图形中,整式可以用来表 示图形的性质和特征,如圆的周 长、面积等公式中都含有整式。
整式在物理问题中的应用
力学
在力学中,整式可以用来表示物体的 质量和重力等物理量,以及计算物体 的加速度和速度等。
七年级上册数学第二章整式 全章课件
目录
• 整式的概念 • 单项式与多项式 • 整式的乘法与除法 • 整式的混合运算 • 整式的简化与因式分解 • 整式在实际生活中的应用
人教版七年级上册数学第2节《整式的加减》参考课件(共16张PPT)
(1)求多项式 求:
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中
,
,
(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若
,
8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中
,
,
(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若
,
8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:
人教版七年级数学上册第二章《整式的加减》复习课课件
【解析】可以发现每个图形的五角星个数都比前面一 个图形的五角星个数多3个.由于第1个图形的五角星个数是 3×1+1,所以第n个图形的五角星个数是3n+1,故第202X个 图形五角星个数是3×202X+1=6052.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
人教版七年级数学上册教学课件-2.2整式的加减优秀课件PPT
当x =-2,y=3时 原式=-(-2)2×3+(-2)×32
=-12-18 =-30
多项式化简求值的三步书写法
一化简二代三计算
布置作业: 1.教材课后习题 2.小练习册部分习题 3.思考
3(a+b)-2(a+b)+2(a+b)+2 4(a+b)-(a+b)2
用微笑告诉别人,今天的我,比昨天更强。瀑布跨过险峻陡壁时,才显得格外雄伟壮观。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。孤独是 每个强者必须经历的坎。有时候,坚持了你最不想干的事情之后,会得到你最想要的东西。生命太过短暂,今天放弃了明天不一定能得到。只有经历人生 的种种磨难,才能悟出人生的价值。没有比人更高的山,没有比脚更长的路学会坚强,做一只沙漠中永不哭泣的骆驼!一个人没有钱并不一定就穷,但没 有梦想那就穷定了。困难像弹簧,你强它就弱,你弱它就强。炫丽的彩虹,永远都在雨过天晴后。没有人能令你失望,除了你自己人生舞台的大幕随时都 可能拉开,关键是你愿意表演,还是选择躲避。能把在面前行走的机会抓住的人,十有八九都会成功。再长的路,一步步也能走完,再短的路,不迈开双 脚也无法到达。有志者自有千计万计,无志者只感千难万难。我成功因为我志在成功!再冷的石头,坐上三年也会暖。平凡的脚步也可以走完伟大的行程。 有福之人是那些抱有美好的企盼从而灵魂得到真正满足的人。如果我们都去做自己能力做得到的事,我们真会叫自己大吃一惊。只有不断找寻机会的人才 会及时把握机会。人之所以平凡,在于无法超越自己。无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。你可以选择这样的“三 心二意”:信心恒心决心;创意乐意。驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。如果一个人不知道他要驶向哪个码头, 那么任何风都不会是顺风。行动是理想最高贵的表达。你既然认准一条道路,何必去打听要走多久。勇气是控制恐惧心理,而不是心里毫无恐惧。不举步, 越不过栅栏;不迈腿,登不上高山。不知道明天干什么的人是不幸的!智者的梦再美,也不如愚人实干的脚印不要让安逸盗取我们的生命力。别人只能给 你指路,而不能帮你走路,自己的人生路,还需要自己走。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。后悔是一种耗费精神的情绪,后悔是 比损失更大的损失,比错误更大的错误,所以,不要后悔!复杂的事情要简单做,简单的事情要认真做,认真的事情要重复做,重复的事情要创造性地做。 只有那些能耐心把简单事做得完美的人,才能获得做好困难事的本领。生活就像在飙车,越快越刺激,相反,越慢越枯燥无味。人生的含义是什么,是奋 斗。奋斗的动力是什么,是成功。决不能放弃,世界上没有失败,只有放弃。未跌过未识做人,不会哭未算幸运。人生就像赛跑,不在乎你是否第一个到 达终点,而在乎你有没有跑完全程。累了,就要休息,休息好了之后,把所的都忘掉,重新开始!人生苦短,行走在人生路上,总会有许多得失和起落。 人生离不开选择,少不了抉择,但选是累人的,择是费人的。坦然接受生活给你的馈赠吧,不管是好的还是坏的。现在很痛苦,等过阵子回头看看,会发 现其实那都不算事。要先把手放开,才抓得住精彩旳未来。可以爱,可以恨,不可以漫不经心。我比别人知道得多,不过是我知道自己的无知。你若不想 做,会找一个或无数个借口;你若想做,会想一个或无数个办法。见时间的离开,我在某年某月醒过来,飞过一片时间海,我们也常在爱情里受伤害。1、 只有在开水里,茶叶才能展开生命浓郁的香气。人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。别人能做到的事,我一定也能做到。不 要浪费你的生命,在你一定会后悔的地方上。逆境中,力挽狂澜使强者更强,随波逐流使弱者更弱。凉风把枫叶吹红,冷言让强者成熟。努力不不一定成 功,不努力一定不成功。永远不抱怨,一切靠自己。人生最大的改变就是去做自己害怕的事情。每一个成功者都有一个开始。勇于开始,才能找到成功的 路。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在社会的底层。后悔是一种耗费精神的情绪后悔是比损失更大的 损失,比错误更大的错误所以不要后悔。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。与其临渊羡鱼,不如退而结网。 生命之灯因热情而点燃,生命之舟因拼搏而前行。世界会向那些有目标和远见的人让路。不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不 能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。若不给自己设限,则人生中就没有限制你发挥的藩篱。赚钱之道很多,但是 找不到赚钱的种子,便成不了事业家。最有效的资本是我们的信誉,它小时不停为我们工作。销售世界上第一号的产品——不是汽车,而是自己。在你成
=-12-18 =-30
多项式化简求值的三步书写法
一化简二代三计算
布置作业: 1.教材课后习题 2.小练习册部分习题 3.思考
3(a+b)-2(a+b)+2(a+b)+2 4(a+b)-(a+b)2
用微笑告诉别人,今天的我,比昨天更强。瀑布跨过险峻陡壁时,才显得格外雄伟壮观。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。孤独是 每个强者必须经历的坎。有时候,坚持了你最不想干的事情之后,会得到你最想要的东西。生命太过短暂,今天放弃了明天不一定能得到。只有经历人生 的种种磨难,才能悟出人生的价值。没有比人更高的山,没有比脚更长的路学会坚强,做一只沙漠中永不哭泣的骆驼!一个人没有钱并不一定就穷,但没 有梦想那就穷定了。困难像弹簧,你强它就弱,你弱它就强。炫丽的彩虹,永远都在雨过天晴后。没有人能令你失望,除了你自己人生舞台的大幕随时都 可能拉开,关键是你愿意表演,还是选择躲避。能把在面前行走的机会抓住的人,十有八九都会成功。再长的路,一步步也能走完,再短的路,不迈开双 脚也无法到达。有志者自有千计万计,无志者只感千难万难。我成功因为我志在成功!再冷的石头,坐上三年也会暖。平凡的脚步也可以走完伟大的行程。 有福之人是那些抱有美好的企盼从而灵魂得到真正满足的人。如果我们都去做自己能力做得到的事,我们真会叫自己大吃一惊。只有不断找寻机会的人才 会及时把握机会。人之所以平凡,在于无法超越自己。无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。你可以选择这样的“三 心二意”:信心恒心决心;创意乐意。驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。如果一个人不知道他要驶向哪个码头, 那么任何风都不会是顺风。行动是理想最高贵的表达。你既然认准一条道路,何必去打听要走多久。勇气是控制恐惧心理,而不是心里毫无恐惧。不举步, 越不过栅栏;不迈腿,登不上高山。不知道明天干什么的人是不幸的!智者的梦再美,也不如愚人实干的脚印不要让安逸盗取我们的生命力。别人只能给 你指路,而不能帮你走路,自己的人生路,还需要自己走。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。后悔是一种耗费精神的情绪,后悔是 比损失更大的损失,比错误更大的错误,所以,不要后悔!复杂的事情要简单做,简单的事情要认真做,认真的事情要重复做,重复的事情要创造性地做。 只有那些能耐心把简单事做得完美的人,才能获得做好困难事的本领。生活就像在飙车,越快越刺激,相反,越慢越枯燥无味。人生的含义是什么,是奋 斗。奋斗的动力是什么,是成功。决不能放弃,世界上没有失败,只有放弃。未跌过未识做人,不会哭未算幸运。人生就像赛跑,不在乎你是否第一个到 达终点,而在乎你有没有跑完全程。累了,就要休息,休息好了之后,把所的都忘掉,重新开始!人生苦短,行走在人生路上,总会有许多得失和起落。 人生离不开选择,少不了抉择,但选是累人的,择是费人的。坦然接受生活给你的馈赠吧,不管是好的还是坏的。现在很痛苦,等过阵子回头看看,会发 现其实那都不算事。要先把手放开,才抓得住精彩旳未来。可以爱,可以恨,不可以漫不经心。我比别人知道得多,不过是我知道自己的无知。你若不想 做,会找一个或无数个借口;你若想做,会想一个或无数个办法。见时间的离开,我在某年某月醒过来,飞过一片时间海,我们也常在爱情里受伤害。1、 只有在开水里,茶叶才能展开生命浓郁的香气。人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。别人能做到的事,我一定也能做到。不 要浪费你的生命,在你一定会后悔的地方上。逆境中,力挽狂澜使强者更强,随波逐流使弱者更弱。凉风把枫叶吹红,冷言让强者成熟。努力不不一定成 功,不努力一定不成功。永远不抱怨,一切靠自己。人生最大的改变就是去做自己害怕的事情。每一个成功者都有一个开始。勇于开始,才能找到成功的 路。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在社会的底层。后悔是一种耗费精神的情绪后悔是比损失更大的 损失,比错误更大的错误所以不要后悔。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。与其临渊羡鱼,不如退而结网。 生命之灯因热情而点燃,生命之舟因拼搏而前行。世界会向那些有目标和远见的人让路。不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不 能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。若不给自己设限,则人生中就没有限制你发挥的藩篱。赚钱之道很多,但是 找不到赚钱的种子,便成不了事业家。最有效的资本是我们的信誉,它小时不停为我们工作。销售世界上第一号的产品——不是汽车,而是自己。在你成
人教版七年级数学上册整式的加减-----单项式课件
一次
5. 一个长方形的长为0.9,宽为a,面积是_0_.9_a_. 一次
同一个式子可以 表示不同的含义
小试牛刀
判断下列说法是否正确:
①-7xy2的系数是7;( ×) ②-x2y3与x3没有系数;( ×)
任何单项式 都有系数
③-ab3c2的次数是0+3+2;( ×)
④-a3的系数是-1; ( √)
⑤-32x2y3的次数是7;( ×)
7
1
3
43
a2b a,b
1
3
11
4.已知一个单项式的系数是5,次数是3,则这个单项式
可以是
(B )
A. -5a2b B. 5a3
C. 5ab3 D. 5a2
5.若ax2yb-1是关于x,y的单项式,系数为6,次数是3,则 a= 6 ,b= 2 .
1.当一个单项式的系数是1或-1时,通常省略不写, 如x2,-a2b等;
例1 用单项式填空,并指出它们的系数和次数.
1. 每包书有12册,n包书有_1_2_n__册;一次 2. 底边长为a,高为h的三角形的面积是__12_a_h_;二次
3. 一个长方体的长和宽都是a,高为h,它的体积是1__a_2_h_;三次
4. 一台电视机原价为a元,现按原价的九折出售,这台电
视机现在的售价为__0_.9_a;
第二章 整式的加减
2.1 整 式
第2课时 单项式
学习目标
1.理解单项式的系数和次数的概念.(难点) 2. 能正确确定一个单项式的系数和次数。(重点)
思维激发
什么是单项式?下列各式中哪些是单项式?
x, 0, 0.72a, 3 , a , π, a +1, 2xy .
√ √ √ a √3 √
人教版七年级上册整式的加减课件(1)
100t+252t
学习目标
1、理解同类项的概念。 2、掌握合并同类项的法则。 3、会合并简单的同类项。
自主学习,发现问题
认真阅读课本第62至64页例1 前的内容,完成导学案并体验知 识点的形成过程。
合作交流,探究新知
知识点一 同类项 探究 运用乘法分配律计算:
(1)100×2+252×2=(100+252)×2= 352 ×2
四、点拨归纳,提高认识
1、同类项特征: ①所含字母相同
②相同字母的指数分别相同 简记:两个相同 注:几个常数项也是同类项。
顺口溜:同类项、同类项,除了系数都一样。
2、把多项式中的同类项合并成项,叫做
_合__并__同__类__项___。
3、合并同类项法则:系数 相加__减__ ,字母连同
它的指数_不__变____。即:一个加减,两个不变。
3、每人写出两个5a3b的同类项,小组交 流。.
五、有效训练,培养能力
知识点二 合并同类项
例1 合并下列各式的同类项:
(1) xy2 1 xy2 5
解:原式=(_1_ _1_) xy2
(2)
3x2
y
2
x
2
5
y
3xy
2
_4__x_y.2
5
2 xy 2
解:原式=(_-_3_+_2__)x2 y (_3_-_2_) xy2 -__x_2y_+_x_y_2_ .
• 你同意哪名同学的观点?请说明理由。
(2)100×(-2)+252×(-2)=(100+252)×(-2) = 352 ×(-2)
(3)根据(1)中的方法,把字母t看成一个因 数,根据分配律可得:
学习目标
1、理解同类项的概念。 2、掌握合并同类项的法则。 3、会合并简单的同类项。
自主学习,发现问题
认真阅读课本第62至64页例1 前的内容,完成导学案并体验知 识点的形成过程。
合作交流,探究新知
知识点一 同类项 探究 运用乘法分配律计算:
(1)100×2+252×2=(100+252)×2= 352 ×2
四、点拨归纳,提高认识
1、同类项特征: ①所含字母相同
②相同字母的指数分别相同 简记:两个相同 注:几个常数项也是同类项。
顺口溜:同类项、同类项,除了系数都一样。
2、把多项式中的同类项合并成项,叫做
_合__并__同__类__项___。
3、合并同类项法则:系数 相加__减__ ,字母连同
它的指数_不__变____。即:一个加减,两个不变。
3、每人写出两个5a3b的同类项,小组交 流。.
五、有效训练,培养能力
知识点二 合并同类项
例1 合并下列各式的同类项:
(1) xy2 1 xy2 5
解:原式=(_1_ _1_) xy2
(2)
3x2
y
2
x
2
5
y
3xy
2
_4__x_y.2
5
2 xy 2
解:原式=(_-_3_+_2__)x2 y (_3_-_2_) xy2 -__x_2y_+_x_y_2_ .
• 你同意哪名同学的观点?请说明理由。
(2)100×(-2)+252×(-2)=(100+252)×(-2) = 352 ×(-2)
(3)根据(1)中的方法,把字母t看成一个因 数,根据分配律可得:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4m
数 字母
m2
m×m
vt
v×t -n -1×n
2πb
数 字母
πb2
数 字母
注意: 是圆周率的代号,不是字母.
知识要点
数与字母或字母与字母的乘
积像这样的式子叫做单项式.
知识要点
单项式中的数字因数称为这个单项式的 系数. 一个单项式中,所有字母的指数的和叫做 这个单项式的次数.
系数
5 3 1 x y 6
4. 如果 -3xym-2 为6次单项式, 则m=____. 7
5.下列说法中,正确的是( D )
x y A.单项式 的系数是 1, 次数是3 3 B. 单项式-a的系数是0, 次数是1
3 2
C. xy 2 4 y 2 6 z是二次三项式 32 a 4b 9 D. 单项式 的次数是5,系数是 2 2
2ab+2ah+2bh
πR - πr
2 2
2ab、2ah、2bh
πR 和- πr
2 2
三项式 二项式 二项式 二项式
5x-4
1 2rh πr 2 2
5x、-4
1 2rh和 πr 2 2
注意:指出每一项时必须包含前面的符号.
知识要点
常数项
多项式里不含字母的项.
5v 8;
2
6m 5 y 8;
3
1 3 a 3. 2
指出下列多项式中的常数项.
2m 7; 1 2 m n ; 2 5 3 2 x y 5 x 4;
3
1 ab 5. 2
说出下列多项式是几项式,及其各 项分别是什么?
a b c; 2 x 9;
3
m 4mn n; 4 x 8 y 6;
2 3
2
2 4π ,次数是_____. (4) 单项式 4πr² 的系数是_____
注意:当单项式的系数为1或 –
1时,这个“1”应省略不写.
关于单项式的系数
1.当单项式的系数是1或-1时,“1” 通常省略不写; 2.圆周率π是常数; 3.当单项式的系数是带分数时,通 常写成假分数; 4.单项式的系数应包括它前面的性 质符号.
单项式 ab
系数
次数 2 3 1
1
π 60
r 2h
60m 0.75a 7.5a
7.5
7.5
1
1
练一练
2 -4 ,次数是_____. (1) 单项式-4m2的系数是_____
6 . -1 ,次数是_____ (2) 单项式-a5b的系数是_____
3 3a b 5 (3) 单项式 的系数是_____ 2 ,次数是_____.
1 πr 2 ____________________. 2 2rh +
r
h
观察下面这些式子有什么特点.
2ab+2ah+2bh 5x-4
R2 r 2
2rh 1 r2 2
单项式的和
知识要点
几个单项式的和叫做多项式. 在多项式中,每个单项式叫做这 个多项式的项.
指出下列多项式的项。
填空,并观察式子的特点.
(1)一个长方体的长为a,宽为b,高为h, 2ab+2ah+2bh 则这个长方体的表面积为_____________________. (2)如图,环形的面积为________________. R2 r 2 r
●
R O
(3)一个数比x的5倍小4,则这个数是 5x-4 ________________. (4)如图,门的面积为
单项式的次数
在一个单项式中,所有字母的指数 的和才叫做单项式的次数
判断下列式子中哪些是单项式?
x +1 ( 1) ;(2)bc; (3)b3; 2
(4)-2.5ab;(5)y+x;
(6)-x2y; (7)-8.
(2)、(3)、(4)、(6) 、
(7)是单项式.
课堂小结:
• 谈本节课的收获
想一想:
③ m× 4
⑤ 5 xy2
4
④ a÷ 3
⑥m的系数为1,次数为0
⑦ 2n² 的系数是2 ,次数是2
例:用单项式填空,并指出它们的系 数和次数.
(1)一个长方形的长是a,宽是b,则它的面 ab 积是_______; (2)一个圆柱的底面的半径是r,高是h,则它 2 r h 的体积是__________; (3)汽车每秒行驶m千米,1分钟后能行驶 60m 千米; 多少_____ (4)因金融危机,某商场降价处理产 品.一台冰箱原价是a元,现按原价的7.5折出售, 0.75a 这台冰箱现在的售价是________ 元. (5)一本书的价格是a元,一块手表的价 7.5a 格是它的7.5倍,则手表的价格是______.
4mn
4
1 5 ab 2
5 x3 y 2
五次四项式
几次几项式 五次二项式
六次二项式
知识要点
单项式和多项式统称为整式.
单项式
整式 多项式
5a,-3m2
3x+2,xy-6y3
课堂小结
系数:单项式中的数字因数
单项式
次数:所有字母的指数的和 整式 项:多项式中的每个单项式 多项式 次数:多项式里次数最高项的次数
5 3 2
4 x y xy 1.
知识要点
多项式的次数
多项式里次数最高项的次数,就是
这个多项式的次数.
指出下列多项式的次数.
2ab+2ah+2bh
πR 2 πr 2
2 2
5x-4
1 2rh πr 2 2
1
2
练一练
1.请说出下列多项式是几次几项式?
4a b ab 7;
3 3 3 2
新课导入
想一想:三角形、圆、长方形、正方形的面积公式.
h
a
┓
1 S ah 2
r
S r
2
a b S=ab
a
S= a2
a
填空,并观察式子的特点: 4m 1.边长为m的正方形的周长是_______, 2 m 面积是_______. 2.一辆汽车的速度是v千米/小时,行驶 vt 千米. t小时所走过的路程为_______ 2πb ,面积 3.半径为b的圆的周长为______ πb2 为________ . 4.设a表示一个数,则它的相反数是 _______. -a
6.如果-axyb是关于x的单项式,且系
数为2,次数为3,则a,b分别是多少?
解:由题意可得: -a=2, 1+b=3. 得:a=-2, b=2. 答:a为-2,b为2.
六
四
次 三 项式
次 三 项式
5 xy 4 x y;
4
m 3.
3
三 次 二 项式
注意:几次几项式的数字要大写.
练一练
用多项式填空,并说出它们的项和次数.
(1)已知一个二位数的个位数字是m,十位
数字是n.用关于m和n的式子表示这个二位数 b 10n+m _____________. (2)图中阴影部分的面
b a
a
积是___________. a2-b2
(3) 每升高1千米,气温下降 -6℃.已知 山脚下的气温为16 ℃,那么登高h千米后, 16-6h )℃. 气温为(__________ (4)下图中阴影部分的面积为 l l 2 πr 2 ___________. r l r
多项式 10n+m a2-b2
次数为4
写出下列单项式的系数和次数.
a; 5m 3 ;
系数 -1 5
次数 1 3 2 2 1
r ; 4 3 xy ; 2 3 h. 4
2
4
3 2
3 4
注意
1.数字与字母相乘,乘号省略;
2.表达式中数字写在字母前;
3.数字是带分数一律写成假分数.
判断下列说法或书写是否正确. ① 1a ② - 1a
随堂练习
-1 次数是 1. 单项式-m3n 的系数是_______, ______, m5n3是____ 4 8次单项式. 3x 2 6y 2. 多项式3x2+6y-2z是单项_____,______,
________ 二 次___ 三项式. -2z 的和,它是___ 3. 多项式4m2-5m-7+m3的常数项是____, -7 一次项是_____, 二次项的系数是_____. 4 -5
l 2 πr 2
项 10n、m a2
2
1
16-6h
16、-6h
2.填空.
多项式
6m2 4mn 4 1 a5b 6b4 ab 2 6m 4mn 4
2
3x 4 y 2 5 x3 y 2 1 2
项 最高次项
2 3 x 4 y 1 5 a b 6b 4 ab 2 5 x3 y 2 1 2