三相桥式全控整流电路课程设计
三相桥式全控整流电路设计课程设计
三相桥式全控整流电路设计课程设计
三相桥式全控整流电路设计课程设计主要包含以下几个步骤:
1.设计目标:明确设计的目标,如实现直流电压的可控输出、减
小谐波含量、提高系统的功率因数等。
2.电路拓扑:选择三相桥式全控整流电路作为拓扑结构。
3.器件选型:根据设计要求,选择适当的晶闸管、二极管等器
件,并确定其型号和规格。
4.参数计算:根据设计目标,计算电路的输入输出电压、电流、
功率等参数,以及晶闸管的控制角和触发脉冲等参数。
5.仿真分析:利用仿真软件对设计电路进行仿真分析,验证设计
的可行性和正确性。
6.电路板设计:根据仿真分析结果,进行电路板的设计,包括布
局、布线、元件封装等。
7.调试与测试:完成电路板制作后,进行调试和测试,确保电路
正常工作并达到设计目标。
8.总结与优化:总结设计过程中的经验和教训,优化电路设计,
提高系统的性能和可靠性。
在具体的设计过程中,可以根据实际情况进行调整和修改。
同时,需要注意安全问题,确保电路设计和使用过程中的安全可靠。
三相桥式全控整流电路的设计
引言AC/DC变换电路是能够直接将交流电能转换为直流电能的电路,泛称整流电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
三相桥式全控整流电路与三相半波电路相比,输出整流电压提高一倍,输出电压的脉动较小、变压器利用率高且无直流磁化问题。
由于在整流装置中,三相桥电路晶闸管的最大失控时间只为三相半波电路的一半,故控制快速性较好,因而在大容量负载供电、电力拖动控制系统等方面获得广泛的应用。
1 三相桥式全控整流电路的概述1.1 三相桥式全控整流电路的原理图图1-1三相桥式全控整流电路的原理图习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。
此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。
1.2 工作原理和波形分析整流电路的负载为纯电阻负载。
假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。
图1-2三相桥式全控整流电路电阻负载α=0o时波形对于共阴极组的3个晶闸管,阳极所接交流电压值最大的一个导通;对于共阳极组的3个晶闸管,阴极所接交流电压值最低(或者说负得最多)的导通;任意时刻共阳极组和共阴极组中各有1个SCR 处于导通状态。
其余的SCR均处于关断状态。
(完整版)三相桥式全控整流电路课程设计
第1章课程设计目的与要求1.1课程设计目的“电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。
因此,通过电力电子计术的课程设计达到以下几个目的:1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的能力;2)较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。
3)培养独立思考、独立收集资料、独立设计的能力;4)培养分析、总结及撰写技术报告的能力。
1.2课程设计的预备知识熟悉电力电子技术课程、电机学课程的相关知识。
1.3 课程设计要求1、单相桥式相控整流的设计要求为:负载为感性负载,L=700mH,R=500欧姆.2、技术要求:1)、电源电压:交流100V/50Hz2)、输出功率:500W3)、移相范围0º~90º按课程设计指导书提供的课题,根据基本要求及参数独立完成设计。
第2章课程设计方案的选择2.1整流电路单相相控整流电路可分为单相半波、单相全波和单相桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。
而负载性质又分为带电阻性负载、电阻-电感性负载和反电动势负载时的工作情况。
单相桥式全控整流电路(电阻-电感性负载)电路简图如下:TLu(a)图2.1此电路对每个导电回路进行控制,与单相桥式半控整流电路相比,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
单相全控桥式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
单相全控桥式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半,且功率因数提高了一半。
根据以上的分析,我选择的方案为单相全控桥式整流电路(负载为电阻-电感性负载)。
三相桥式全控整流电路课程设计
电力电子技术课程设计说明书三相桥式全控整流电路系、部: 电气与信息工程系专业: 自动化目录第1章绪论 01、电子技术的发展趋势 02、本人的主要工作 (2)第2章主电路的设计及原理 (2)1、总体框图 (3)2、主电路的设计原理 (3)2、1带电阻负载时 (4)2、2阻感负载时 (6)3、触发电路 (7)4、保护电路 (7)5、参数计算 (8)5、1 整流变压器的选择 (8)5、2 晶闸管的选择 (9)5、3 输出的定量分析 (9)第3章MATLAB的仿真 (10)1、MATLAB仿真软件的简介 (10)2、仿真模拟图 (10)3、仿真结果 (10)第4章结束语 (11)参考文献 (11)第1章绪论1、电子技术的发展趋势当今世界能源消耗增长十分迅速。
目前,在所有能源中电力能源约占40%,而电力能源中有40%就是经过电力电子设备的转换才到使用者手中。
预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。
电力电子技术就是利用电力电子器件对电能进行控制与转换的学科。
它包括电力电子器件、变流电路与控制电路三个部分,就是电力、电子、控制三大电气工程技术领域之间的交叉学科。
随着科学技术的发展,电力电子技术由于与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。
电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)与高新技术产业(例如:航天、现代化通信等)。
下面着重讨论电力电子技术在电力系统中的一些应用。
在高压直流输电(HVDC)方面的应用直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。
三相桥式全控整流电路的工作原理课设
BKP1KP3KP5KP4KP6KP2Ra b cu 图1 三相桥式全控整流电路ωtωtωta b c a b uu 00uu三相桥式全控整流电路的工作原理三相桥式全控整流原理电路结构如图1所示。
三相桥式全控整流电路是应用最广泛的整流电路,完整的三相桥式整流电路由整流变压器、6个桥式连接的晶闸管、负载、触发器和同步环节组成(见图1-1)。
6个晶闸管以次相隔60度触发,将电源交流电整流为直流电。
三相桥式整流电路必须采用双脉冲触发或宽脉冲触发方式,以保证在每一瞬时都有两个晶闸管同时导通(上桥臂和下桥臂各一个)。
整流变压器采用三角形/星形联结是为了减少3的整倍次谐波电流对电源的影响。
元件的有序控制,即共阴极组中与a 、b 、c 三相电源相接的三个晶闸管分别为VT1、VT3、VT5,共阳极组中与a 、b 、c 三相电源相接的三个晶闸管分别为 VT 、VT 。
它们可构成电源系统对负载供电的6条整流回路,各整流回路的交流电源电压为两元件所在的相间的线电压。
图1-1 三相桥式全控整流原理电路在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。
由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。
很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。
为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a 相,晶闸管KP3和KP6接b 相,晶管KP5和KP2接c 相。
晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。
为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就是在自然换相点触发换相时的情况。
图1是电路接线图。
为了分析方便起见,把一个周期等分6段(见图2)。
在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6被触发导通。
三相桥式全控整流电路设计
1 主电路的设计与原理说明1.1 主电路图图1-1中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)为共阳极组。
晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。
此主电路要求带反电动势负载,此反电动势E=60V ,电阻R=10Ω,电感L 无穷大使负载电 流连续。
其原理如图1所示。
图1-1 三相桥式全控整理电路原理图1.2 主电路原理为说明此原理,假设将电路中的晶闸管换作二极管,这种情况就也就相当于晶闸管触发角α=0o 时的情况。
此时,对于共阴极组的三个晶闸管,阳极所接交流电压值最高的一个导通。
而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。
这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。
α=0o 时,各晶闸管均在自然换相点处换相。
由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。
在分析d u 的波形时,既可从相电压波形分析,也可以从线电压波形分析。
从相电压波形看,以变压器二次侧的中点n 为参考点,共阴极组晶闸管导通时,整流输出电压 1d u 为相电压在正半周的包络线;共阳极组导通时,整流输出电压2d u 为相电压在负半周的包络线,总的整流输出电压d u =1d u -2d u 是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。
从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压 d u 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压d u 波形为线电压在正半周的包络线。
三相桥式全控整流电路课程设计报告
三相桥式全控整流电路课程设计报告目录一、课程概述 (2)1. 课程背景与目的 (2)2. 课程设计任务及要求 (4)二、三相桥式全控整流电路基本原理 (4)1. 三相桥式整流电路结构 (6)1.1 电路组成及工作原理 (7)1.2 电路特点分析 (8)2. 三相桥式全控整流电路工作原理 (9)2.1 触发脉冲的控制 (10)2.2 整流过程的分析 (12)三、电路设计 (14)1. 电路主要参数计算 (15)1.1 输入参数设定 (17)1.2 输出参数计算 (18)1.3 散热设计考虑 (19)2. 电路元器件选择与配置 (20)2.1 整流器件的选择依据 (22)2.2 滤波电容的选择方法 (23)2.3 其他元器件的选择及布局设计 (24)四、仿真分析与实验验证 (26)1. 仿真分析 (27)1.1 仿真模型建立 (28)1.2 仿真结果分析 (29)2. 实验验证过程介绍及结果分析 (30)一、课程概述本课程设计旨在帮助学生深入理解和掌握三相桥式全控整流电路的基本原理、结构特点和工作过程,培养学生分析问题和解决问题的能力。
通过对三相桥式全控整流电路的设计与实现,使学生在理论知识与实际操作相结合的基础上,提高自己的专业素养和实践能力。
课程背景介绍:简要介绍三相桥式全控整流电路的发展历程、应用领域及其在现代电力系统中的重要性。
课程目标设定:明确本课程设计的目标,包括理论知识的学习和实际应用能力的培养。
课程内容安排:详细阐述本课程设计的主要内容,包括三相桥式全控整流电路的基本原理、结构特点、工作原理及参数计算等。
课程实验与测试:通过实验和测试,验证所学理论知识的正确性,培养学生的实际操作能力和团队协作精神。
课程总结与反思:对本课程设计的过程进行总结,分析存在的问题和不足,并提出改进措施,为今后的学习和工作打下坚实的基础。
1. 课程背景与目的随着现代电力电子技术的飞速发展,整流电路在各个领域的应用越来越广泛。
三相全控整流电路课程设计
三相全控整流电路课程设计一、课程目标知识目标:1. 学生能够理解三相全控整流电路的基本原理和组成。
2. 学生能够掌握三相全控整流电路的电路图及其工作过程。
3. 学生能够解释三相全控整流电路中各元件的作用及其相互关系。
技能目标:1. 学生能够运用所学知识,正确绘制并分析三相全控整流电路。
2. 学生能够通过实验操作,验证三相全控整流电路的输出波形及其特点。
3. 学生能够解决实际应用中与三相全控整流电路相关的问题,具备一定的电路分析与设计能力。
情感态度价值观目标:1. 培养学生对电力电子技术领域的兴趣,激发他们的求知欲和探索精神。
2. 培养学生严谨的科学态度,注重实验操作的安全性和准确性。
3. 培养学生的团队协作精神,学会与他人共同分析问题、解决问题。
课程性质:本课程为电子技术专业课程,以理论教学和实践操作相结合的方式进行。
学生特点:学生已具备一定的电子技术基础,具有较强的逻辑思维能力和动手能力。
教学要求:结合课程性质、学生特点,本课程要求学生在掌握理论知识的基础上,注重实践操作,培养实际应用能力。
通过课程学习,使学生在知识、技能和情感态度价值观方面均取得具体的学习成果。
后续教学设计和评估将围绕这些具体学习成果展开。
二、教学内容本课程教学内容主要包括以下三个方面:1. 三相全控整流电路基本原理- 介绍三相交流电源及其特点- 三相全控整流电路的工作原理- 三相全控整流电路的组成及各元件功能教学内容关联教材章节:第三章第三节“三相全控整流电路”2. 三相全控整流电路分析与设计- 电路图绘制及电路参数计算- 输出电压和电流波形的分析- 三相全控整流电路的触发角度与输出电压关系教学内容关联教材章节:第三章第四节“三相全控整流电路的分析与设计”3. 实践操作与实验- 三相全控整流电路的搭建与调试- 观察不同触发角度下的输出波形- 分析实验数据,验证理论分析结果教学内容关联教材章节:第三章实验“三相全控整流电路实验”教学进度安排:第一周:基本原理学习,电路组成和元件功能介绍第二周:电路分析与设计,触发角度与输出电压关系探讨第三周:实践操作与实验,观察与分析实验现象,总结实验结果三、教学方法为了提高教学质量,充分调动学生的学习兴趣和主动性,本章节将采用以下多样化的教学方法:1. 讲授法:- 对于三相全控整流电路的基本原理、组成和元件功能等理论知识点,采用讲授法进行教学。
三相桥式全控晶闸管整流电路设计
《电力电子技术》三相桥式全控晶闸管整流电路目录一设计要求 (1)1.1概述 (1)1.2设计要求 (1)二小组成员任务分工........................................................................ 错误!未定义书签。
三三相全控桥式主电路原理分析 (2)3.1总体结构 (2)3.2主电路的分析与设计 (2)3.1.1整流变压器的设计原理 (2)3.1.2变压器参数计算与选择 (3)3.3触发电路的分析与设计 (4)3.3.1触发电路的选择 (4)3.3.2 TC787芯片介绍 (4)3.4电路原理图 (6)3.5主电路工作原理 (7)3.6晶闸管保护电路的分析与设计 (7)3.6.1晶闸管简介 (7)3.6.2保护电路 (7)3.6.3晶闸管对电网的影响 (8)3.6.4晶闸管过流保护电路设计 (8)四仿真模型搭建及参数设置 (10)4.1主电路的建模及参数设置 (10)4.2控制电路的建模与仿真 (11)五仿真调试 (14)六设计心得........................................................................................ 错误!未定义书签。
一设计要求1.1概述首先我们要设计出整体的电路分别包括主电路,触发电路以及晶闸管保护电路。
主电路运用的是整流电路。
整流电路是电力电子电路中经常用的一种电路,它将交流电转变为直流电。
这里要求设计的主电路为三相全控桥式晶闸管整流电路。
整流电路将交流电网中的交流电转变成直流电,但为了保护晶闸管正常工作,需要围绕晶闸管设计触发电路、过电压和过电流保护电路。
因此我们可以设计出整体的程序框图之后按照框图进行接下来的电路设计。
三相全控桥式晶闸管整流电路需要使用交流、直流和触发信号,而且还存在电容和电感等非线性元件,如果采用传统的方法,分析和运算都非常繁琐。
三相桥式全控整流电路课程设计
第一章三相全控整流电路简介在电力系统中,电压和电流应是完好的正弦波.但是在实际的电力系统中,由于非线性负载的影响,实际的电网电压和电流波形总是存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题,因而就有必要采取措施限制其对电网和其它设备的影响。
随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染.电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变.目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机凋速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景.相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高谐谐波约占总谐波源的70%以上。
为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位.这种整流器称为高功率因数变流器或高功率因数整流器.高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。
对电流型整流器,可直接对各个电力半导休器件的通断进行PWM调制,使输入电流成为撸近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。
对电压型整流器,需要将整流器通过电抗器与电源相连。
只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是掺近于1。
本设计主要对与PWM整流器相关的功率开关器件、主电路拓扑结构和控制方式等进行详细说明,在此基础上时PWM整流技术的发展方向加以探讨。
第二章主电路原理及其工作特点2.1 主电路原理主电路原理图如图2-1所示,将图中上方阴极连接在一起的3个晶闸管称为共阴极组;图中下方阳极连接在一起的3个晶闸管称为共阳极组。
三相桥式全控整流电路课程设计
1 绪论1.1设计目的1、通过对三相桥式电路的设计,掌握整流电路的工作原理,提高我们的运用科学理论知识能力、工程实践能力2、通过系统建模和仿真,掌握和运用MATLAB/SIMULINK工具分析系统的基本方法。
1.2设计意义电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)和高效利用能源均至关重要。
我国目前仍旧是一个发展中的国家,尚处于前工业化阶段,传统产业仍然是我国国民经济的主力军,因此在近期或在较长一段时期内,传统产业的改造和发展将在很大程度上决定着我国经济的发展。
而电力、机械、冶金、石油、化工、交通运输是传统产业的重要支柱,这些产业技术水平的高低直接关系到我国工业基础的强弱。
毫无疑问,电力电子技术是提高这些产业技术水平的重要手段,它是对我国传统产业实现技术改造、建立自动化工业体系的关键应用技术。
下面就电力电子技术在国民经济各部门的应用进行简要讨论。
概括起来说,电力电子技术主要应用于电机调速传动、工业供电电源、电力输配电和照明四大方面。
自20世纪50年代末开始,电力电子技术在应用需求的推动下迅速发展成一门崭新的技术。
可以预见,在21世纪,电力电子技术在现代化社会的建设中的应用将起着重要作用并得到飞跃性的发展。
晶闸管在整流电路中充当一个非常重要的角色,本次设计采用的主要器件就是晶闸管。
2 设计总体思路2.1设计思路三相桥式全控整流电路的功能是将三相交流电能变为直流电能供给直流用电设备。
三相桥式全控整流电路可分为三部分电路模块:主电路模块,触发电路模块,保护电路模块。
主电路模块,主要由三组两串联晶闸管并联而成。
触发电路模块组成为,3个KJ004集成块和1个KJ041集成块,可形成流露双脉冲,再由六个晶体管进行脉冲放大。
保护电路模块有过电流保护,过电压保护。
2.2 基本原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。
三相桥式全控整流电路
变压器次级容量为:
﹙公式7﹚
变压器初级容量为:
﹙公式8﹚
变压器容量为:
﹙公式9﹚
即:
变压器参数归纳如下:初级绕组三角形接法 , ;次级绕组星形接法, , ;容量选择为9.46989kW。
2.2.2晶闸管的选择
⑴晶闸管的额定电压
由三相全控桥式整流电路的波形(图2-4)分析知,晶闸管最大正、反向电压峰值均为变压器二次线电压峰值
电容C1接在V5的基极和集电极之间,组成电容负反馈的锯齿波发生器。在V4导通时,C1经V4、VD3迅速放电。当V4截止时,电流经(+15V-R6-C1-R22-RP1-(-15V))对C1充电,形成线性增长的锯齿波,锯齿波的斜率取决于流过R22、RP1的充电电流和电容C1的大小。根据V4导通的情况可知,在同步电压正、负半周均有相同的锯齿波产生,并且两者有固定的相位关系。
5.1 MATLAB建模………………………………………………………………16
5.2 MATLAB仿真………………………………………………………………18
5.3仿真结构分析……………………………………………………………19
课程设计体会………………………………………………………………………21
1原理及方案
对同步电压要求低,有脉冲列调制输出端等功能与特点。原理图如下:
图3-1 KJ004的电路原理图
3.2 KJ004的工作原理
如图3-1 KJ004的电路原理图所示,点划框内为KJ004的集成电路部分,它与分立元件的同步信号为锯齿波的触发电路相似。V1~V4等组成同步环节,同步电压uS经限流电阻R20加到V1、V2基极。在uS的正半周,V1导通,电流途径为(+15V-R3-VD1-V1-地);在uS负半周,V2、V3导通,电流途径为(+15V-R3-VD2-V3-R5-R21―(―15V))。因此,在正、负半周期间。V4基本上处于截止状态。只有在同步电压|uS|<0.7V时,V1~V3截止,V4从电源十15V经R3、R4取得基极电流才能导通。
三相桥式全控整流电路的设计
电力电子技术课程设计报告不可逆直流电力拖动系统中三相桥式全控整流电路的设计姓名陈营学号200909140317年级03班专业电气工程及其自动化系(院)汽车学院指导教师齐延兴2011年12月24日一、引言整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路, 不仅用于一般工业, 也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域. 因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义, 这不仅是电力电子电路理论学习的重要一环, 而且对工程实践的实际应用具有预测和指导作用. 因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。
二、设计任务2.1.1 课程设计目的1、培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养综合分析问题、发现问题和解决问题的能力。
3、通过对不可逆直流电力拖动系统中三相桥式全控整流电路的设计,掌握三相桥式全控整流电路的工作原理,综合运用所学知识,三相桥式全控整流电路和系统设计的能力4、培养运用知识的能力和工程设计的能力。
5、提高课程设计报告撰写水平。
2.1.2 课程设计指标内容及要求三相桥式全控整流电路设计要求:(1)电网:380V,50HZ;(2)直流电机额定功率17KW,额定电压220V,额定电流90A,额定转速1500r/min.(3)变压器漏感:0.5Mh2.1.3 设计的步骤⑴根据给出的技术要求,确定总体设计方案⑵选择具体的元件,进行硬件系统的设计⑶进行相应的电路设计,完成相应的功能⑷进行调试与修改⑸撰写课程设计说明书三、设计方案选择及论证3.1三相半波可控整流电路特点:阻感负载,L值很大,i d波形基本平直:a≤30°时:整流电压波形与电阻负载时相同;a >30°时(如a=60°时的波形如图2-16所示)u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,由VT2导通向负载供电,同时向VT1施加反压使其关断——u d波形中出现负的部分阻感负载时的移相范围为90°。
三相桥式全控整流电路课程设计
电力电子技术课程设计说明书三相桥式全控整流电路系、部:电气与信息工程系专业:自动化目录第1章绪论 (1)1. 电子技术的发展趋势 (1)2. 本人的主要工作 (2)第2章主电路的设计及原理 (3)1. 总体框图 (3)2. 主电路的设计原理 (3)2.1带电阻负载时 (4)2.2阻感负载时 (7)3. 触发电路 (8)4. 保护电路 (9)5. 参数计算 (10)5.1 整流变压器的选择 (10)5.2 晶闸管的选择 (11)5.3 输出的定量分析 (11)第3章MATLAB的仿真 (13)1. MATLAB仿真软件的简介 (13)2. 仿真模拟图 (13)3. 仿真结果 (13)第4章结束语 (16)参考文献 (17)第1章绪论1. 电子技术的发展趋势当今世界能源消耗增长十分迅速。
目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。
预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。
电力电子技术是利用电力电子器件对电能进行控制和转换的学科。
它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。
随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。
电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)和高新技术产业(例如:航天、现代化通信等)。
下面着重讨论电力电子技术在电力系统中的一些应用。
在高压直流输电(HVDC)方面的应用直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。
电力电子三相桥式全控整流电路课程设计
电力电子三相桥式全控整流电路课程设计三相桥式全控整流电路的设计摘要:整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
关键词:整流变压触发过电压保护电路。
1前言整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
把交流电变换成大小可调的单一方向直流电的过程称为可控整流。
整流器的输入端一般接在交流电网上。
为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1. 绪论 (1)2. 主电路设计及原理 (2)2.1总体框架图 (2)2.2三相桥式全控整流电路的原理 (2)2.3 实验内容 (5)3. 单元电路设计 (7)3.1 主电路 (7)3.2 触发电路 (7)3.3 保护电路 (8)3.4 硬件电路PCB版图 (11)3.4.1 顶层视图 (11)3.4.2 底层视图 (12)3.4.3 顶层覆盖图 (12)3.4.4 3D视图 (13)4 .电路分析与仿真 (14)4.1 带电阻负载的波形分析 (14)4.2 三相桥式全控整流电路定量分析 (16)4.2.1 仿真模型图 (19)4.2.2 仿真实验结论 (19)5. 结论 (20)6. 参考文献 (22)7. 附录 (23)第一章绪论整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
把交流电变换成大小可调的单一方向直流电的过程称为可控整流。
整流器的输入端一般接在交流电网上。
为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。
由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。
以上负载往往要求整流能输出在一定范围内变化的直流电压。
为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。
第二章主电路设计及原理2.1 总体框架图交流源±220V主变压器触发脉冲主电路保护电路图2.1总体框架图2.2 三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。
一般1、3、5为共阴极,2、4、6为共阳极。
(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。
(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60︒。
2)共阴极组VT1、VT3、VT5的脉冲依次差120︒,共阳极组VT4、VT6、VT2也依次差120︒。
3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180 。
(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。
(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。
三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。
在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。
6 个晶闸管导通的顺序是按 VT6 –VT1 → VT1 –VT2 → VT2 –VT3 → VT3 –VT4 → VT4 –VT5 → VT5 –VT6 依此循环,每隔60 °有一个晶闸管换相。
为了保证在任何时刻都必须有两个晶闸管导通,采用了双脉冲触发电路,在一个周期内对每个晶闸管连续触发两次,两次脉冲前沿的间隔为60 °。
三相桥式全控整流电路原理图如右图所示。
三相桥式全控整流电路用作有源逆变时,就成为三相桥式逆变电路。
由整流状态转换到逆变状态必须同时具备两个条件:一定要有直流电动势源,其极性须和晶闸管的导通方向一致,其值应稍大于变流器直流侧的平均电压;其次要求晶闸管的 a >90 °,使 U d 为负值。
三相桥式全控整流电路原理图2.3 实验内容⒈ 接线在实验装置断电的情况下,按三相桥式全控整流及有源逆变电路实验线路图及接线图进行接线。
图中的可调电阻器 R p ,选用 MEL ﹣ 03 中的其中一组可调电阻器并联, R p 的初始电阻值应调到最大值。
⒉ 触发电路调试将 MCL ﹣ 32 电源控制屏的电源开关拨向“开”的位置,接通控制电路电源﹙红色指示灯亮﹚。
⑴ 检查晶闸管的触发脉冲是否正常。
用示波器观察 MCL ﹣ 33 脉冲观察孔“ 1 ” ~“ 6 ” ,应有相互间隔 60 o ,幅度相同的双脉。
⑵ 用示波器观察每只晶闸管的控制极、阴极,应有幅度为 1V ﹣ 2V 的脉冲。
⑶ 调节 MCL ﹣ 31 的给定电位器 RP1 使 U g = 0V ,然后调节偏移电压 U b 使 a = 150 o ,逐渐调节给定电压 U g ,观察触发脉冲移相范围是否满足 a =30 °~150 °。
⒊ 三相桥式全控整流电路⑴ 调节 MCL ﹣ 31 的给定电位器 RP1 使 U g = 0V 。
⑵ 将主电路开关 S1 拨向左边短接线端接通电阻负载,将 R d 调至最大值(450 W ) 。
⑶ 按下 MCL ﹣ 32 电源控制屏的“闭合”按钮,接通主电路电源﹙绿色指示灯亮﹚。
⑷ 调节 MCL ﹣ 31 的给定电位器 RP1 使 a =90 °,用示波器观察记录整流电路输出电压 U d =f ( t )以及晶闸管两端电压 U VT =f ( t )的波形。
采用类似方法,分别观察记录 a =30 °、 a =60 °时 U d =f ( t )、 U VT =f ( t )的波形。
⒋ 三相桥式有源逆变电路⑴ 调节 MCL ﹣ 31 的给定电位器 RP1 使 U g = 0V 。
⑵ 按 MCL ﹣ 32 电源控制屏的“断开”按钮,切断主电路电源﹙红色指示灯亮﹚,将主电路开关 S1 拨向右边的不可控整流桥接线端,将 R d 调至最大值 (450 W ) 。
⑶ 按下 MCL ﹣ 32 电源控制屏的“闭合”按钮,接通主电路电源﹙绿色指示灯亮﹚。
⑷ 调节 MCL ﹣ 31 的给定电位器 RP1 ,使 a =90 °,用示波器观察记录逆变电路输出电压 U d =f ( t )以及晶闸管两端电压 U VT =f ( t )的波形。
采用类似方法,分别观察记录 a =120 °、 a =150 °时 U d =f ( t )、 U VT =f ( t )的波形。
五.实验报告⒈ 绘制三相桥式全控整流电路控制角 a 为30 ° 、60 ° 、90 °时 U d =f ( t )、 U VT =f ( t )波形。
⒉ 绘制三相桥式有源逆变电路控制角 a 为90 ° 、120 ° 、150 °时 Ud =f ( t )、 U VT =f ( t )波形。
⒊ 简述通过实验的心得体会及建议。
三相桥式全控整流及有源逆变电路实验线路图及接线图第三章单元电路设计3.1 主电路主电路为带电阻负载的三相桥式电路,用protel绘制如下所示:图3.1主电路图3.2 触发电路触发脉冲的宽度应保证晶闸管开关可靠导通(门极电流应大于擎柱电流),触发脉冲应有足够的幅度,不超过门极电压、电流和功率,且在可靠触发区域之内,应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离晶闸管可控整流电路,通过控制触发角a的大小即控制触发脉冲起始相位来控制输出电压大小。
为保证相控电路正常工作,很重要的是应保证按触发角a的大小在正确的时刻向电路中的晶闸管施加有效的触发脉冲。
晶闸管相控电路,习惯称为触发电路。
大、中功率的变流器广泛应用的是晶体管触发电路,其中以同步信号为锯齿波的触发电路应用最多。
可靠性高,技术性能好,体积小,功耗低,调试方便。
晶闸管触发电路的集成化已逐渐普及,已逐步取代分立式电路。
此处就是采用集成触发产生触发脉冲。
KJ004组成分为同步、锯齿波形成、移相、脉冲形成、脉冲分选及脉冲放大几个环节。
KJ004触发电路为模拟的触发电路,其组成为:3个KJ004集成块和1个KJ041集成块,可形成六路双脉冲,再由六个晶体管进行脉冲放大,即可得到完整的三相全控桥触发电路, 用protel绘制的完整触发电路如下所示:图3.2.2完整触发电路图3.3 保护电路我们不可能从根本上消除生产过程过电压的根源,只能设法将过电压的副值抑制到安全限度之内,这是过电压保护的基本思想。
抑制过电压的方法不外乎三种:用非线性元件限制过电压的副度,用电阻消耗生产过电压的能量,用储能元件吸收生产过电压的能量。
对于非线性元件,不是额定电压小,使用麻烦,就是不宜用于抑制频繁出现过电压的场合。
所以我们选用用储能元件吸收生产过电压的能量的保护。
使用RC吸收电路,这种保护可以把变压器绕组中释放出的电磁能量转化为电容器的电场能量储存起来。
由于电容两端电压不能突变,所以能有效抑制过电压,串联电阻消耗部分产生过电压的能量,并抑制LC回路的震动。
如图3.3.1图3.3.1 RC吸收电路(1)晶闸管的过电压保护晶闸管的过电压能力比一般的电器元件差,当它承受超过反向击穿电压时,也会被反向击穿而损坏。
如果正向电压超过管子的正向转折电压,会造成晶闸管硬开通,不仅使电路工作失常,且多次硬开关也会损坏管子。
因此必须抑制晶闸管可能出现的过电压,常采用简单有效的过电压保护措施。
对于晶闸管的过电压保护可参考主电路的过电压保护,我们使用阻容保护,电路图如图3.3.2图3.3.2 阻容保护电路(2)晶闸管的过电流保护在整流中造成晶闸管过电流的主要原因是:电网电压波动太大负载超过允许值,电路中管子误导通以及管子击穿短路等。
所以我们要设置保护措施,以避免损害管子。
常见的过电流保护有:快速熔断器保护,过电流继电器保护,限流与脉冲移相保护,直流快速开关过电流保护。
快速熔断器保护是最有效,使用最广泛的一种保护措施;快速熔断器的接法有三种:桥臂串快熔,这是一种最直接可靠的保护;交流侧快熔,直流侧快熔,这两种保护接法虽然简单,但保护效果不好。
过电流继电器保护中过电流继电器开关时间长(约几百毫秒)只有在短路电流不大时才有用。
限流与脉冲移相保护电路保护比较复杂。