数列测试试题
数列测试题及答案
数列测试题及答案一、选择题1. 已知数列\( a_n \)的通项公式为\( a_n = 3n - 1 \),那么第10项的值为:A. 29B. 28C. 27D. 26答案:A2. 若数列\( b_n \)的前n项和为\( S_n \),且\( S_n = n^2 \),求数列\( b_n \)的第3项:A. 5B. 6C. 7D. 8答案:B二、填空题1. 给定等差数列\( c_n \),首项\( c_1 = 5 \),公差\( d = 3 \),其第5项为________。
答案:202. 若数列\( d_n \)是等比数列,且\( d_1 = 2 \),公比\( q = 4 \),求第4项:________。
答案:64三、解答题1. 已知数列\( e_n \)的前n项和为\( S_n \),若\( S_3 = 21 \),\( S_5 = 45 \),求\( e_4 + e_5 \)。
解:由题意得\( e_4 + e_5 = S_5 - S_3 = 45 - 21 = 24 \)。
2. 某等差数列的前5项和为50,且第3项为15,求该数列的首项和公差。
解:设该等差数列的首项为\( a \),公差为\( d \),则有:\[ 5a + 10d = 50 \]\[ a + 2d = 15 \]解得:\( a = 5 \),\( d = 5 \)。
四、证明题1. 证明等差数列中,任意两项的等差中项等于它们的算术平均数。
证明:设等差数列\( f_n \)的首项为\( f_1 \),公差为\( d \),任取两项\( f_m \)和\( f_n \)(\( m < n \)),则它们的等差中项为\( f_{\frac{m+n}{2}} \)。
根据等差数列的性质,有:\[ f_{\frac{m+n}{2}} = f_1 + \left(\frac{m+n}{2} -1\right)d \]而算术平均数为:\[ \frac{f_m + f_n}{2} = \frac{f_1 + (m-1)d + f_1 + (n-1)d}{2} = f_1 + \frac{(m+n-2)d}{2} \]由于\( \frac{m+n}{2} - 1 = \frac{m+n-2}{2} \),所以两者相等,证明了等差中项等于算术平均数。
数列测试题及答案
数列测试题一.选择题1.假如等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )352.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =(A )3 (B )4(C)5(D )63.设数列{}n a 的前n 项和2n S n =,则8a 的值为(A ) 15 (B) 16 (C) 49 (D )644.设n s 为等比数列{}n a 的前n 项和,2580a a +=则52S S = (A)-11 (B)-8 (C)5(D)115.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = A.21 B.22 C. 2 D.26.已知等比数列{}n a 知足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n -7.公役不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于A. 18B. 24C. 60D. 90 8.设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则69S S = (A ) 2 (B ) 73 (C ) 83(D )39.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 暗示{}n a 的前n 项和,则使得n S 达到最大值的n 是(A )21 (B )20 (C )19 (D ) 1810.无限等比数列,42,21,22,1…各项的和等于() A .22-B .22+C .12+D .12-11.数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项和为n S ,则30S 为 A .470B .490C .495D .510 12.设,R x ∈记不超出x 的最大整数为[x ],令{x }=x -[x ],则{215+},[215+],215+ 二.填空题13.设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a =.14.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式n a =.15.设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =. 16.已知数列{}n a 知足:434121,0,,N ,n n n n a a a a n *--===∈则2009a =________;2014a =_________.三.解答题17.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .18.已知{}n a 是首项为19,公役为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .19.已知等差数列{}n a 知足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .20.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (I )设12n n n b a a +=-,证实数列{}n b 是等比数列 (II )求数列{}n a 的通项公式. 21.数列{}n a 的通项222(cos sin )33n n n a n ππ=-,其前n 项和为n S .(1) 求n S ; (2) 3,4nn nS b n =⋅求数列{n b }的前n 项和n T .答案 1.【答案】C【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== 2.解析:选B. 两式相减得,3433a a a =-,44334,4a a a q a =∴==.3.答案:A【解析】887644915a S S =-=-=.5.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a 的公比为正数,所以2q =,故211222a a q===,选B 6.【解析】由25252(3)n n a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=,+⋅⋅⋅++3212log log a a 2122)12(31log n n a n =-+⋅⋅⋅++=-,选C.答案:C7.【解析】由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得 1278a d +=则12,3d a ==-,所以1019010602S a d =+=,.故选C8.【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3q 3=2于是63693112471123S q q S q ++++===++【答案】B9.[解析]:由1a +3a +5a =105得33105,a =即335a =,由246a a a ++=99得4399a =即433a = ,∴2d =-,4(4)(2)412n a a n n =+-⨯-=-,由10n n a a +≥⎧⎨<⎩得20n =,选B10.答案B 11.答案:A 【解析】因为22{cos sin }33n n ππ-以3 为周期,故 221010211(32)(31)591011[(3)][9]25470222k k k k k k ==-+-⨯⨯=-+=-=-=∑∑故选A12.【答案】B【解析】可分离求得515122⎧⎫+-⎪⎪=⎨⎬⎪⎪⎩⎭,51[]12+=.则等比数列性质易得三者组成等比数列. 13.解析:填15. 316132332656242S a d S a d ⨯⎧=+=⎪⎪⎨⨯⎪=+=⎪⎩,解得112a d =-⎧⎨=⎩,91815.a a d ∴=+=14.【答案】n-14【解析】由题意知11141621a a a ++=,解得11a =,所以通项n a =n-14. 15.答案:15【解析】对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--16.【答案】1,0【解析】本题重要考核周期数列等基本常识.属于创新题型. 依题意,得2009450331a a ⨯-==, 17.解:设{}n a 的公役为d ,则即22111812164a da d a d⎧++=-⎨=-⎩解得118,82,2a a d d =-=⎧⎧⎨⎨==-⎩⎩或是以()()()()819819n n S n n n n n S n n n n n =-+-=-=--=--,或18.19.【解析】(Ⅰ)设等差数列{}n a 的公役为d,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n . (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以n T =111111(1-+++-)4223n n+1⋅-=11(1-)=4n+1⋅n 4(n+1), 即数列{}n b 的前n 项和n T =n4(n+1).20.解:(I)由11,a =及142n n S a +=+,有12142,a a a +=+21121325,23a a b a a =+=∴=-=由142n n S a +=+,...①则当2n ≥时,有142n n S a -=+.....②②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-又12n n n b a a +=-,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.(II )由(I )可得11232n n n n b a a -+=-=⋅,113224n n n n a a ++∴-= ∴数列{}2n n a 是首项为12,公役为34的等比数列. ∴1331(1)22444n na n n =+-=-,2(31)2n n a n -=-⋅ : (1) 因为222cos sin cos 333n n n πππ-=,故1331185(94)2222k k k -+=+++=,故 1,3236(1)(13),316(34),36n n n k n n S n k n n n k ⎧--=-⎪⎪+-⎪==-⎨⎪+⎪=⎪⎩(*k N ∈) (2) 394,424n n n nS n b n +==⋅⋅ 两式相减得 故 2321813.3322n n n nT -+=--⋅。
高中数学--《数列》测试题(含答案)
高中数学--《数列》测试题(含答案)1.已知数列,它的第5项的值为()A. B. C. D.【答案解析】D2.若成等比数列,则下列三个数:①②③,必成等比数列的个数为()A、3B、2C、1D、0【答案解析】C3.在数列{}中,,则等于()。
A B 10 C 13 D 19【答案解析】解析:C。
由2得,∴{}是等差数列∵4.是成等比数列的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案解析】解析:不一定等比如若成等比数列则选D5.x=是a、x、b成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案解析】D6.已知为等差数列,且-2=-1, =0,则公差d=(A)-2 (B)-(C)(D)2【答案解析】B解析:a7-2a4=a3+4d-2(a3+d)=2d=-1 Þ d=-7.(2009福建卷理)等差数列的前n项和为,且 =6,=4,则公差d等于A.1 B C.- 2 D 3【试题来源】【答案解析】C解析∵且.故选C8.(2009广东卷理)已知等比数列满足,且,则当时,A. B. C. D.【答案解析】C解析:由得,,则,,选C.9.(2009年广东卷)已知等比数列的公比为正数,且·=2,=1,则=A. B. C. D.2【答案解析】B解析:设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,选B10.已知数列…,则是该数列的A.第项B.第项C.第项D.第项【答案解析】C11.等差数列中,,那么的值是A. 12 B. 24 C .16 D. 48【答案解析】B12.等差数列,,,则数列前9项的和等于A.66 B.99 C. 144 D. 297【答案解析】B13.等差数列中,,则A.8 B.12 C.24 D.25【答案解析】B14.等比数列{an}中,a4=4,则等于A.4 B.8 C.16 D.32【答案解析】C15.设等比数列的公比q=2,前n项和为Sn,则=A. B. C. D.【答案解析】C17若数列的前项和,则A.7B.8C.9D.17【答案解析】A18.等差数列的前项和为,若,则A.1004B.2008C.2009D.2010【答案解析】C19.若等差数列{an}的前5项和S5=25,且a2=3,则a4=() A.12 B.7C.9 D.15【答案解析】B20.()A. B. C. D.【答案解析】D。
高中数学数列测试题
高中数学数列测试题题目一:等差数列1.已知等差数列的前三项分别为3, 7, 11,求该等差数列的通项公式,并计算第10项的值。
2.已知等差数列的前五项的和为50,公差为3,求该等差数列的通项公式,并计算第十项的值。
解答:1.设该等差数列的首项为a,公差为d。
由已知条件可得:a + 2d = 7 (1)a + 3d = 11 (2)将(2)式减去(1)式,可得:d = 4 (3)将(3)式的值代入(1)式或(2)式,可得:a + 2 * 4 = 7a = -1 (4)因此,该等差数列的通项公式为:an = -1 + 4n,其中n为项数。
计算第10项的值:a10 = -1 + 4 * 10a10 = 392.设该等差数列的首项为a,公差为d。
由已知条件可得:5a + 10d = 50 (5)d = 3 (6)将(6)式的值代入(5)式,可得:5a + 10 * 3 = 505a = 20a = 4 (7)因此,该等差数列的通项公式为:an = 4 + 3n,其中n为项数。
计算第十项的值:a10 = 4 + 3 * 10a10 = 34题目二:等比数列1.已知等比数列的第一项为2,公比为3/2,求该等比数列的通项公式,并计算第6项的值。
2.已知等比数列的前四项的和为24,公比为2,求该等比数列的通项公式,并计算第七项的值。
解答:1.设该等比数列的首项为a,公比为r。
由已知条件可得:ar^5 = 2 (8)r = 3/2 (9)将(9)式的值代入(8)式,可得:a * (3/2)^5 = 2a * 243/32 = 2a = 64/243 (10)因此,该等比数列的通项公式为:an = (64/243) * (3/2)^n,其中n为项数。
计算第6项的值:a6 = (64/243) * (3/2)^6a6 ≈ 3.162.设该等比数列的首项为a,公比为r。
由已知条件可得:a(1 - r^4)/(1 - r) = 24 (11)r = 2 (12)将(12)式的值代入(11)式,可得:a(1 - 2^4)/(1 - 2) = 24a(1 - 16)/(-1) = 2415a = 24a = 8/5 (13)因此,该等比数列的通项公式为:an = (8/5) * (2)^n,其中n为项数。
数列测试题及答案
数列测试题及答案数列测试题及答案 数列测试题及答案: ⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分. 1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( ) A.6 B.7 C.8 D.9 解析:∵a1+a2+a12+a13=4a7=24,∴a7=6. 答案:A 2.若等差数列{an}的前n项和为Sn,且满⾜S33-S22=1,则数列{an}的公差是( ) A.12 B.1 C.2 D.3 解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代⼊S33-S22=1,得d=2,故选C. 答案:C 3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( ) A.1 B.-4 C.4 D.5 解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,… 故{an}是以6为周期的数列, ∴a2 011=a6×335+1=a1=1. 答案:A 4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( ) A.d<0 B.a7=0 C.S9>S5 D.S6与S7均为Sn的最⼤值 解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0. ⼜S7>S8,∴a8<0. 假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0. ∵a7=0,a8<0,∴a7+a8<0.假设不成⽴,故S9<S5.∴C错误. 答案:C 5.设数列{an}是等⽐数列,其前n项和为Sn,若S3=3a3,则公⽐q的值为( ) A.-12 B.12 C.1或-12 D.-2或12[ 解析:设⾸项为a1,公⽐为q, 则当q=1时,S3=3a1=3a3,适合题意. 当q≠1时,a1(1-q3)1-q=3a1q2, ∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0, 解得q=1(舍去),或q=-12. 综上,q=1,或q=-12. 答案:C 6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最⼤项为第x项,最⼩项为第y 项,则x+y等于( ) A.3 B.4 C.5 D.6 解析:an=5252n-2-425n-1=525n-1-252-45, ∴n=2时,an最⼩;n=1时,an最⼤. 此时x=1,y=2,∴x+y=3. 答案:A 7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( ) A.a21a22 B.a22a23 C.a23a24 D.a24a25 解析:∵3an+1=3an-2, ∴an+1-an=-23,即公差d=-23. ∴an=a1+(n-1)d=15-23(n-1). 令an>0,即15-23(n-1)>0,解得n<23.5. ⼜n∈N*,∴n≤23,∴a23>0,⽽a24<0,∴a23a24<0. 答案:C 8.某⼯⼚去年产值为a,计划今后5年内每年⽐上年产值增加10%,则从今年起到第5年,这个⼚的总产值为( ) A.1.14a B.1.15a C.11×(1.15-1)a D.10×(1.16-1)a 解析:由已知,得每年产值构成等⽐数列a1=a,w an=a(1+10%)n-1(1≤n≤6). ∴总产值为S6-a1=11×(1.15-1)a. 答案:C 9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最⼤值为( ) A.25 B.50 C.1 00 D.不存在 解析:由S20=100,得a1+a20=10. ∴a7+a14=10. ⼜a7>0,a14>0,∴a7a14≤a7+a1422=25. 答案:A 10.设数列{an}是⾸项为m,公⽐为q(q≠0)的等⽐数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( ) A.在直线mx+qy-q=0上 B.在直线qx-my+m=0上 C.在直线qx+my-q=0上 D.不⼀定在⼀条直线上 解析:an=mqn-1=x,①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y,② 由②得qn=y-1,代⼊①得x=mq(y-1),即qx-my+m=0. 答案:B 11.将以2为⾸项的偶数数列,按下列⽅法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的⾸项为( ) A.n2-n B.n2+n+2 C.n2+n D.n2-n+2 解析:因为前n-1组占⽤了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的⾸项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2. 答案:D 12.设m∈N*,log2m的整数部分⽤F(m)表⽰,则F(1)+F(2)+…+F(1 024)的值是( ) A.8 204 B.8 192 C.9 218 D.以上都不对 解析:依题意,F(1)=0, F(2)=F(3)=1,有2 个 F(4)=F(5)=F(6)=F(7)=2,有22个. F(8)=…=F(15)=3,有23个. F(16)=…=F(31)=4,有24个. … F(512)=…=F(1 023)=9,有29个. F(1 024)=10,有1个. 故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10. 令T=1×2+2×22+3×23+…+9×29,① 则2T=1×22+2×23+…+8×29+9×210.② ①-②,得-T=2+22+23+…+29-9×210 = 2(1-29)1-2-9×210=210-2-9×210=-8×210-2, ∴T=8×210+2=8 194, m] ∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204. 答案:A 第Ⅱ卷 (⾮选择共90分) ⼆、填空题:本⼤题共4个⼩题,每⼩题5分,共20分. 13.若数列{an} 满⾜关系a1=2,an+1=3an+2,该数列的通项公式为__________. 解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1), ∴{an+1}是以a1+1=3为⾸项,以3为公⽐的等⽐数列, ∴an+1=33n-1=3n,∴an=3n-1. 答案:an=3n-1 14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的⼤⼩关系是__________. 解析:设{an}的公差为d,则d≠0. M-N=an(an+3d)-[(an+d)(an+2d)] =an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N. 答案:M<N 15.在数列{an}中,a1=6,且对任意⼤于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________. 解析:∵点(an,an-1)在直线x-y=6上, ∴an-an-1=6,即数列{an}为等差数列. ∴an=a1+6(n-1)=6+6(n-1)=6n, ∴an=6n2. ∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1 ∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1. 答案:6nn+1 16.观察下表: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 … 则第__________⾏的各数之和等于2 0092. 解析:设第n⾏的各数之和等于2 0092, 则此⾏是⼀个⾸项a1=n,项数为2n-1,公差为1的等差数列. 故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092,解得n=1 005. 答案:1 005 三、解答题:本⼤题共6⼩题,共70分. 17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2. (1)求证:{bn}是等⽐数列,并求bn; (2)求通项an并求{an}的前n项和Sn. 解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12, ∴{bn}是等⽐数列. ∵b1=a1-2=-32, ∴bn=b1qn-1=-32×12n-1=-32n. (2)an=bn+2=-32n+2, Sn=a1+a2+…+an =-32+2+-322+2+-323+2+…+-32n+2 =-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3. 18.(12分)若数列{an}的`前n项和Sn=2n. (1)求{an}的通项公式; (2)若数列{bn}满⾜b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n 项和Tn. 解析:(1)由题意Sn=2n, 得Sn-1=2n-1(n≥2), 两式相减,得an=2n-2n-1=2n-1(n≥2). 当n=1时,21-1=1≠S1=a1=2. ∴an=2 (n=1),2n-1 (n≥2). (2)∵bn+1=bn+(2n-1), ∴b2-b1=1, b3-b2=3, b4-b3=5, … bn-bn-1=2n-3. 以上各式相加,得 bn-b1=1+3+5+…+(2n-3) =(n-1)(1+2n-3)2=(n-1)2. ∵b1=-1,∴bn=n2-2n, ∴cn=-2 (n=1),(n-2)×2n-1 (n≥2), ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1, ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n. ∴-Tn=2+22+23+…+2n-1-(n-2)×2n =2(1-2n-1)1-2-(n-2)×2n =2n-2-(n-2)×2n =-2-(n-3)×2n. ∴Tn=2+(n-3)×2n. 19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等⽐数列. (1)求数列{an}的通项公式; (2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成⼀个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式. 解析:(1)依题意,得 3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2. ∴an=a1+(n-1)d=3+2(n-1)=2n+1, 即an=2n+1. (2)由已知,得bn=a2n=2×2n+1=2n+1+1, ∴Tn=b1+b2+…+bn =(22+1)+(23+1)+…+(2n+1+1) =4(1-2n)1-2+n=2n+2-4+n. 20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn. (1)证明:当b=2时,{an-n2n-1}是等⽐数列; (2)求通项an. 新课标第⼀⽹ 解析:由题意知,a1=2,且ban-2n=(b-1)Sn, ban+1-2n+1=(b-1)Sn+1, 两式相减,得b(an+1-an)-2n=(b-1)an+1, 即an+1=ban+2n.① (1)当b=2时,由①知,an+1=2an+2n. 于是an+1-(n+1)2n=2an+2n-(n+1)2n =2an-n2n-1. ⼜a1- 120=1≠0, ∴{an-n2n-1}是⾸项为1,公⽐为2的等⽐数列. (2)当b=2时, 由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1 当b≠2时,由①得 an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n =ban-12-b2n, 因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn. 得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2. 21.(12分)某地在抗洪抢险中接到预报,24⼩时后⼜⼀个超历史最⾼⽔位的洪峰到达,为保证万⽆⼀失,抗洪指挥部决定在24⼩时内另筑起⼀道堤作为第⼆道防线.经计算,如果有 20辆⼤型翻⽃车同时作业25⼩时,可以筑起第⼆道防线,但是除了现有的⼀辆车可以⽴即投⼊作业外,其余车辆需从各处紧急抽调,每隔20分钟就有⼀辆车到达并投⼊⼯作.问指挥部⾄少还需组织多少辆车这样陆续⼯作,才能保证24⼩时内完成第⼆道防线,请说明理由. 解析:设从现有这辆车投⼊⼯作算起,各车的⼯作时间依次组成数列{an},则an-an-1=-13. 所以各车的⼯作时间构成⾸项为24,公差为-13的等差数列,由题知,24⼩时内最多可抽调72辆车. 设还需组织(n-1)辆车,则 a1+a2+…+an=24n+n(n-1)2×-13≥20×25. 所以n2-145n+3 000≤0, 解得25≤n≤120,且n≤73. 所以nmin=25,n-1=24. 故⾄少还需组织24辆车陆续⼯作,才能保证在24⼩时内完成第⼆道防线. 22.(12分)已知点集L={(x,y)|y=mn},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*. (1)求数列{an},{bn}的通项公式; (3)设cn=5nan|PnPn+1|(n≥2),求c2+c3+c4+…+cn的值. 解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b), 得y=2x+1,即L:y=2x+1. ∵P1为L的轨迹与y轴的交点, ∴P1(0,1),则a1=0,b1=1. ∵数列{an}为等差数列,且公差为1, ∴an=n-1(n∈N*) . 代⼊y=2x+1,得bn=2n-1(n∈N*). (2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1). =5n2-n-1=5n-1102-2120. ∵n∈N*, (3)当n≥2时,Pn(n-1,2n-1), ∴c2+c3+…+cn =1-12+12-13+…+1n-1-1n=1-1n.。
数列》单元测试题(附答案解析).doc
《数列》单元练习试题一、选择题1.已知数列{ a n}的通项公式a n n23n 4 ( n N*),则a4等于()(A)1(B)2(C)3(D)02.一个等差数列的第 5 项等于 10,前 3 项的和等于 3,那么()( A)它的首项是 2 ,公差是 3 ( B)它的首项是 2 ,公差是 3 ( C)它的首项是 3 ,公差是 2 ( D)它的首项是 3 ,公差是 2S4()3.设等比数列{ a n}的公比q 2,前n项和为S n,则a2(A)2 (B)4 (C)15(D)17 2 24.设数列a n是等差数列,且a2 6 , a8 6 , S n是数列 a n 的前 n 项和,则()(A)S4 S5 (B)S4 S5(C)S6 S5 (D)S6 S5a n 3N*),则a20 ()5.已知数列{ a n}满足a10,a n 1 ( n3a n 1(A)0 (B)3 (C) 3 ( D) 326.等差数列a n的前 m 项和为30,前2m项和为100,则它的前3m 项和为()( A) 130 ( B)170 ( C) 210 ( D) 2607.已知a1,a2,,a8为各项都大于零的等比数列,公比q 1 ,则()( A)a1 a8 a4 a5 ( B)a1 a8 a4 a5( C)a1 a8 a4 a5 ( D)a1 a8和 a4 a5的大小关系不能由已知条件确定8.若一个等差数列前 3 项的和为 34,最后 3 项的和为146,且所有项的和为390,则这个数列有()( A)13 项(B)12 项(C) 11 项(D)10 项9.设{ a n}是由正数组成的等比数列,公比q 2 ,且 a1 a2 a3a30 230,那么a3 a6 a9 a30等于()( A) 210 ( B) 220 ( C) 216 ( D)21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图 1 中的 1,3,6, 10,,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的 1,4,9, 16,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()( A) 289 ( B) 1024 (C) 1225 ( D)1378 二、填空题11.已知等差数列{ a n}的公差d 0 ,且a1,a3,a9成等比数列,则a1 a3 a9的值是.a2 a4 a1012.等比数列{ a n}的公比q 0 .已知 a2 1, a n 2 a n 1 6a n,则 { a n } 的前4项和 S4 .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是℃,5km 高度的气温是-℃,那么3km 高度的气温是℃.14.设a1 2 , a n 1 2 , b n a n 2, n N*,则数列{ b n}的通项公式b n .a n 1 a n 115.设等差数列{ a n}的前n项和为S n,则S4 , S8 S4, S12 S8, S16 S12成等差数列.类比以上结论有:设等比数列{ b n} 的前 n 项积为 T n,则 T4,,, T16 成等比数列.T12三、解答题16.已知{ a n}是一个等差数列,且a2 1 , a5 5 .(Ⅰ)求 { a n } 的通项 a n;(Ⅱ)求 { a n } 的前 n 项和 S n的最大值.17.等比数列{ a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)求 { a n } 的公比q;(Ⅱ)若 a1a3 3 ,求 S n.18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1 分钟走 2m,以后每分钟比前 1 分钟多走 1m,乙每分钟走5m.(Ⅰ)甲、乙开始运动后几分钟相遇(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走1m ,乙继续每分钟走 5m,那么开始运动几分钟后第二次相遇19.设数列{ a n}满足a13a232a3 3n 1 a n n, n N*.3(Ⅰ)求数列 { a n } 的通项;(Ⅱ)设 b nn,求数列 { b n } 的前 n 项和 S n.a n20.设数列{ a n } 的前n 项和为S n,已知a1 1 , S n 1 4a n 2 .(Ⅰ)设b n a n 1 2a n,证明数列{ b n } 是等比数列;(Ⅱ)求数列{ a n} 的通项公式.21.已知数列a n中,a1 2,a2 3,其前 n 项和S n满足Sn 1Sn 12Sn 1 n 2,n N* ).((Ⅰ)求数列a n 的通项公式;(Ⅱ)设 b n 4 n ( 1) n 1 2a n(为非零整数, n N *),试确定的值,使得对任意n N * ,都有 b n 1 b n成立.数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 {a n}中,若 a2+ a8= 16, a4= 6,则公差 d 的值是 ( )A.1 B. 2 C.- 1 D.- 22.在等比数列 {a n}中,已知a3= 2, a15= 8,则 a9等于 ( )A.± 4 B.4 C.- 4 D. 163.数列 {a n }中,对所有的正整数 n 都有 a1·a2·a3 a n= n2,则 a3+a 5= ( )4.已知- 9,a ,a ,- 1 四个实数成等差数列,-9,b ,b ,b ,- 1 五个实数成等比数列,则 b (a1 2 1 2 3 2 2- a1)= ()A.8 B.- 8 C.± 85.等差数列 {a n}的前 n 项和为 S n,若 a2+ a7+ a12= 30,则 S13 的值是 ( )A.130 B.65 C. 70 D. 756.设等差数列 {a }的前 n 项和为 S .若 a =- 11, a + a =- 6,则当 S 取最小值时, n 等于 ( ) n n 1 46 nA.6 B.7 C. 8 D. 97.已知 {a n }为等差数列,其公差为-2,且 a7是 a3与 a9的等比中项, S n为 {a n}的前 n 项和, n∈ N+,则 S10的值为 ( )A.- 110 B.- 90 C. 90 D.1108.等比数列 {a }是递减数列,前 n 项的积为 T ,若 T = 4T ,则 a a 15 =()nn139 8A .± 2B .± 4C .2D . 489.首项为- 24 的等差数列, 从第 10 项开始为正数, 则公差 d 的取值范围是 ( ) A .d>3B .d<38 C.3≤d<3 <d ≤310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是().q 1、 a 1 0, q 1、 a 1 0,0q 1 或 a 10, q 1、 q1A BCD11. 已知等差数列 a n 共有 2n 1 项,所有奇数项之和为 130,所有偶数项之和为 120 ,则 n 等于( )A. 9B. 10C. 11D. 1212.设函数 f(x)满足 f(n + 1)= 2 f (n) n (n ∈ N + ),且 f(1)= 2,则 f(20)为 ()2A . 95B . 97C . 105D . 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上 )13.已知等差数列 {a n }满足: a 1= 2,a 3= 6.若将 a 1,a 4,a 5 都加上同一个数,所得的三个数依次成等 比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n ∈ N ),则 a =n11+ 10a n1a n315.在数列 {a n }中,a 1=1,a 2=2 ,且满足 a n a n13( n 1)( n 2) ,则数列 {a n }的通项公式为 a na n , (n ∈N*116.已知数列满足: 1= 1, a n + 1n +1=(n - λ)+ 1 , b 1na=a n + 2 ),若 ba n=- λ,且数列 {b }是单调递增数列,则实数 λ的取值范围为三、解答题 (本大题共 70 分.解答应写出必要的文字说明、证明过程或演算步骤 )17.( 10 分)在数列 {a n }中, a 1=8, a 4=2,且满足 a n +2- 2a n + 1+ a n =0(n ∈ N +). (1) 求数列 {a }的通项公式; (2)求数列 {a }的前 20 项和为 Snn 20.18. (12 分)已知数列{ a n}前n 项和 S n n 2 27n ,(1)求{| a n|}的前11项和T11;(2) 求{| a n|}的前 22 项和T22 ;2 (n∈N ).19. (12 分)已知数列 { a n } 各项均为正数 ,前 n 项和为 S ,且满足 2S = a n + n-4n n +(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n n( 1)求a n的通项公式;( 2)等差数列b n的各项为正,其前n 项和为 T n,且 T315 ,又a1b1 , a2b2 , a3b3成等比数列,求 T n.nn1nn n + 1nn- 1(b n≠ 0).21. (12 分)已知数列 {a },{b }满足 a = 2, 2a = 1+ a a , b = a 1(1) 求证数列 { }是等差数列;b n(2) 令 c n1 ,求数列 { c n }的通项公式.a n122.( 12 分)在等差数列 { a n } 中,已知公差d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式;(2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .2《数列》单元测试题 参考答案一、选择题1.D2.A3.C 4.B 5.B 6.C 7.A8.A 9. B 10.C二、填空题11. 1312. 1513.-14. 2n 115.T 8 ,T12162T 4T 8三、解答题16(. Ⅰ)设 { a n } 的公差为 d ,则a 1 d 1 ,a 13 ,∴ a n3 (n1)(2)2n 5 .a 14d解得2 .5 .d(Ⅱ)S n3n n( n 1) ( 2) n 24n( n2) 2 4 .∴当 n 2 时, S n 取得最大值 4.217.(Ⅰ)依题意,有 S 1S 22S 3 ,∴ a 1 (a 1 a 1q) 2( a 1 a 1q a 1q 2 ) ,由于 a 10 ,故 2q 2q 0 ,又 q 0 ,从而 q1 . 214 [1 ( 1) n ] 81(Ⅱ)由已知,得 a 1a 1 ( ) 23 ,故 a 14 ,从而 S n2n ] .21[1 ()1(32)218.(Ⅰ)设 n 分钟后第 1 次相遇,依题意,有 2nn(n1)5n 70 ,2整理,得 n 213n 140 0 ,解得 n 7 , n20 (舍去).第 1 次相遇是在开始运动后7 分钟.(Ⅱ)设 n 分钟后第 2 次相遇,依题意,有2nn( n 1) 5n3 70 ,2整理,得 n 213 n 420 0 ,解得 n 15 , n28 (舍去).第 2 次相遇是在开始运动后15 分钟.19.( Ⅰ)∵ a 1 3a 2 32 a 33n 1 a n n ,①3∴当 n 2时, a 13a 2 32 a 33n 2 a n 1 n 1 .②3由① -② ,得3 n 1 1 ,a n1,得 a 11 a nn .在① 中,令 n 1.∴ a n333( Ⅱ )∵ b nn,∴ b n n 3n ,∴ S n32323 33n 3n ,a n∴ 3S n32 2 333 34n 3n 1 . ④由④ -③ ,得 2Sn 3n 1(3 32333n ) ,n13n ,nN * .③即 2S n n 3n 13(1 3n ) ,∴ S n(2n 1)3n 13 .1 34 420.( Ⅰ)由 a 1 1 , S n 14a n 2 ,有 a 1 a 24a 12 ,∴ a 2 3a 1 2 5 ,∴ b 1a 2 2a 1 3 .∵ S n 1 4a n2 ,①∴ S n4a n 12 ( n 2),②由 ① -② ,得 a n 1 4a n4a n 1 ,∴ a n 1 2a n 2(a n 2a n 1 ) ,∵ b na n 1 2a n ,∴b n2b n 1 ,∴数列 { b n } 是首项为 3 ,公比为 2 的等比数列.( Ⅱ )由( Ⅰ ),得 b na n2a n32 n 1a n 1 a n3 ,1,∴2n42n1a n } 是首项为 1 ,公差为 3的等差数列,∴数列 {242n∴a n1 (n1)3 31,∴ a n (3n1) 2 n 2 .2n2 4n4 421.(Ⅰ)由已知,得S n1S nS n S n 1 1( n 2 , n N * ),即 a n 1 a n 1 ( n2 , n N * ),且 a 2 a 1 1 ,∴数列 a n 是以 a 1 2 为首项, 1为公差的等差数列,∴a n n 1.(Ⅱ) ∵a nn1, ∴ b4n ( 1)n 12n 1 ,要使 bn 1b n 恒成立,n∴ b nb n 4n 1 4n1 n2n 2n 12n 10 恒成立,11∴ 3 4n3n 10 恒成立,∴1 n 12n 1 恒成立.12n 1(ⅰ)当 n 为奇数时,即2 n 1恒成立,当且仅当nn1有最小值为 , ∴1 .1时, 2 1(ⅱ)当 n 为偶数时,即2n 1 恒成立,当且仅当 n 2 时, 2n 1有最大值 2 , ∴2 .∴21,又 为非零整数,则1 .综上所述,存在1 ,使得对任意 n N * ,都有b n 1 b n .数列试题答案1--- 12: BBABAAD C DCDB3n 1 为奇数 )a n2 (n113---16 :- 11,,3n 2, λ<24为偶数2 (n)17.解: (1)∵数列 {a }满足 a- 2a +a = 0,∴ 数列 {a }为等差数列,设公差为 d.∴ a =a + 3d ,nn + 2n + 1nn412-8=- 2.∴ a n1n 20d = 3= a + (n - 1)d = 8- 2(n - 1)=10- 2n.(2) S = n(9 n) 得 S = - 22018.解: S nn 2 27 na n 2n 28 ∴当 n 14 时, a nn 14 时 a n 0(1) T 11 | a 1 | | a 2 | | a 11 |(a 1a 11 ) S 11 176(2) T 22(| a 1 | | a 2 | | a 13 |) ( a 14 || a 22 |)( a 1a 2a 13)a14 a15a22S13S22S 13S222S 1325419.(1) 证明 :当 n=1 时 ,有 2a =+1-4,即 -2a-3=0,解得 a =3( a =-1 舍去 ).[来源 :学11 1 1当 n ≥2时 ,有 2S n-1= +n-5,又 2S n = +n-4,两式相减得 2a n = - +1,即 -2a n +1=,也即 (a n -1)2 =,因此 a n -1=a n-1 或 a n -1=-a n-1 .若 a n -1=-a n-1,则 a n +a n-1=1.而 a 1 =3,所以 a 2 =-2,这与数列 {a n }的各项均为正数相矛盾 ,所以 a n -1=a n-1,即 a n -a n-1=1,因此数列 {a n }为等差数列 .(2) 解:由(1)知 a 1=3,d=1,所以数列 {a n }的通项公式 a n =3+(n-1)× 1=n+2,即a n=n+2.n 25n 得 S n221.(1) 证明: ∵ b = a -1,∴ a = b + 1.又 ∵2a = 1+a a, ∴ 2(b + 1)= 1+ (b + 1)(b+ 1).化简nnnnnn n + 1 nnn + 1得: b+ + b n - b n + 1 =1.即 1 - 1= 1(n ∈N + ).n - b n1= b n b n1.∵ b n ≠0, ∴ n n +1n n +1n + 1b nb bb bb又 1=1 =1=1, ∴{ 1 }是以 1 为首项, 1 为公差的等差数列.b 11b na - 1 2-1(2) ∴ 1 = 1+ (n - 1) 1 1 + 1= n + 1 .∴ c n1 n ×1=n.∴ b n =.∴ a n = n a n 1 2n 1b n n n。
高二数学数列综合测试题(解析版)
7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有
数列测试题及答案解析
数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。
A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。
A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。
答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。
答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。
解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。
2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。
解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。
四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。
证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。
即证明n^2 ≥ (n-1)^2。
展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。
2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。
证明:设等差数列{hn}的首项为h1,公差为d。
根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。
将两项相加得hn + hm = 2h1 + (m + n - 2)d。
由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。
数列单元测试题及答案解析
数列单元测试题及答案解析一、选择题1. 已知等差数列的首项为a1=3,公差为d=2,求第10项的值。
A. 23B. 25C. 27D. 292. 等比数列的首项为a1=2,公比为r=3,求第5项的值。
A. 162B. 243B. 324D. 4863. 一个数列的前5项为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断二、填空题4. 等差数列的前n项和公式为:S_n = _______。
5. 等比数列的前n项和公式为:S_n = _______。
三、解答题6. 已知等差数列的前10项和为S10=185,求公差d。
7. 已知等比数列的前3项和为S3=28,首项a1=2,求公比r。
四、证明题8. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
答案解析:一、选择题1. 答案:A。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入n=10,得a10 = 3 + 9*2 = 21。
2. 答案:B。
解析:根据等比数列的通项公式an = a1 * r^(n-1),代入n=5,得a5 = 2 * 3^4 = 243。
3. 答案:C。
解析:数列1, 3, 6, 10, 15不是等差也不是等比数列,因为相邻两项的差和比值都不是常数。
二、填空题4. 答案:S_n = n/2 * (2a1 + (n-1)d)。
解析:等差数列前n项和的公式。
5. 答案:S_n = a1 * (1 - r^n) / (1 - r),当r≠1时。
解析:等比数列前n项和的公式。
三、解答题6. 解:根据等差数列前n项和的公式,S10 = 10/2 * (2*3 + 9d) = 185,解得d = 3。
7. 解:根据等比数列前n项和的公式,S3 = a1 * (1 - r^3) / (1 - r) = 28,代入a1=2,解得r = 3。
四、证明题8. 证明:设等差数列中任意两项为an和am,它们的等差中项为a,即a = (an + am) / 2。
数列测试卷(含答案)
第五章数列测试卷一、选择题(本大题20个小题,每小题3分,共60分) ( )1. 数列1,-2,3,-4……的一个通项公式是A.a n=(一1)n•nB. a n= (-1)n+1 •nC. a n=nD. a n=-n2.已知数列{a n}的通项公式为a n=n2+n,且156是该数列的一项,则n 等于 ( )A.10B.11C.12D.133.若等差数列的前n项和S n=2n2- n,则它的通项公式a n为( )A.4n+3B.4n一3C.2n-1D.2n+14.在数列{ a n}中,若a1=2,a n=a n+1-2,则该数列的第5项等于( )A.16B. 14C.12D.55.已知2,m,8构成等差数列,则实数m的值是 ( )A.4B.4或一4C.10D.566.在等差数列{a n}中,已知S3=54,则a2为 ( )A.6B.12C.18D.247.在等差数列中,若a1=23,公差d为整数,a6>0,a7<0,则d等于 ( )A.-1B. -2C.-3D.-4 8.若a ≠b,且aa 1,a 2a 3,b 和a.b 1b 2b 3,b 4,b 都是等差数列,则a1−a2b1−b2等于( )A.43B.34C. 45D.549.在等差数列{a n }中,若a 1+a 4+a 7= 39,a 3+a 6+a 9=27,则S 9等于 ( )A.66B.144C.99D.297 10.等差数列{a n }中,若a n = m,a m =n,且m ≠n,那么a m+n .等于( ) A. mn B.m+n C.m-n D.011.已知a,b,c 成等比数列,则函数y=2ax 2+ 3bx+c 与x 轴交点的个数是 ( )A.0B.1C.2D.3 12.等比数列{a n }中,a 6=6,a 9=9,则a 3等于 ( ) A.4 B .32C.169D.213.已知等比数列{a n },前3项的和为7,积为8,则此数列的公比等于( )A.2B.2或32C.12D.-2或-12.14.已知等差数列{a n }的公差d=3,若a 1,a 3.a 4.成等比数列,则a 2等于 ( )A.-18B.-15C.-12D. -9 15.在等比数列(a n )中:若 a 2•a 6=8,Iog 2(a 1•a 7)= ( )A. 8 B .3 C.16 D.28 16.已知1和4的等比中项是log 3x,则实数x 的值是 ( ) A.2或12B.3或13C.4或14D.9或1917.已知等比数列{a n }的各项均为正数.且a 1, 12a 3,2a 2成等差数列,则a9+a10a7+a8= ( )A.1+√2B.1- √2C.3+2√2D.3-2√2 18.在等比数列{a n }中,著a4a7+a5a6=20.则此数列的前10项之积为( )A.50B.2010C.105D. 1010 19.为了治理沙漠,某农场要在沙漠上赖种植被,计划第一年栽种15公顷,以后每年比上一年多栽种4公顷,那么10年后该农场共裁种植被的公顷数是 ( )A.510公顷B.330公顷C.186公顷D.51公顷 20.《九章算术)“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积是 ( )A.1升B.6766升 C.4744升 D.3733升二、填空题(本大题5个小题,每小题4分,共20分) 21.在等差数列{a n }中,若Sn=3n 2+2n.则公差d 的值是22.已知数列{a n }的通项公式为a n =2n 一49,则当n= 时,S n 有最小值.23.在等差数列{a n }中,已知公差d=12,且a 1+a 3+a 5…+a 97+a 99=60.则a1+a2+a3+…+a99+a100= .24.等比数列{a n}中,a2=2,a5=16,则S6=25.某种储蓄利率为2.5%,按复利计算,若本金为30 000元,设存入工期后的本金和利息为y元,则y随x变化的函数关系为三、解答题(本大题5个小题,共40分)26.(本小题6分)已知等差数列{a n}中,a n=33-3n,求前n项和S n的最大值.27.(本小题8分)设数列{a n}满足:a1=1,a n+1=2a n.n∈N+.(1)求数列{a n}的通项公式:(2)已知数列{b n}是等差数列,S n是其前n项和,且满足b1=a3,b3=a1+a2+a3,求S20的值。
数列测试题及答案
数列测试题及答案【篇一:数列测试题及答案】p> 1、(2010全国卷2理数)如果等差数列?an?中,a3?a4?a5?12,那么a1?a2?...?a7? (a)14 (b)21(c)28 (d)35 【答案】c【解析】a3?a4?a5?3a4?12,a4?4,?a1?a2???a7?7(a1?a7)?7a4?28 22、(2010辽宁文数)设sn为等比数列?an?的前n项和,已知3s3?a4?2,3s2?a3?2,则公比q?(a)3(b)4(c)5(d)6解析:选b. 两式相减得, 3a3?a4?a3,a4?4a3,?q?a4?4. a33、(2010安徽文数)设数列{an}的前n项和sn?n2,则a8的值为(a) 15 (b) 16(c)49(d)64 答案:a【解析】a8?s8?s7?64?49?15.4、(2010浙江文数)设sn为等比数列{an}的前n项和,8a2?a5?0则(a)-11 (c)52s5? s2(b)-8 (d)1112 b. c. 222 d.2【答案】b【解析】设公比为q,由已知得a1q?a1q?2a1q为正数,所以q?28?42?,即q2?2,又因为等比数列{an}的公比故a1?a2,选b ??q25n?6(、2009广东卷理)已知等比数列{an}满足an?0,n?1,2,?,且a5a?2则当n?1时,log2a1?log2a3???log2a2n?1??22nn(?3),22a. n(2n?1)b. (n?1)c. nd. (n?1)22【解析】由a5?a2n?5?22n(n?3)得an则an?2n,log2a1?log2a3????? an?0,?22n,log2a2n?1?1?3?????(2n?1)?n2,选c.7、(2009江西卷文)公差不为零的等差数列{an}的前n项和为sn.若a4是a3与a7的等比中项, s8?32,则s10等于a. 18b. 24c. 60d. 90 答案:c2【解析】由a4?a3a7得(a1?3d)2?(a1?2d)(a1?6d)得2a1?3d?0,再由56d?32得 2a1?7d?8则d?2,a1??3,所以290s10?10a?d?60,.故选c 12s8?8a1?8、(2009辽宁卷理)设等比数列{ an}的前n 项和为sn ,若s6s=3 ,则 9 = s3s6(a) 2 (b)78(c)(d)3 33s6(1?q3)s3【解析】设公比为q ,则=1+q3=3 ? q3=2 ?s3s3s91?q3?q61?2?47于是??? 3s61?q1?23【答案】b9、(2009安徽卷理)已知?an?为等差数列,a1+a3+a5=105,a2?a4?a6=99,以sn表示?an?的前n项和,则使得sn达到最大值的n是(a)21(b)20 (c)19 (d) 18[解析]:由a1+a3+a5=105得3a3?105,即a3?35,由a2?a4?a6=99得3a4?99即?an?0得n?20,选b a4?33 ,∴d??2,an?a4?(n?4)?(?2)?41?2n,由? a?0?n?110、2009上海十四校联考)无穷等比数列1,212,,,…各项的和等于 224c.2?1d.2?1()a.2?2 b.2?2答案b11、(2009江西卷理)数列{an}的通项an?n(cos22n?n??sin2),其前n项和为sn,则33s30为a.470 b.490 c.495d.510 答案:a【解析】由于{cos2n?n??sin2以3 为周期,故 3312?2242?52282?29222s30?(??3)?(??6)???(??302)22210(3k?2)2?(3k?1)259?10?112??[??(3k)]??[9k?]??25?470故选a222k?1k?11012、2009湖北卷文)设x?r,记不超过x的最大整数为[x],令{x}=x-[x],则{[5?1?1], 22?1},2a.是等差数列但不是等比数列b.是等比数列但不是等差数列c.既是等差数列又是等比数列d.既不是等差数列也不是等比数列【答案】b【解析】可分别求得?????数列.二、填空题,?1.则等比数列性质易得三者构成等比13、(2010辽宁文数)(14)设sn为等差数列{an}的前n项和,若s3?3,s6?24,则a9?3?2?s?3a?d?31??a1??1?32解析:填15. ?,解得?,?a9?a1?8d?15. 6?5d?2??s?6a?d?2461?2?14、(2010福建理数)11.在等比数列?an?中,若公比q=4,且前3项之和等于21,则该数列的通项公式an?.【答案】4n-1n-1【解析】由题意知a1?4a1?16a1?21,解得a1?1,所以通项an?4。
高中数学数列经典题型专题训练试题(含答案)
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
数列经典试题(含答案)
强力推荐人教版数学高中必修5习题第二章数列1.{a n}是首项a1=1,公差为d=3的等差数列,如果a n=2 005,则序号n等于().A.667 B.668 C.669 D.6702.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=().A.33 B.72 C.84 D.1893.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则().A.a1a8>a4a5 B.a1a8<a4a5 C.a1+a8<a4+a5 D.a1a8=a4a54.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|等于().A.1 B. C. D.5.等比数列{a n}中,a2=9,a5=243,则{a n}的前4项和为().A.81 B.120 C.168 D.1926.若数列{a n}是等差数列,首项a1>0,a2 003+a2 004>0,a2·a2 004<0,则使前n项和S n>0成立的最大自然数n是().003A.4 005 B.4 006 C.4 007 D.4 0087.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列, 则a2=().A.-4 B.-6 C.-8 D.-108.设S n是等差数列{a n}的前n项和,若=,则=().A.1 B.-1 C.2 D.9.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则的值是().A. B.- C.-或 D.10.在等差数列{a n}中,a n≠0,a n-1-+a n+1=0(n≥2),若S2n-1=38,则n=().A.38 B.20 C.10 D.9二、填空题11.设f(x)=,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为 .12.已知等比数列{a n}中,(1)若a3·a4·a5=8,则a2·a3·a4·a5·a6=.(2)若a1+a2=324,a3+a4=36,则a5+a6=.(3)若S4=2,S8=6,则a17+a18+a19+a20= .13.在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.14.在等差数列{a n}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项之和为 .15.在等差数列{a n}中,a5=3,a6=-2,则a4+a5+…+a10=.16.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=.三、解答题17.(1)已知数列{a n}的前n项和S n=3n2-2n,求证数列{a n}成等差数列.(2)已知,,成等差数列,求证,,也成等差数列.18.设{a n}是公比为q 的等比数列,且a1,a3,a2成等差数列.(1)求q的值;(2)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n与b n的大小,并说明理由.19.数列{a n}的前n项和记为S n,已知a1=1,a n+1=S n(n=1,2,3…).求证:数列{}是等比数列.20.已知数列{a n}是首项为a且公比不等于1的等比数列,S n为其前n项和,a1,2a7,3a4成等差数列,求证:12S3,S6,S12-S6成等比数列.第二章数列参考答案一、选择题1.C解析:由题设,代入通项公式a n=a1+(n-1)d,即2 005=1+3(n -1),∴n=699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n}的公比为q(q>0),由题意得a1+a2+a3=21,即a1(1+q+q2)=21,又a1=3,∴1+q+q2=7.解得q=2或q=-3(不合题意,舍去),∴a3+a4+a5=a1q2(1+q+q2)=3×22×7=84.3.B.解析:由a1+a8=a4+a5,∴排除C.又a1·a8=a1(a1+7d)=a12+7a1d,∴a4·a5=(a1+3d)(a1+4d)=a12+7a1d+12d2>a1·a8.4.C解析:解法1:设a1=,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m =0中两根之和为2,x2-2x+n=0中两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴d=,a1=,a4=是一个方程的两个根,a1=,a3=是另一个方程的两个根.∴,分别为m或n,∴|m-n|=,故选C.解法2:设方程的四个根为x1,x2,x3,x4,且x1+x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若γ+s=p+q,则aγ+a s=a p+a q,若设x1为第一项,x2必为第四项,则x2=,于是可得等差数列为,,,,∴m=,n=,∴|m-n|=.5.B解析:∵a2=9,a5=243,=q3==27,∴q=3,a1q=9,a1=3,∴S4===120.6.B解析:解法1:由a2 003+a2 004>0,a2 003·a2 004<0,知a2 003和a2 004两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a2 003>a2 004,即a2 003>0,a2 004<0.∴S4 006==>0,∴S4 007=·(a1+a4 007)=·2a2 004<0,故4 006为S n>0的最大自然数. 选B.解法2:由a1>0,a2 003+a2 004>0,a2 003·a2 004<0,同解法1的分析得a2 003>0,a2 004<0,(第6题)∴S2 003为S n中的最大值.∵S n是关于n的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小,∴在对称轴的右侧.根据已知条件及图象的对称性可得4 006在图象中右侧零点B的左侧,4 007,4 008都在其右侧,S n>0的最大自然数是4 006.7.B解析:∵{a n}是等差数列,∴a3=a1+4,a4=a1+6,又由a1,a3,a4成等比数列,∴(a1+4)2=a1(a1+6),解得a1=-8,∴a2=-8+2=-6.8.A解析:∵===·=1,∴选A.9.A解析:设d和q分别为公差和公比,则-4=-1+3d且-4=(-1)q4,∴d=-1,q2=2,∴==.10.C解析:∵{a n}为等差数列,∴=a n-1+a n+1,∴=2a n,又a n≠0,∴a n=2,{a n}为常数数列,而a n=,即2n-1==19,∴n=10.二、填空题11..解析:∵f(x)=,∴f(1-x)===,∴f(x)+f(1-x)=+===.设S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6),则S=f(6)+f(5)+…+f(0)+…+f(-4)+f(-5),∴2S=[f(6)+f(-5)]+[f(5)+f(-4)]+…+[f(-5)+f(6)]=6,∴S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=3.12.(1)32;(2)4;(3)32.解析:(1)由a3·a5=,得a4=2,∴a2·a3·a4·a5·a6==32.(2),∴a5+a6=(a1+a2)q4=4.(3),∴a17+a18+a19+a20=S4q16=32.13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与,同号,由等比中项的中间数为=6,插入的三个数之积为××6=216.14.26.解析:∵a3+a5=2a4,a7+a13=2a10,∴6(a4+a10)=24,a4+a10=4,∴S13====26.15.-49.解析:∵d=a6-a5=-5,∴a4+a5+…+a10===7(a5+2d)=-49.16.5,(n+1)(n-2).解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f(k)=f(k-1)+(k-1).由f(3)=2,f(4)=f(3)+3=2+3=5,f(5)=f(4)+4=2+3+4=9,……f(n)=f(n-1)+(n-1),相加得f(n)=2+3+4+…+(n-1)=(n+1)(n-2).三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1)n=1时,a1=S1=3-2=1,当n≥2时,a n=S n-S n-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5,n=1时,亦满足,∴a n=6n-5(n∈N*).首项a1=1,a n-a n-1=6n-5-[6(n-1)-5]=6(常数)(n∈N*),∴数列{a n}成等差数列且a1=1,公差为6.(2)∵,,成等差数列,∴=+化简得2ac=b(a+c).+=====2·,∴,,也成等差数列.18.解:(1)由题设2a3=a1+a2,即2a1q2=a1+a1q,∵a1≠0,∴2q2-q-1=0,∴q=1或-.(2)若q=1,则S n=2n+=.当n≥2时,S n-b n=S n-1=>0,故S n>b n.若q=-,则S n=2n+ (-)=.当n≥2时,S n-b n=S n-1=,故对于n∈N+,当2≤n≤9时,S n>b n;当n=10时,S n=b n;当n≥11时,S n<b n.19.证明:∵a n+1=S n+1-S n,a n+1=S n,∴(n+2)S n=n(S n+1-S n),整理得nS n+1=2(n+1) S n,所以=.故{}是以2为公比的等比数列.20.证明:由a1,2a7,3a4成等差数列,得4a7=a1+3a4,即4a1q6=a1+3a1q3,变形得(4q3+1)(q3-1)=0,∴q3=-或q3=1(舍).由===;=-1=-1=1+q6-1=;得=.∴12S3,S6,S12-S6成等比数列.。
数列多选题专项训练测试试题及答案
一、数列多选题1.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( ) A .1(1)n n a =+- B .2cos 2n n a π= C .(1)2sin 2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+-- 答案:AC【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.【详解】对于选项A ,取前六项得:,满足条件;对于选项B ,取前六项得:,不满足条件;对于选项C ,取前六项得:,解析:AC【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.【详解】对于选项A ,1(1)n n a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin 2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件;故选:AC2.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0 答案:ABD【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确;故选:ABD.【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题3.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数 B .1(1)1n n a -=-+ C .2sin2n n a π= D .cos(1)1n a n π=-+ 答案:BD【分析】根据选项求出数列的前项,逐一判断即可.【详解】解:因为数列的前4项为2,0,2,0,选项A :不符合题设;选项B :,符合题设;选项C :,不符合题设;选项D :,符合题设解析:BD【分析】根据选项求出数列的前4项,逐一判断即可.【详解】解:因为数列{}n a 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+= 23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin 2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.4.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( )A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =答案:AD【分析】对于,作差后利用等差数列的通项公式运算可得答案;对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案;对于,由求出及解析:AD【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案;对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =.【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确.故选:AD【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.5.已知数列{}2n na n +是首项为1,公差为d 的等差数列,则下列判断正确的是( )A .a 1=3B .若d =1,则a n =n 2+2nC .a 2可能为6D .a 1,a 2,a 3可能成等差数列 答案:ACD【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解【详解】 因为1112a =+,1(1)2nn a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD6.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n = 答案:BCD【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为,由题意,,所以,故A 错误;所以,所以,故B 正确;因为,所以当解析:BCD【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解.【详解】设等差数列{}n a 的公差为d , 由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确;因为()()2211168642n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,所以使得0n S >的最大整数15n =,故D 正确.故选:BCD.7.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列 B .(){}1n-是等方差数列 C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列答案:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正解析:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n -是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2n a 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++, 由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.8.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-答案:AC【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.【详解】等差数列的前项和为.,,,解得,,.故选:AC .【点睛】本题考查等差数列的通项公式求和公解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.9.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列B .数列{}n na 是递增数列C .数列{}n a n是递增数列 D .数列{}3n a nd +是递增数列答案:AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】, ,所以是递增数列,故①正确,,当时,数列不是递增数列,故②不正确,,当时,不是递增数列,故③不正确,,因解析:AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d-<时,数列{}n na 不是递增数列,故②不正确,1n a a d d n n -=+,当10a d -<时,{}n a n不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确, 故选:AD【点睛】本题主要考查了等差数列的性质,属于基础题.10.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( )A .17aB .35SC .1719a a -D .1916S S - 答案:BD【分析】由得,利用可知不正确;;根据可知 正确;根据可知不正确;根据可知正确.【详解】因为,所以,所以,因为公差,所以,故不正确;,故正确;,故不正确;,故正确.故选:BD.解析:BD【分析】由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确.【详解】因为1718S S =,所以18170S S -=,所以180a =,因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确;135********()35235022a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;19161718191830S S a a a a -=++==,故D 正确.故选:BD.【点睛】本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.。
数列试题及答案
数列试题及答案数列是数学中的一种重要概念,通过研究和分析数列可以揭示出其中的规律和特点。
下面将介绍几道常见的数列试题,并给出详细的解答。
1. 试题一已知数列{an}满足an = 3n - 1,求前10项的和Sn。
解答:首先我们可以算出数列的前10项:a1 = 3(1) - 1 = 2a2 = 3(2) - 1 = 5a3 = 3(3) - 1 = 8...a10 = 3(10) - 1 = 29然后求和:Sn = a1 + a2 + a3 + ... + a10= 2 + 5 + 8 + ... + 29观察可知,每一项等于前一项加上3,因此可以利用等差数列的求和公式求解:Sn = (a1 + a10) * 10 / 2= (2 + 29) * 10 / 2= 31 * 5= 155所以,前10项的和Sn = 155。
2. 试题二给定数列{bn}的前4项为1,3,9,27,请写出该数列的通项公式。
解答:观察可知,每一项等于前一项乘以3,因此可以得出该数列的通项公式为:bn = 3^(n-1)其中,n为项数。
根据该公式可求得后续项。
3. 试题三已知数列{cn}满足c1 = 1,c2 = 2,c3 = 4,且每一项等于前两项之和。
求该数列的第10项。
解答:根据题意,数列的第4项开始每一项等于前两项之和:c4 = c3 + c2 = 4 + 2 = 6c5 = c4 + c3 = 6 + 4 = 10c6 = c5 + c4 = 10 + 6 = 16...通过计算可以得出数列的前10项如下:c1 = 1c2 = 2c3 = 4c4 = 6c5 = 10c6 = 16c7 = 26c8 = 42c9 = 68c10 = 110所以,该数列的第10项为c10 = 110。
4. 试题四已知等差数列{dn}的前4项为2,5,8,11,请写出该数列的通项公式,并求第n项。
解答:观察可知,公差为3,首项为2,因此该等差数列的通项公式为:dn = 2 + 3(n-1)其中,n为项数。
数列专题评估测试题及详细答案
数列专题评估测试题[时间120分钟,满分150分]一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为A .7B .8C .9D .16解析 据题意得a n +1=2a n ,所以数列{a n }是等比数列,且公比为2,所以a 4=a 1q 3=23=8.答案 B2.等差数列{a n }的前n 项和为S n ,且a 2 014=S 2 014=2 014,则a 1等于A .-2 011B .-2 012C .-2 013D .-2 014 解析 在等差数列{a n }中,S 2 014=2 014(a 1+a 2 014)2=2 014, 所以a 1+a 2 014=2,故a 1=2-a 2 014=2-2 014=-2 012.答案 B3.(2013·丰台区一模)设S n 为等比数列{a n }的前n 项和,2a 3+a 4=0,则S 3a 1等于 A .2 B .3 C .4 D .5解析 因为2a 3+a 4=a 3(2+q )=0,所以q =-2,则S 3a 1=a 1+a 2+a 3a 1=1+q +q 2=3. 答案 B4.(2013·淄博模拟)如果等差数列{a n }中,a 5+a 6+a 7=15,那么a 3+a 4+…+a 9等于A .21B .30C .35D .40解析 由a 5+a 6+a 7=15得3a 6=15,a 6=5.所以a 3+a 4+…+a 9=7a 6=7×5=35,选C.答案 C5.(2013·福州模拟)已知实数a和c的等差中项为1,a2和c2的等比中项也为1,则a2+c2的值为A.2 B.4 C.3或5 D.2或6解析由题意可知:a+c=2,a2c2=1,即ac=±1,所以a2+c2=(a+c)2-2ac=4±2,所以a2+c2的值为2或6.答案 D6.(2013·张家口模拟)若数列{a n}的前n项和为S n=λa n-λ(λ,a是不为零的常数),则A.{a n}不是等比数列B.{a n}是等比数列C.只有a≠1时{a n}才是等比数列D.{a n}从第二项起才构成等比数列解析a1=S1=λa-λ,当n≥2时,a n=S n-S n-1=(λa n-λ)-(λa n-1-λ)=λa n-1(a-1),故a≠1时,{a n}才是等比数列.答案 C7.已知等差数列{a n}的前n项和为S n,若S1=2,S6S3=3,则S10S5等于A.134 B.154C.4 D.174解析易知a1=S1=2,设等差数列{a n}的公差为d,则S6S3=12+15d6+3d=3,解得d=1,所以S10S5=6520=134.答案 A8.已知等差数列{a n}中,a3=8,a4=4,则{a n}的前n项和S n等于A.有最小值为S5B.有最小值为S4和S5 C.有最大值为S5D.有最大值为S4和S5解析设等差数列{a n}的公差为d,由a3=a1+2d=8,a4=a1+3d=4,解得d=-4,a1=16,故a n=16-4(n-1)=20-4n,令a n≥0,解得n≤5,所以S4=S5最大.答案 D9.(2013·潍坊模拟)在等比数列{a n }中,a 1+a n =34,a 2·a n -1=64,且前n 项和S n =62,则项数n 等于A .4B .5C .6D .7解析 在等比数列中,a 2a n -1=a 1a n =64.又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1(1-q n )1-q =a 1-qa n 1-q =2-32q 1-q=62, 解得q =2.又a n =a 1q n -1,所以2×2n -1=2n =32, 解得n =5.同理当a 1=32,a n =2时,由S n =62,解得q =12,由a n =a 1q n -1=32×⎝ ⎛⎭⎪⎫12n -1=2, 得⎝ ⎛⎭⎪⎫12n -1=116=⎝ ⎛⎭⎪⎫124, 即n -1=4,n =5,综上,项数n 等于5,选B.答案 B10.(2013·烟台一模)若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 013,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为A .2 013·1010B .2 013·1011C .2 014·1010D .2 014·1011解析 由条件知lg a n +1-lg a n =lg a n +1a n=1, 即a n +1a n=10,∴{a n }为公比是10的等比数列. 因为(a 2 001+…+a 2 010)q 10=a 2 011+…+a 2 020,所以a 2 011+…+a 2 020=2013·1010,选A.答案 A11.(2013·兰州模拟)已知公差不为零的等差数列{a n}中,a m+a n=a2+a6,则1m+9n的最小值为A.32B.2 C.138D.不存在解析因为等差数列{a n}的公差不为零,且a m+a n=a2+a6,由等差数列的性质可得m+n=2+6,即m+n=8,则18(m+n)=1,所以1m+9n=18(m+n)⎝⎛⎭⎪⎫1m+9n=18⎝⎛⎭⎪⎫1+9+nm+9mn=54+18⎝⎛⎭⎪⎫nm+9mn≥54+18×2nm·9mn=54+18×2×3=2,当且仅当nm=9mn,即m=2,n=6时,等号成立.答案 B12.已知函数f(n)=n2cos(nπ),且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于A.0 B.-100 C.100 D.10 200 解析因为f(n)=n2cos(nπ),所以a1+a2+a3+…+a100=[f(1)+f(2)+…+f(100)]+[f(2)+…+f(101)]f(1)+f(2)+…+f(100)=-12+22-32+42-…-992+1002=(22-12)+(42-32)+…+(1002-992)=3+7+…+199=50(3+199)2=5 050.f(2)+…+f(101)=22-32+42-…-992+1002-1012=(22-32)+(42-52)+…+(1002-1012)=-5-9-…-201=50(-5-201)2=-5 150,所以a1+a2+a3+…+a100=[f(1)+f(2)+…+f(100)]+[f(2)+…+f(101)]=-5 150+5 050=-100,所以选B.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2013·朝阳区模拟)已知数列1,a,9是等比数列,数列1,b 1,b 2,9是等差数列,则|a |b 1+b 2的值为________.解析 因为1,a,9是等比数列,所以a 2=1×9=9,所以a =±3.1,b 1,b 2,9是等差数列,所以b 1+b 2=1+9=10.所以|a |b 1+b 2=310. 答案 31014.(2013·昆明模拟)已知数列{a n }为等比数列,且a 1a 13+2a 27=5π,则cos(a 2a 12)的值为________. 解析 在等比数列中a 1a 13+2a 27=a 27+2a 27=3a 27=5π,所以a 27=5π3, 所以cos(a 2a 12)=cos(a 27)=cos 5π3=cos π3=12.答案 1215.已知a n =3n +2,把数列{a n }的各项分组如下:{a 1,a 2},{a 3,a 4,a 5,a 6},{a 7,a 8,a 9,a 10,a 11,a 12,a 13,a 14},{a 15,a 16,a 17,…,a 30},…,记A (m ,n )表示第m 组的第n 个数(如A (4,3)表示第4组的第3个数,为a 17),则A (9,7)为________.解析 据题意可知,第m 组有2m 个数,则前8组共有2+22+23+…+28=2(1-28)1-2=29-2=510个数,所以第9组的第7个数是数列{a n }的第517项,即A (9,7)为a 517=3×517+2=1 553.答案 1 55316.在数列{a n }中,对任意n ∈N +,都有a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”.下面对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④通项公式为a n =a ·b n +c (a ≠0,b ≠0,1)的数列一定是等差比数列,其中正确命题的序号为________.解析 ①正确.对于②,当等差数列的公差不为零时,k =1;当等差数列的公差为零时,分母无意义.故②不对.对于③不一定是等差比数列,当等比数列的公比不等于1时,k 等于等比数列的公比;当等比数列的公比等于1时,k 值不存在.故③不对.答案 ①④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2013·济南一模)数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n +1(n ∈N +),等差数列{b n }满足b 3=3,b 5=9.(1)分别求数列{a n },{b n }的通项公式;(2)设c n =b n +2a n +2(n ∈N +),求证:c n +1<c n ≤13. 解析 (1)由a n +1=2S n +1①得a n =2S n -1+1②①-②得a n +1-a n =2(S n -S n -1),∴a n +1=3a n ,∴a n =3n -1,(3分)∴b 5-b 3=2d =6,∴d =3,∴b n =3n -6.(5分)(2)证明 因为a n +2=3n +1,b n +2=3n ,所以c n =3n 3n +1=n 3n ,(7分) 所以c n +1-c n =1-2n 3n +1<0,c n +1<c n <…<c 1=13, 所以c n +1<c n ≤13.(10分)18.(12分)(2013·青岛一模)已知n ∈N +,数列{d n }满足d n =3+(-1)n 2,数列{a n }满足a n =d 1+d 2+d 3+…+d 2n ;数列{b n }为公比大于1的等比数列,且b 2,b 4为方程x 2-20x +64=0的两个不相等的实根.(1)求数列{a n }和数列{b n }的通项公式;(2)将数列{b n }中的第a 1项,第a 2项,第a 3项,…,第a n 项,…删去后剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前2 013项和.解析 (1)∵d n =3+(-1)n 2, ∴a n =d 1+d 2+d 3+…+d 2n =3×2n 2=3n .(3分)因为b 2,b 4为方程x 2-20x +64=0的两个不相等的实数根,所以b 2+b 4=20,b 2·b 4=64,解得:b 2=4,b 4=16,所以b n =2n .(6分)(2)由题知将数列{b n }中的第3项、第6项、第9项…删去后构成的新数列{c n }中的奇数列与偶数列仍成等比数列,首项分别是b 1=2,b 2=4公比均是8,(8分)T 2 013=(c 1+c 3+c 5+…+c 2 013)+(c 2+c 4+c 6+…+c 2 012)=2×(1-81 007)1-8+4×(1-81 006)1-8=20×81 006-67.(12分) 19.(12分)设{a n }是公差大于零的等差数列,已知a 1=2,a 3=a 22-10.(1)求{a n }的通项公式;(2)设{b n }是以函数y =4sin 2πx 的最小正周期为首项,以3为公比的等比数列,求数列{a n -b n }的前n 项和S n .解析 (1)设{a n }的公差为d ,则⎩⎨⎧a 1=2a 1+2d =(a 1+d )2-10,解得d =2或d =-4(舍), 所以a n =2+(n -1)×2=2n .(5分)(2)∵y =4sin 2πx =4×1-cos 2πx 2=-2cos 2πx +2, 其最小正周期为2π2π=1,故首项为1.因为公比为3,从而b n =3n -1,(8分)所以a n -b n =2n -3n -1,(9分) 故S n =(2-30)+(4-31)+…+(2n -3n -1)=(2+2n )n 2-1-3n1-3=n 2+n +12-12·3n .(12分) 20.(12分)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n 2+2n .(1)求数列{a n }的最小值;(2)设b n =2na n ,数列{b n }的前n 项和为S n ,求使S n >256成立的正整数n 的最小值.解析 (1)当n =1时,a 1=1+2=3,当n ≥2时,由a 1+2a 2+3a 3+…+na n =n 2+2n ,①可知a 1+2a 2+3a 3+…+(n -1)a n -1=(n -1)2+2(n -1),②①-②,得na n =n 2+2n -(n -1)2-2(n -1)=2n +1,所以a n =2+1n .(3分)又当n =1时,a 1=2+11=3,故对n ∈N +,a n =2+1n .由于a n +1-a n =⎝ ⎛⎭⎪⎫2+1n +1-⎝⎛⎭⎪⎫2+1n =1n +1-1n =n -(n +1)n (n +1)=-1n (n +1), 且n ∈N +,所以-1n (n +1)<0,即a n +1<a n , 故数列{a n }是单调递减的,故当n =1时,数列{a n }的最大值为a 1=3.(6分)(2)由(1)知,a n =2+1n ,所以b n =22n +1.因为b n +1b n =22(n +1)+122n +1=22n +322n +1=4,是常数, 所以数列{b n }是首项为b 1=8,公比为q =4的等比数列,(8分)则S n =8(1-4n )1-4=83(4n -1), 令83(4n -1)>256,化简可得4n >97.(10分)因为n ∈N +,所以n ≥4,即使S n >256成立的正整数n 的最小值为4.(12分)21.(12分)已知数列{a n }满足a n +1=14a n ,a 1=14,b n +3=2log 14a n .(1)求数列{a n }与数列{b n }的通项公式;(2)设数列{c n }满足c n =a n ·b n ,求数列{c n }的前n 项和S n .解析 (1)因为a n +1=14a n ,a 1=14, 所以数列{a n }是以a 1=14为首项,以q =14为公比的等比数列,故a n =a 1q n -1=14·⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫14n , 即a n =⎝ ⎛⎭⎪⎫14n .(4分) 所以,b n +3=2log 14a n =2log 14⎝ ⎛⎭⎪⎫14n =2n , 即b n =2n -3.(6分)(2)由(1)知c n =a n ·b n =(2n -3)⎝ ⎛⎭⎪⎫14n , 记S n =a 1·b 1+a 2·b 2+…+a n ·b n ,所以S n =-14+⎝ ⎛⎭⎪⎫142+3·⎝ ⎛⎭⎪⎫143+…+(2n -3)·⎝ ⎛⎭⎪⎫14n ,① 于是14S n =-⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+3·⎝ ⎛⎭⎪⎫144+…+(2n -3)·⎝ ⎛⎭⎪⎫14n +1.②(8分) ①-②可得34S n =-14+2·⎝ ⎛⎭⎪⎫142+2·⎝ ⎛⎭⎪⎫143+2·⎝ ⎛⎭⎪⎫144+…+2·⎝ ⎛⎭⎪⎫14n -(2n -3)·⎝ ⎛⎭⎪⎫14n +1 =-14+2×2·⎝ ⎛⎭⎪⎫142⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n -11-14-(2n -3)·⎝ ⎛⎭⎪⎫14n +1=112-⎝ ⎛⎭⎪⎫712+n 2⎝ ⎛⎭⎪⎫14n ,(11分) 所以S n =19-⎝ ⎛⎭⎪⎫79+2n 3⎝ ⎛⎭⎪⎫14n .(12分) 22.(12分)(2013·房山区模拟)已知函数f (x )=x 2-ax +a (x ∈R )同时满足:①函数f (x )有且只有一个零点;②在定义域内存在0<x 1<x 2,使得不等式f (x 1)>f (x 2)成立.设数列{a n }的前n 项和S n =f (n )(n ∈N +).(1)求函数f (x )的表达式;(2)求数列{a n }的通项公式;(3)在各项均不为零的数列{c n }中,所有满足c i ·c i +1<0的整数的个数称为数列{c n }的变号数.令c n =1-a a n,求数列{c n }的变号数. 解析 (1)∵f (x )有且只有一个零点,∴Δ=a 2-4a =0,解得a =0,a =4,当a =4时,函数f (x )=x 2-4x +4在(0,2)上递减,故存在0<x 1<x 2,使得不等式f (x 1)>f (x 2)成立, 当a =0时,函数f (x )=x 2在(0,+∞)上递增, 故不存在0<x 1<x 2,使得不等式f (x 1)>f (x 2)成立, 综上,得a =4,f (x )=x 2-4x +4.(4分)(2)由(1)可知S n =n 2-4n +4,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(n 2-4n +4)-[(n -1)2-4(n -1)+4] =2n -5,∴a n =⎩⎨⎧ 1, n =1,2n -5, n ≥2.(8分)(3)由题设得c n =⎩⎪⎨⎪⎧ -3, n =1,1-42n -5, n ≥2.∵n ≥3时,c n +1-c n =42n -5-42n -3=8(2n -5)(2n -3)>0,∴n ≥3时,数列{c n }递增.∵c 4=-13<0,由1-42n -5>0⇒n ≥5, 可知c 4·c 5<0,即n ≥3时,有且只有1个变号数. 又∵c 1=-3,c 2=5,c 3=-3,即c 1·c 2<0,c 2·c 3<0,∴此处变号数有2个.综上得数列{c n }的变号数为3.(12分)。
高中数学--《数列》测试题(含答案)
高中数学--《数列》测试题(含答案)1.已知等比数列{an}中,a5=4,a7=6,则a9等于()A.7 B.8 C.9 D.10【答案解析】C【考点】等比数列的通项公式.【分析】设等比数列{an}的公比为q,由题意可得q2,由等比数列的通项公式可得a9=a7q2,代入求解可得.【解答】解:设等比数列{an}的公比为q,则q2===,∴a9=a7q2=6×=9故选C【点评】本题考查等比数列的通项公式,属基础题.2.等差数列{an}中,a4+a8=10,a10=6,则公差d等于()A. B. C.2 D.﹣【答案解析】A【考点】等差数列的通项公式.【分析】由已知求得a6,然后结合a10=6代入等差数列的通项公式得答案.【解答】解:在等差数列{an}中,由a4+a8=10,得2a6=10,a6=5.又a10=6,则.故选:A.【点评】本题考查了等差数列的通项公式,考查了等差数列的性质,是基础题.3.+2与﹣2两数的等比中项是()A.1 B.﹣1 C.±1 D.【答案解析】C【考点】等比数列的通项公式.【分析】利用等比中项的定义及其性质即可得出.【解答】解: +2与﹣2两数的等比中项==±1.故选:C.【点评】本题考查了等比中项的定义及其性质,考查了推理能力与计算能力,属于基础题.4.已知数列{an}中,an=3n+4,若an=13,则n等于()A.3 B.4 C.5 D.6【答案解析】A【考点】数列的函数特性;等差数列的通项公式.【分析】由an=3n+4=13,求得n的值即可.【解答】解:由an=3n+4=13,解得 n=3,故选A.【点评】本题主要考查数列的函数特性,属于基础题.5.在各项均为正数的等比数列,若,数列的前项积为,若,则的值为A.4 B.5 C.6 D.7【答案解析】B6.已知等比数列的首项为,公比为,给出下列四个有关数列的命题::如果且,那么数列是递增的等比数列;:如果且,那么数列是递减的等比数列;:如果且,那么数列是递增的等比数列;:如果且,那么数列是递减的等比数列.其中为真命题的个数为A.1 B.2 C.3 D.4【答案解析】C7.等差数列的前项和为,若,则的值A.21 B.24 C.28 D.7【答案解析】C8.等差数列中,若,则的值为A.250 B.260 C.350 D.360D9.等差数列中,若,则等于()A.3 B.4 C.5 D.6【答案解析】C10.在等比数列中,则( )A. B. C. D.【答案解析】A.11.已知数列满足:>0,,则数列{ }是()A. 递增数列B. 递减数列C. 摆动数列D. 不确定【答案解析】B由等比数列的定义可知根据条件>0,可确定数列{ }是等比数列,并且是递减数列.12.在等差数列中,,则此数列前13项的和为()A.36 B.13 C.26 D.52【答案解析】C13.数列前n项的和为()A.B.C.D.B14.已知是等比数列,,则公比=()A B C 2 D【答案解析】D15.数列的一个通项公式是()A.B.C. D.【答案解析】B16.设是等差数列,若,则数列{an}前8项的和为()A.128B.80C.64D.56【答案解析】C17.等比数列{an}中,若a5=5,则a3a7=.A. 5B. 10C. 25D.【答案解析】C18.已知,则数列是( )A.递增数列B.递减数列C.常数列D.摆动数列【答案解析】A19.在等比数列{an}中,an+1<an,a2·a8=6,a4+a6=5,则=________ 【答案解析】20.已知,则数列是( )A.递增数列B.递减数列C.常数列D.摆动数列【答案解析】A。
(完整版)数列单元测试题(含答案)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差等比数列的测试试题
年级姓名
本张试卷由选择题、填空题、解答题组成,一共有20道小题,总共有120分,你需要在100分钟完成。
一、选择题(共有12道习题,每小题5分)
1.在递增的等比数列{a n}中,a1+a n=34,a2a n﹣1=64,且前n项和S n=42,则项数n等于()
A .6 B
.
5 C
.
4 D
.
3
2.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()
A .138 B
.
135 C
.
95 D
.
23
3.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()
A .n(n+1)B
.
n(n﹣1)C
.
D
.
4.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()
A .130 B
.
170 C
.
210 D
.
260
5.等差数列{a n}的通项公式是a n=1﹣2n,其前n项和为S n,则数列{}的前11项和为()
A .﹣45 B
.
﹣50 C
.
﹣55 D
.
﹣66
6.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()
A .B
.
7 C
.
6 D
.
7.已知等比数列{a n}的公比为正数,且a5•a7=4a42,a2=1,则a1=()
A .B
.
C
.
D
.
2
8.知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()
A .2n﹣1B
.
C
.
D
.
9.在等差数列{a n}中,a3=5,a4+a8=22,则{}的前20项和为()
A .B
.
C
.
D
.
10.已知数列,则是它的第()项.
A .19 B
.
20 C
.
21 D
.
22
11.已知数列ln3,ln7,ln11,ln15,…,则2ln5+ln3是该数列的()
A .第16项B
.
第17项C
.
第18项D
.
第19项
12.已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()
A .16 B
.
8 C
.
D
.
4
二、填空题(共4道小题,每小题5分)
13.已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等
于.
14.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比
为.
15.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为.
16.设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值
为.
三、解答题(共4道小题,每小题10分)
17.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.
18.设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设数列的前n项和为T n,求T n.
19.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.
(1)求a n及S n;
(2)令b n=1
a n2-1
(n∈N+),求数列{b n}的前n项和T n.
20.等差数列{a n}中,a2=4,a4+a7=15.
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.。