教案-基于DMC运动控制卡的运动控制系统设计及实现20110411
运动控制系统的课程设计
运动控制系统的课程设计一、课程目标知识目标:1. 学生能理解运动控制系统的基本概念、组成和分类。
2. 学生能掌握运动控制系统中常见传感器的原理和应用。
3. 学生能描述运动控制系统的执行机构工作原理及其特点。
4. 学生了解运动控制算法的基本原理,如PID控制、模糊控制等。
技能目标:1. 学生具备运用所学知识分析和解决实际运动控制问题的能力。
2. 学生能设计简单的运动控制系统,并进行仿真实验。
3. 学生能熟练使用相关软件和工具进行运动控制系统的调试与优化。
情感态度价值观目标:1. 学生培养对运动控制系统相关技术的兴趣,激发学习热情。
2. 学生养成合作、探究的学习习惯,培养团队协作精神。
3. 学生认识到运动控制系统在工程实际中的应用价值,增强社会责任感。
课程性质:本课程为电子信息工程及相关专业高年级学生的专业课程,旨在帮助学生掌握运动控制系统的基本原理、设计方法和实际应用。
学生特点:学生已具备一定的电子、电气和控制系统基础,具有较强的学习能力和实践操作能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调学生的动手能力和创新能力培养。
通过本课程的学习,使学生具备运动控制系统设计、调试和应用的能力。
教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
二、教学内容1. 运动控制系统概述- 运动控制系统的基本概念、组成和分类- 运动控制系统的发展及应用领域2. 运动控制系统传感器- 常见运动控制传感器的工作原理、特性及应用- 传感器的选型及接口技术3. 执行机构- 电动伺服电机、步进电机、液压气动执行机构的工作原理及特点- 执行机构的控制策略及性能分析4. 运动控制算法- PID控制算法原理及其在运动控制中的应用- 模糊控制、神经网络等其他先进控制算法介绍5. 运动控制系统设计- 系统建模、控制器设计及仿真- 硬件在环(HIL)仿真与实验- 运动控制系统调试与优化6. 运动控制系统实例分析- 分析典型运动控制系统的设计过程及解决方案- 案例教学,培养学生的实际操作能力教学内容安排与进度:- 第1周:运动控制系统概述- 第2-3周:运动控制系统传感器- 第4-5周:执行机构- 第6-7周:运动控制算法- 第8-9周:运动控制系统设计- 第10周:运动控制系统实例分析教材章节关联:本课程教学内容与教材中第3章“运动控制系统”相关内容相衔接,涵盖第3章中的3.1-3.5节。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 理解运动控制系统的概念和组成2. 掌握运动控制系统的分类和原理3. 了解运动控制系统在实际应用中的重要性二、教学内容1. 运动控制系统的概念和组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类和原理2.1 模拟运动控制系统2.2 数字运动控制系统2.3 位置控制、速度控制和加速度控制3. 运动控制系统在实际应用中的重要性3.1 运动控制系统在工业生产中的应用3.2 运动控制系统在技术中的应用3.3 运动控制系统在自动驾驶技术中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。
2. 案例分析法:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。
3. 讨论法:组织学生探讨运动控制系统的发展趋势和挑战,培养学生的创新思维和问题解决能力。
四、教学资源1. 教材:《运动控制系统》2. 多媒体课件:PPT、动画、视频等3. 网络资源:相关论文、案例、新闻报道等五、教学评价1. 课堂参与度:评估学生在课堂讨论、提问等方面的积极性。
2. 课后作业:布置相关练习题,评估学生对运动控制系统知识的理解和掌握程度。
3. 小组项目:组织学生团队合作完成一个运动控制系统的应用案例,评估学生的实践能力和问题解决能力。
六、教学安排1. 课时:共计32课时,每课时45分钟2. 教学计划:第1-4课时:运动控制系统的概念和组成第5-8课时:运动控制系统的分类和原理第9-12课时:运动控制系统在实际应用中的重要性第13-16课时:运动控制系统的的发展趋势和挑战七、教学步骤1. 引入:通过一个实际应用案例,引出运动控制系统的重要性,激发学生的学习兴趣。
2. 讲解:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。
3. 案例分析:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。
运动控制教学设计方案
一、教学目标1. 让学生了解运动控制的基本概念、原理和方法。
2. 培养学生运用运动控制理论分析和解决实际问题的能力。
3. 提高学生的体育素养,增强体质,培养良好的运动习惯。
二、教学内容1. 运动控制的基本概念、原理和方法2. 运动控制的应用领域3. 运动控制技术在实际运动中的运用三、教学过程1. 导入新课教师简要介绍运动控制的概念,引导学生思考运动控制的重要性,激发学生的学习兴趣。
2. 讲解运动控制的基本原理教师详细讲解运动控制的基本原理,包括运动控制系统的组成、运动控制过程、运动控制规律等。
3. 运动控制技术的讲解与示范教师选取具有代表性的运动控制技术,如跑步、跳跃、投掷等,进行详细讲解和示范,使学生掌握运动控制技术的要领。
4. 学生练习与指导教师组织学生进行运动控制技术的练习,巡回指导,纠正错误动作,确保学生掌握正确的运动控制方法。
5. 运动控制技术应用案例分析教师选取具有代表性的运动控制技术应用案例,如运动康复、运动训练等,分析案例中运动控制技术的运用,提高学生的实际应用能力。
6. 总结与反思教师总结本节课所学内容,引导学生反思运动控制技术在体育领域的应用,激发学生对运动控制知识的深入探索。
四、教学评价1. 学生对运动控制基本概念、原理和方法的掌握程度。
2. 学生在运动控制技术练习中的表现,包括动作的正确性、协调性、灵活性等。
3. 学生在案例分析中的思考深度和实际应用能力。
五、教学资源1. 教材:《运动控制学》2. 教学课件:运动控制基本原理、技术应用案例等3. 实物教具:运动器材、运动场地等4. 网络资源:相关教学视频、文献资料等六、教学反思在教学过程中,教师应关注学生的个体差异,因材施教。
针对不同层次的学生,调整教学策略,提高教学质量。
同时,教师应不断更新教学内容,紧跟体育领域的发展趋势,为学生提供丰富的学习资源。
通过本课程的学习,使学生掌握运动控制知识,提高自身运动能力,为今后的学习和生活奠定坚实基础。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常用传感器、执行器和控制器。
3. 学会分析运动控制系统的原理和应用。
4. 能够运用运动控制系统知识解决实际问题。
二、教学内容1. 运动控制系统的概念及组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素1.3 运动控制系统的分类2. 运动控制系统的常用传感器2.1 速度传感器2.2 位置传感器2.3 力传感器2.4 加速度传感器3. 运动控制系统的执行器3.1 电动机3.2 液压执行器3.3 气动执行器3.4 步进执行器4. 运动控制系统的控制器4.1 开环控制器4.2 闭环控制器4.3 模糊控制器4.4 神经网络控制器三、教学方法1. 讲授法:讲解运动控制系统的概念、原理和特点。
2. 案例分析法:分析运动控制系统的应用实例。
3. 实验法:进行运动控制系统的实验操作。
4. 小组讨论法:探讨运动控制系统相关问题。
四、教学重点与难点1. 教学重点:运动控制系统的概念、组成、原理及应用。
2. 教学难点:运动控制系统的传感器、执行器和控制器的选择与配置。
五、教学课时本课程共48课时,其中理论教学32课时,实验教学16课时。
教案内容请根据实际教学需求进行调整和补充。
希望这份教案能对您的教学有所帮助!如有其他问题,请随时联系。
六、教学过程1. 引入:通过生活中的运动控制实例,如智能家居中的窗帘自动打开、关闭,引出运动控制系统的基本概念。
2. 讲解:详细讲解运动控制系统的概念、组成和作用,以及常用传感器、执行器和控制器的工作原理及应用。
3. 案例分析:分析典型的运动控制系统应用实例,如、数控机床等,让学生了解运动控制系统在实际工程中的应用。
4. 实验操作:安排实验室实践环节,让学生动手操作运动控制系统,加深对理论知识的理解。
5. 总结:对本次课程内容进行总结,强调运动控制系统在现代工业中的重要性。
七、教学评价1. 平时成绩:考察学生在课堂上的表现,如发言、提问等。
基于运动控制卡的控制系统的设计与实现 Design and implementation
基金颁发部门:国家自然科学基金委;项目名称:宽谱XCT 的投影数据模拟以及投影数据校正方法的研究;编号:60551003;基金申请人:牟轩沁,邓振生;备注:本论文是基金项目中仪器设备研究科目:"控制X线机双能量曝光的控制设备"的控制方法研究之一。
基于运动控制卡的控制系统的设计与实现 Design and implementation of motion control systembased on motion control card柳叶青1,*邓振生1,陈真诚1,牟轩沁2LIU Ye-qing1, DENG Zhen-sheng, CHEN Zhen-cheng, MOU Xuan-qin2(1.中南大学信息物理工程学院生物医学工程研究所,湖南 长沙 410083;2.西安交通大学电子与信息工程学院图像处理与模式识别研究所,陕西 西安 710049)(1.Institute of Biomedical Engineering, School of Info-Physic and Geomatic Engineering, Central South University, Changsha, Hunan, 410083, China; 2. Institute of Image Processing and Pattern Recognition, The School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China)摘 要:本文介绍了一个基于多轴运动控制卡的运动控制系统。
该系统以工控计算机、通用操作系统、PCI-8134多轴运动控制卡及其功能库函数为平台,采用VC++开发的人机界面,实现了三轴(X,Y,Z轴)独立运动、各个轴的连续直线运动以及梯形加减速运动等功能。
运动控制系统教案
运动控制系统教案教案标题:运动控制系统教案教案目标:1. 了解运动控制系统的基本概念和原理。
2. 掌握运动控制系统的组成和工作流程。
3. 能够应用所学知识设计和实现简单的运动控制系统。
教学重点:1. 运动控制系统的基本概念和原理。
2. 运动控制系统的组成和工作流程。
3. 运动控制系统的应用设计和实现。
教学难点:1. 运动控制系统的组成和工作流程。
2. 运动控制系统的应用设计和实现。
教学准备:1. 教学资料:PPT、教科书、实验设备等。
2. 实验设备:运动控制器、电机、传感器等。
教学过程:Step 1: 引入(5分钟)- 通过展示一段机器人或自动化设备的运动控制系统的视频,引起学生对运动控制系统的兴趣,并提出问题:“你知道运动控制系统是如何实现的吗?”Step 2: 知识讲解(15分钟)- 介绍运动控制系统的基本概念和原理,包括运动控制的定义、运动控制系统的作用和分类等。
- 解释运动控制系统的组成,包括执行器、传感器、控制器和通信网络等。
- 讲解运动控制系统的工作流程,包括采集反馈信号、运算控制指令和输出控制信号等。
Step 3: 实例分析(20分钟)- 通过实例分析,展示不同应用场景下的运动控制系统,如工业机器人、CNC 机床等。
- 分析实例中运动控制系统的组成和工作流程,以及各个组成部分的功能和作用。
Step 4: 设计与实现(30分钟)- 分组进行小组讨论,要求学生设计一个简单的运动控制系统,如控制一个小车的运动。
- 引导学生思考系统需要的组成部分和工作流程,并让他们用所学知识设计和实现该系统。
Step 5: 总结与展望(10分钟)- 总结运动控制系统的基本概念、组成和工作流程。
- 展望运动控制系统在未来的应用前景,并鼓励学生继续深入学习和研究。
教学延伸:1. 鼓励学生进行更复杂的运动控制系统设计和实现,如机器人的运动轨迹规划和控制等。
2. 组织学生参观相关企业或实验室,了解实际运动控制系统的应用和发展。
运动控制系统 教案
运动控制系统教案教案标题:运动控制系统教案目标:1. 了解运动控制系统的基本概念和组成要素。
2. 理解运动控制系统在不同实际应用中的作用。
3. 掌握运动控制系统的设计和调试方法。
教案内容:一、引入(5分钟)1. 引导学生思考:你们平时在生活中见过哪些运动控制系统?2. 介绍运动控制系统的定义和基本概念。
二、运动控制系统的组成要素(15分钟)1. 介绍运动控制系统的基本组成要素,包括传感器、执行器、控制器等。
2. 分别解释各个组成要素的作用和功能。
三、运动控制系统的实际应用(20分钟)1. 介绍运动控制系统在工业自动化、机器人、航空航天等领域的应用案例。
2. 引导学生思考:为什么运动控制系统在这些领域中非常重要?四、运动控制系统的设计和调试方法(25分钟)1. 介绍运动控制系统的设计流程,包括需求分析、系统设计、硬件选型等。
2. 介绍运动控制系统的调试方法,包括参数调整、信号采集与分析等。
五、小结与展望(5分钟)1. 总结本节课学到的内容。
2. 展望运动控制系统在未来的发展前景。
教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度。
2. 课堂讨论:评估学生对于运动控制系统的理解和应用能力。
3. 小组作业:布置小组作业,要求学生设计一个简单的运动控制系统,并在下节课展示。
教学资源:1. PPT演示文稿:用于呈现教学内容和案例分析。
2. 实物展示:准备一些实际的运动控制系统设备或模型,供学生观摩和实践。
教学延伸:1. 实践应用:组织学生参观工厂或实验室,了解运动控制系统的实际应用。
2. 拓展阅读:推荐学生阅读相关的专业书籍或论文,深入了解运动控制系统的发展和研究方向。
备注:根据不同教育阶段的要求,可以适当调整教案的深度和难度。
以上教案适用于高中或大学相关专业的教学。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的分类及其原理。
3. 熟悉运动控制系统的应用领域和发展趋势。
4. 培养学生对运动控制系统的兴趣和创新能力。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的功能2. 运动控制系统的分类开环运动控制系统闭环运动控制系统混合运动控制系统3. 运动控制系统的原理位置控制原理速度控制原理力控制原理4. 运动控制系统的应用领域工业数控机床电动汽车航空航天5. 运动控制系统的发展趋势智能化网络化绿色化三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和应用。
2. 案例分析法:分析具体运动控制系统的实例,加深学生对运动控制系统的理解。
3. 讨论法:引导学生探讨运动控制系统的发展趋势及其在我国的应用前景。
4. 实践操作法:安排实验室参观或动手实践,让学生亲身体验运动控制系统的工作原理。
四、教学安排1. 第1-2课时:运动控制系统概述2. 第3-4课时:运动控制系统的分类和原理3. 第5-6课时:运动控制系统的应用领域4. 第7-8课时:运动控制系统的发展趋势5. 第9-10课时:实验室参观或实践操作五、教学评价1. 课堂问答:检查学生对运动控制系统基本概念的理解。
2. 课后作业:巩固学生对运动控制系统知识的掌握。
3. 小组讨论:评估学生在探讨运动控制系统发展过程中的创新能力。
4. 实践报告:评价学生在实验室参观或实践操作中的表现。
六、教学资源1. 教材:《运动控制系统》2. 课件:运动控制系统的基本概念、原理、应用和趋势3. 视频资料:运动控制系统的实际应用案例4. 实验室设备:的运动控制系统实验装置5. 网络资源:关于运动控制系统的相关论文和新闻七、教学过程1. 导入:通过一个运动控制系统的实际应用案例,引发学生对运动控制系统的兴趣。
2. 讲解:结合教材和课件,详细讲解运动控制系统的基本概念、原理、应用和趋势。
运动控制系统教学教案
运动控制系统教学教案一、教学目标1. 让学生了解运动控制系统的概念、组成和作用。
2. 使学生掌握运动控制系统的常用传感器、执行器和控制器。
3. 培养学生运用运动控制系统解决实际问题的能力。
二、教学内容1. 运动控制系统的概念及其组成1.1 运动控制系统的定义1.2 运动控制系统的组成:传感器、执行器、控制器等。
2. 运动控制系统的分类及应用2.1 位置控制2.2 速度控制2.3 加速度控制3. 常用传感器3.1 光电传感器3.2 磁电传感器3.3 编码器4. 常用执行器4.1 电动机4.2 液压执行器4.3 气动执行器5. 控制器及其算法5.1 PID控制器5.2 模糊控制器5.3 神经网络控制器三、教学方法1. 采用讲授法,讲解运动控制系统的相关概念、原理和应用。
2. 利用示例和实物展示,使学生更好地理解运动控制系统的工作原理。
3. 开展小组讨论,引导学生分析实际问题,并提出解决方案。
4. 利用仿真软件,让学生动手调试和优化运动控制系统。
四、教学资源1. 教材:运动控制系统相关教材。
2. 课件:运动控制系统的基本原理、结构和应用。
3. 示例:运动控制系统的实际应用场景。
4. 仿真软件:运动控制系统仿真实验。
五、教学评价1. 课堂问答:检查学生对运动控制系统基本概念的理解。
2. 小组讨论:评估学生在解决实际问题时的分析和创新能力。
3. 实验报告:评估学生在运动控制系统仿真实验中的操作和优化能力。
4. 期末考试:全面测试学生对运动控制系统的掌握程度。
六、教学重点与难点教学重点:运动控制系统的组成及其功能常用传感器、执行器和工作原理控制器的基本算法和应用教学难点:运动控制系统的建模与仿真控制器算法的选择与优化实际应用中可能遇到的复杂性问题七、教学安排1. 课时:本课程共计32课时,每课时45分钟。
2. 教学计划:第1-4课时:运动控制系统概述第5-8课时:常用传感器及其应用第9-12课时:执行器的工作原理与选用第13-16课时:控制器的基础算法第17-20课时:运动控制系统的建模与仿真第21-24课时:运动控制系统的实际应用案例分析第25-28课时:综合实验与实践第29-32课时:课程总结与拓展学习八、教学过程1. 导入:通过生活中的运动控制实例,如智能家居中的窗帘自动调节,引出运动控制系统的基本概念。
运动控制系统教学教案
运动控制系统教学教案一、教学目标1. 让学生了解运动控制系统的概念、组成和作用。
2. 使学生掌握运动控制系统的关键技术和应用领域。
3. 培养学生运用运动控制系统解决实际问题的能力。
二、教学内容1. 运动控制系统的概念与组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的关键技术与应用领域2.1 位置控制技术2.2 速度控制技术2.3 力控制技术2.4 运动控制系统的应用领域三、教学方法1. 采用讲授法,讲解运动控制系统的相关理论知识。
2. 利用案例分析法,分析运动控制系统的应用实例。
3. 开展小组讨论,让学生探讨运动控制系统在实际工程中的应用。
四、教学准备1. 准备相关教材、课件和教学视频。
2. 准备运动控制系统的实物模型或图片。
3. 准备案例分析所需的相关资料。
五、教学过程1. 导入新课:简要介绍运动控制系统的重要性,激发学生的学习兴趣。
2. 讲解运动控制系统的概念与组成:讲解运动控制系统的定义,介绍其组成要素,如执行器、控制器、传感器等。
3. 分析运动控制系统的关键技术与应用领域:讲解位置控制技术、速度控制技术和力控制技术,并举例说明其在实际应用中的重要性。
4. 案例分析:分析运动控制系统在工业、数控机床等领域的应用实例,让学生深入了解运动控制系统的实际作用。
5. 小组讨论:让学生围绕运动控制系统在实际工程中的应用展开讨论,分享自己的见解。
6. 总结与反思:总结本节课所学内容,让学生思考运动控制系统在未来的发展趋势和应用前景。
7. 布置作业:让学生结合所学内容,完成相关练习题,巩固知识点。
六、教学评估1. 课堂提问:通过提问了解学生对运动控制系统基本概念的理解程度。
2. 作业批改:检查学生对运动控制系统知识点的掌握情况。
3. 小组讨论评价:评估学生在小组讨论中的参与程度和思考深度。
七、教学拓展1. 介绍运动控制系统的最新研究动态,如智能运动控制系统、无线运动控制系统等。
运动控制教学设计教案模板
课程名称:运动控制系统授课对象:本科自动化专业学生课时安排:共4课时教学目标:1. 使学生掌握运动控制的基本概念、原理和方法。
2. 培养学生运用运动控制理论解决实际问题的能力。
3. 增强学生的团队协作和创新能力。
教学重点:1. 运动控制的基本概念和原理。
2. 运动控制系统的设计与实现。
3. 运动控制应用案例分析。
教学难点:1. 运动控制系统设计与实现中的关键技术。
2. 运动控制应用案例分析中的创新思维。
教学准备:1. 教师准备:多媒体课件、实验设备、相关教材。
2. 学生准备:预习教材相关内容,准备实验报告。
教学过程:一、导入(1课时)1. 引入话题:介绍运动控制技术在工业、军事、航天等领域的应用,激发学生学习兴趣。
2. 提出问题:什么是运动控制?运动控制系统有哪些特点?3. 教师讲解:简要介绍运动控制的基本概念、原理和发展历程。
二、运动控制基本概念与原理(1课时)1. 教师讲解:运动控制系统的基本组成、功能及特点。
2. 教师讲解:运动控制系统的基本原理,如PID控制、模糊控制、神经网络控制等。
3. 学生讨论:针对不同控制方法,分析其优缺点。
三、运动控制系统设计与实现(1课时)1. 教师讲解:运动控制系统设计的基本步骤和方法。
2. 教师讲解:运动控制系统中的关键技术,如电机驱动、传感器、执行器等。
3. 学生分组:每组设计一个简单的运动控制系统,并进行实现。
四、运动控制应用案例分析(1课时)1. 教师讲解:运动控制技术在工业、军事、航天等领域的应用案例。
2. 学生分组:每组选取一个应用案例,分析其运动控制系统设计、实现及效果。
3. 学生汇报:各组展示自己的案例分析成果,教师点评。
课后作业:1. 深入学习教材相关内容,了解运动控制系统的最新发展。
2. 完成实验报告,总结实验过程中的心得体会。
教学评价:1. 学生对运动控制基本概念、原理的掌握程度。
2. 学生在运动控制系统设计与实现中的实践能力。
3. 学生在运动控制应用案例分析中的创新思维。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常见类型及其原理。
3. 学会分析运动控制系统的性能指标。
4. 能够运用运动控制系统的基本原理解决实际问题。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的应用领域2. 运动控制系统的类型模拟运动控制系统数字运动控制系统单片机运动控制系统计算机运动控制系统3. 运动控制系统的原理位置控制原理速度控制原理加速度控制原理4. 运动控制系统的性能指标稳态性能指标动态性能指标系统误差指标5. 运动控制系统的硬件组成控制器执行器反馈元件辅助元件三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和性能指标。
2. 案例分析法:分析实际运动控制系统的应用案例,加深学生对运动控制系统的理解。
3. 实验法:安排实验室实践环节,让学生亲自动手操作运动控制系统。
4. 小组讨论法:分组讨论运动控制系统的设计和优化方法。
四、教学资源1. 教材:《运动控制系统》2. 课件:运动控制系统的图片、图表、动画等。
3. 实验室设备:运动控制系统实验装置。
4. 网络资源:相关学术论文、企业案例等。
五、教学评价1. 平时成绩:课堂表现、作业、实验报告等。
2. 考试成绩:期末考试,包括选择题、填空题、计算题和论述题。
3. 实践能力:实验室操作运动控制系统的表现。
4. 综合素质:小组讨论、课堂提问、问题解答等。
六、教学安排1. 课时:本课程共计32课时,包括16次课堂讲授,8次实验操作,8次小组讨论。
2. 授课方式:课堂讲授与实验操作相结合,小组讨论与个人作业相辅相成。
3. 进度安排:按照教材和课件内容,依次讲解各个章节,安排实验和小组讨论。
七、实验环节1. 实验目的:通过实际操作,让学生深入了解运动控制系统的原理和应用。
2. 实验内容:包括运动控制系统的搭建、调试和性能测试。
八、小组讨论1. 讨论主题:运动控制系统的设计与优化。
运动控制系统课程设计算
运动控制系统课程设计算一、教学目标本课程的教学目标是使学生掌握运动控制系统的基本原理、方法和应用。
具体包括:1.知识目标:学生能够理解运动控制系统的概念、组成、工作原理和分类,掌握常用的运动控制算法和策略,了解运动控制系统在工程中的应用。
2.技能目标:学生能够运用运动控制系统的基本原理和方法解决实际问题,具备分析和设计运动控制系统的的能力。
3.情感态度价值观目标:学生能够认识运动控制系统在现代工业和日常生活中的重要性,培养对运动控制技术的兴趣和热情,提高创新意识和团队合作能力。
二、教学内容本课程的教学内容主要包括:1.运动控制系统的基本概念、组成和分类。
2.运动控制系统的数学模型和分析方法。
3.常用的运动控制算法和策略,如PID控制、模糊控制、神经网络控制等。
4.运动控制系统的仿真和实验,包括硬件设备和软件工具的使用。
5.运动控制系统在工程中的应用案例。
三、教学方法为了达到本课程的教学目标,将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握运动控制系统的基本概念、原理和算法。
2.案例分析法:通过分析实际应用案例,使学生了解运动控制系统在工程中的应用和设计方法。
3.实验法:通过实验操作,使学生熟悉运动控制系统的硬件设备和软件工具,培养学生的动手能力。
4.讨论法:通过分组讨论和课堂讨论,激发学生的思考和创造力,提高团队合作能力。
四、教学资源为了支持本课程的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用《运动控制系统》作为主教材,提供系统的理论知识。
2.参考书:推荐《运动控制工程》等参考书籍,为学生提供更多的学习资料。
3.多媒体资料:制作课件和教学视频,以图文并茂的形式展示运动控制系统的原理和应用。
4.实验设备:准备运动控制实验平台和相关设备,为学生提供实践操作的机会。
五、教学评估本课程的教学评估将采用多种方式,以全面、客观地评价学生的学习成果。
具体包括:1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和课堂表现。
运动控制系统综合课程设计
运动控制系统综合课程设计一、设计目标本次综合课程设计的目标是通过设计一个运动控制系统,提高学生的软件开发能力和物理仿真能力,让学生能够熟练掌握运动控制系统的原理和工作方式,并能够独立设计和开发控制系统。
二、设计内容本次综合课程设计的主要内容包括物理仿真实验和软件开发实验。
1. 物理仿真实验本次物理仿真实验的目的是让学生了解运动控制系统的工作原理和调试方法。
学生需要完成以下实验内容:•使用实物模型,模拟电机控制系统的工作过程。
•修改电路参数,改变电机的运动轨迹和速度。
•调试控制系统,优化零点转换参数,提高系统控制精度。
2. 软件开发实验本次软件开发实验的目的是让学生熟练掌握运动控制系统的软件开发技术,掌握面向对象编程和硬件控制技术。
学生需要完成以下实验内容:•设计控制系统的软件结构和模块划分,并编写控制系统的控制程序。
•使用硬件和软件辅助工具(如逻辑分析仪和仿真器等),调试控制程序。
•集成控制程序和物理仿真系统,测试整个控制系统的工作情况。
三、设计流程本次综合课程设计的流程如下:1.确定运动控制系统的需求和规格,包括控制目标、运动参数和控制精度等。
2.设计控制系统的软件结构,划分系统模块和设计程序框架。
3.设计控制系统的硬件结构,包括模拟电路、数字电路和传感器等。
4.编写控制系统的控制程序,实现运动控制以及数据读写功能。
5.使用辅助工具(逻辑分析仪、仿真器等)进行调试,优化控制程序。
6.集成控制程序和物理仿真系统,测试整个控制系统。
四、设计工具和材料1. 设计工具•编程语言:C/C++、Python、Java等。
•操作系统:Windows、Linux等。
•集成开发环境(IDE):Visual Studio、Eclipse、CodeBlocks等。
•仿真软件:Proteus、LTSpice等。
2. 设计材料•电机模型•微控制器•电路元器件(电阻、电容、二极管、晶体管等)•传感器(光电传感器、旋转编码器等)五、设计注意事项•在设计过程中,需要遵循坚持理论与实践相结合的原则,同时注意掌握好时间和资源的分配。
运动控制系统教学教案
运动控制系统教学教案一、教学目标1. 让学生了解运动控制系统的概念、组成和作用。
2. 使学生掌握运动控制系统的核心技术和应用领域。
3. 培养学生的动手实践能力和团队协作精神。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的分类2. 运动控制系统的核心技术与原理位置控制技术速度控制技术力控制技术3. 运动控制系统的应用领域工业数控机床电动汽车生物医疗设备4. 运动控制系统的硬件组成控制器执行器传感器5. 运动控制系统的软件设计与编程软件设计流程编程语言与工具程序调试与优化三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和应用。
2. 案例分析法:分析实际应用中的运动控制系统案例,加深学生对知识的理解。
3. 实验法:引导学生动手实践,培养实际操作能力。
4. 小组讨论法:分组讨论问题,培养团队合作精神。
四、教学准备1. 教材:运动控制系统相关教材。
2. 课件:制作精美的课件,辅助教学。
3. 实验设备:运动控制系统实验装置。
4. 编程软件:运动控制系统编程软件。
五、教学评价1. 课堂表现:考察学生的出勤、发言、讨论等参与程度。
2. 课后作业:布置相关练习题,检验学生对知识的掌握。
3. 实验报告:评估学生在实验过程中的操作技能和问题解决能力。
4. 期末考试:全面测试学生的运动控制系统知识水平和应用能力。
六、教学安排1. 课时:本课程共32课时,包括16次课,每次2课时。
2. 授课方式:理论课与实验课相结合,各占一半课时。
3. 授课顺序:先讲解基本概念和原理,进行案例分析,进行实验操作。
七、教学案例1. 案例一:工业关节运动控制学习目标:了解工业的运动控制系统及其编程。
案例内容:分析工业的关节运动控制原理,学习相关编程指令。
2. 案例二:数控机床速度控制学习目标:掌握数控机床的速度控制方法。
案例内容:探讨数控机床速度控制的技术要点,分析实际应用中的问题。
八、实验环节1. 实验一:运动控制系统基本原理验证实验目的:验证运动控制系统的原理和功能。
运动控制系统教学设计
运动控制系统教学设计引言随着工业自动化程度的不断提高和机器人技术的快速发展,运动控制系统的设计和应用变得越来越重要。
因此,在当前的教育环境中,进行运动控制系统的教学具有重要的意义。
在本文中,我们将探讨如何设计一套有效的运动控制系统教学方案,以帮助学生更好地理解运动控制系统的原理和技术。
教学目标运动控制系统教学的核心目标是让学生掌握运动控制系统的基本原理和技术,能够设计和实现基本的运动控制系统。
具体来说,教学目标包括:•掌握运动控制系统的基本原理•掌握运动控制系统的组成和结构•掌握运动控制系统的常见传感器和执行器•掌握运动控制系统的常见控制算法和方法•能够设计和实现简单的运动控制系统教学内容运动控制系统的基本原理•运动控制系统的定义和分类•运动控制系统的组成和结构•运动控制系统的基本框图和流程图运动控制系统的传感器和执行器•运动控制系统中常见的传感器和执行器•传感器的分类和原理•执行器的分类和原理运动控制系统的控制算法和方法•运动控制系统的PID控制算法•运动控制系统的模糊控制算法•运动控制系统的神经网络控制算法•运动控制系统的迭代学习控制算法运动控制系统的设计和实现•运动控制系统的硬件设计•运动控制系统的软件设计•运动控制系统的实现和调试教学方法为了实现上述教学目标和内容,我们需要采用一系列的教学方法,包括:讲授课程和技术原理在教学中,老师需要对运动控制系统的基本原理和技术进行讲授,以帮助学生建立起相应的知识框架和理论模型,为学生后续的实践活动提供必要的理论支撑。
案例分析和实验实践在教学中,老师需要引入各种运动控制系统设计的案例,并引导学生进行分析和讨论,以帮助学生深入理解运动控制系统的工作原理和设计方法。
同时,还可以组织实验室实践活动,让学生亲手实验和调试运动控制系统,加深学生的理论和实践能力。
互动讨论和小组合作在教学中,老师可以采用互动讨论和小组合作的教学方法,激发学生的学习兴趣,提高学生的学习积极性。
运动控制系统课程设计指导书2011
运动控制系统(电力拖动自动控制系统)课程设计指导书成都大学电子信息工程学院自动化系2011年4月前言1、运动控制系统课程设计的目的与任务运动控制系统课程设计是运动控制系统(电力拖动自动控制系统)课程教学的一个环节,任务是通过课程设计使学生掌握运动控制系统设计(综合)的基本方法(工程设计方法),掌握调速系统工程设计的具体步骤和方法。
2、课程设计基本内容及要求本课程设计包括运动控制系统的工程设计方法、直流调速系统的设计和控制参数计算、调试系统和参数分析三部份内容。
要求掌握对调速系统进行测试和分析、操作和调试的基本方法、步骤和基本操作技能,具备对控制系统的调试和故障分析的能力。
设计说明书应对整个设计过程有清晰的说明, 包括设计过程说明、主回路设计说明、控制电路设计说明、调试说明,以及设计计算公式、计算数据、设计图表等内容。
3、适用专业本课程设计适用自动化专业,电气工程及自动化专业。
4、考核方式课程设计的考核成绩由平时成绩、设计计算和设计报告(包括设计测试)叁部分组成。
5、本课程设计指导书适用于“运动控制系统”或“电力拖动自动控制系统”等相关课程。
6、本课程设计指导书根据学校实验室配置的教学实验装置和专业教学要求编写。
谭健敏2011年4月一.课程设计任务1.1 课程设计题目采用工程设计方法设计转速电流双闭环直流调压调速系统。
1.2 课程设计的内容1)对被控直流电动机的参数进行测定;2)主回路设计;3)根据指标设计调速系统的调节器, 并选择各环节参数;4)按设计结果组成系统,在实验室用实验系统进行调试;5)研究参数变化对系统性能的影响;1.3 课程设计的主要技术参数1.3.1闭环控制系统性能要求1)调速范围D=5;2)静差率 s ≤5%;3)起动时电流超调量σi ≤5%;4)在额定转速时的转速超调量σn ≤10%;5)动态速降≤10%;6)振荡次数≤2次;7)控制参数:R0=40/30/20/10kΩ; U*n = U*i = Uct = 10V;8)电流过载倍数λ=1.5。
运动控制系统课程设计
电机控制技术
详细介绍直流电机、交流电机以 及步进电机等不同类型的电机控 制方法,包括速度控制、位置控 制以及力矩控制等。
传感器与检测技术
阐述运动控制系统中常用的传感 器类型,如编码器、陀螺仪等, 以及它们在系统中的作用和应用 。
学生作品展示与评价
01
作品一
基于PID控制的直流电机调速系统。该系统实现了对直流电机的精确速
智能化发展
随着人工智能技术的不断发展,未来的运 动控制系统将更加智能化,能够实现自适
应控制、自主学习等功能。
多轴协同控制
未来的运动控制系统将实现多轴协同控制 ,能够同时控制多个电机或执行器,提高
系统的整体性能。
高精度控制
随着传感器技术和控制算法的不断进步, 未来的运动控制系统将实现更高精度的控 制,满足高端装备制造等领域的需求。
04
传感器与执行器技术及应用
传感器与执行器概述
传感器定义
01
将非电量转换为电量输出的装置,用于测量和控制系统。
执行器定义
02
将控制信号转换为机械运动的装置,用于实现系统控制目标。
传感器与执行器在控制系统中的作用
03
提供反馈信号和执行控制指令,保证系统稳定性和性能。
常见传感器类型及工作原理
温度传感器
典型运动控制系统分析
直流电机运动控制系统
通过控制直流电机的电枢电压或电枢电流,实现对电机转 速和转向的控制。具有调速范围广、控制精度高等优点, 但存在换向火花等问题。
步进电机运动控制系统
通过控制步进电机的脉冲信号,实现对电机转角和转速的 控制。具有定位精度高、控制灵活等优点,但存在失步等 问题。
交流电机运动控制系统
直流电机驱动技术
运动控制系统教学教案
运动控制系统教学教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常见类型及其工作原理。
3. 熟悉运动控制系统的主要应用领域和发展趋势。
4. 培养学生的动手实践能力和团队协作精神。
二、教学内容1. 运动控制系统的概念与组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素1.3 运动控制系统的作用2. 运动控制系统的常见类型2.1 模拟式运动控制系统2.2 数字式运动控制系统2.3 混合式运动控制系统3. 运动控制系统的工作原理3.1 模拟式运动控制系统的工作原理3.2 数字式运动控制系统的工作原理3.3 混合式运动控制系统的工作原理4. 运动控制系统的主要应用领域4.1 工业自动化领域4.2 领域4.3 交通运输领域4.4 生物医学领域5. 运动控制系统的发展趋势5.1 智能化发展趋势5.2 网络化发展趋势5.3 模块化发展趋势5.4 高效能发展趋势三、教学方法1. 讲授法:讲解运动控制系统的概念、组成、类型、工作原理等基本知识。
2. 案例分析法:分析运动控制系统的实际应用案例,加深学生对运动控制系统的理解。
3. 讨论法:组织学生探讨运动控制系统的发展趋势,培养学生的创新思维。
4. 实践操作法:安排实验室实践活动,让学生动手操作,提高实际操作能力。
四、教学资源1. 教材:运动控制系统相关教材。
2. 实验室设备:运动控制系统实验设备。
3. 网络资源:相关学术论文、企业案例等。
五、教学评价1. 平时成绩:考察学生的课堂表现、讨论参与度等。
2. 实验报告:评估学生在实验室实践活动的成果。
3. 期末考试:测试学生对运动控制系统的全面理解掌握程度。
六、教学安排1. 课时:本课程共32课时,其中理论课时24课时,实验课时8课时。
2. 教学安排:第1-8课时:讲述运动控制系统的概念与组成第9-16课时:介绍运动控制系统的常见类型及其工作原理第17-24课时:分析运动控制系统的主要应用领域和发展趋势第25-32课时:实验室实践活动及总结七、教学步骤1. 引入新课:通过相关案例引出运动控制系统的基本概念。
运动控制系统教学教案
运动控制系统教学教案一、教学目标1. 让学生了解运动控制系统的概念、组成和作用。
2. 使学生掌握运动控制系统的常见类型及特点。
3. 培养学生运用运动控制系统知识解决实际问题的能力。
二、教学内容1. 运动控制系统的概念与组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的常见类型及特点2.1 开环运动控制系统2.2 闭环运动控制系统2.3 混合运动控制系统3. 运动控制系统的应用实例3.1 运动控制系统3.2 数控机床运动控制系统3.3 电动汽车运动控制系统三、教学方法1. 讲授法:讲解运动控制系统的概念、组成、类型及应用。
2. 案例分析法:分析具体运动控制系统的实例,让学生深入了解原理及应用。
3. 讨论法:组织学生讨论运动控制系统在不同领域的应用及优缺点。
四、教学准备1. 教案、课件及教学素材。
2. 相关领域的实际案例资料。
3. 讨论话题及问题。
五、教学过程1. 引入:介绍运动控制系统在现代工业及日常生活中的应用,激发学生的兴趣。
2. 讲解:详细讲解运动控制系统的概念、组成、类型及应用。
3. 案例分析:分析具体运动控制系统的实例,让学生深入了解原理及应用。
4. 讨论:组织学生讨论运动控制系统在不同领域的应用及优缺点。
5. 总结:对本节课内容进行总结,强调运动控制系统的重要性和应用价值。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对运动控制系统基本概念的理解。
3. 小组讨论:评估学生在小组讨论中的参与程度和问题解决能力。
七、教学拓展1. 介绍运动控制系统在最新的技术发展中的应用,如、智能制造等。
2. 探讨运动控制系统在未来的发展趋势和挑战。
八、教学反思1. 评估学生对运动控制系统知识的掌握程度,反思教学效果。
2. 根据学生反馈调整教学方法和内容,提高教学质量。
九、教学资源1. 推荐学生阅读关于运动控制系统的书籍、学术论文和在线资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于DMC运动控制卡的运动控制系统设计及实现试讲人:赵本利时间:2011-4-13 地点:佛职院机电系授课方式:讲授/实操重点:运动控制卡编程(实现)、系统控制方案的全面性(设计)难点:编程语言学习(实现)导入:(任务布置)1、运动控制应用领域:包括医疗(CAT扫描仪)、半导体(电路板特型铣)、纺织(地毯编织机)、物料搬运(包装机械)、食品加工(精密切肉机)、机床(超声焊接机)、产业机械(座标检验)、航天(空间摄像控制)、测试测量等等十分广泛。
2、系统控制方案要求:协调性、可靠性、稳定性、精密性。
正文:1、系统组成:主计算器、运动控制器、功率放大器、电机、传感器,即众所周知的闭环伺服系统。
一种典型的伺服系统如图1所示:图1、典型的伺服系统1.1、总体解说控制DC电机,用增量式编码器的数字位置系统伺服(亦适用于带有旋转变压器或绝对值编码器的AC或液压电机的系统)。
系统中各个元件的工作类似于人体,电机和功率放大器的结合VS于使人的四肢活动的肌肉。
功率放大器产生驱动电机所需要的电流,电机是产生运动的元件。
控制器是命令运动的智能元件,亦即系统的大脑。
它产生用于功率放大器的信号,称作运动命令。
位置传感器的功能类似于人的眼睛,它检测电机的位置并将结果告知控制器,即形成闭环。
闭环系统接收来自外部的命令,通常是主计算机,继续与人类社会相比较,命令源可以视作老板,产生命令,经常要求状态报告。
用其它方式如PLC,终端或开关组亦可产生命令。
1.2、部分解说:电机:更确切地讲,就是将电流转换成旋转扭矩。
DC电机的关键参数有扭矩常数Kt,电机电阻r,转动惯量Jm和最大扭矩。
扭矩常数单位为Nm/A或oz-in/A,它表示每个电流单位电机产生的扭矩量大小。
Eg:一台扭矩常数为0.1Nm/A的DC电机将2A电流转换成0.2Nm的扭矩。
电机特性是它所产生扭矩的大小,扭矩大小用两个参数来表达:连续扭矩和峰值扭矩。
功率放大器:一般是0~±10V输入端是模拟信号,利用线性放大器或脉宽调制(PWM)放大器方式来产生所需电压或电流,PWM放大器产生在高、低电平之间切换的电压,大多数功率在100W左右的放大器,均采用PWM方法以减少功率损耗。
当需要小功率时,通常用线性放大器。
增量式编码器:产生代表转轴位置的脉冲信号,编码器输出两路信号,通常称为A、B,每转N个脉冲,两路信号相位产生互差90°,如图2所示;控制器能够根据两路信号之间的相位A超前B或B超前A来判别旋转方向,通过对两路信号4倍频处理还可提高传感器检测分辨率。
即每转N线编码器生成4N个cts。
大多数编码器产生TTL示波信号,也有一些编码器输出正弦波或高压示波信号。
工业系统往往采用差分信号输出的编码器,即A、B信号均有互补,这样可提高系统抗干扰性。
增量式编码器也可产生第3路信号,称之为定标或标志脉冲,此信号每转出现一次,可用于回零。
图2、增量式编码器输出信号2、运动控制器2.1、概述运动控制器执行系统的智能任务,如图3所示,其基本任务有:对位置反馈译码,产生想要的位置(轮廓),使位置闭环,稳定性补偿。
电机位置C由反馈信号(通常是增量式编码器)来决定,并和想要的参考位置R进行比较,C-R之差称作位置误差E。
控制器的作用是保证系统无振荡并将位置误差E减到最小,为达到这一目的,控制器往往含有稳定化滤波器,其输出由数模转换器(DAC)送至放大器再到电机。
最常用的稳定化滤波器是比例-积分-微分即PID,比例项用于速度响应,微分项提高稳定性和阻尼,积分项用于提高系统精度。
为了优化性能,适当地调整伺服系统就涉及到调整比例、积分、微分系数即Kp、Ki和Kd(临界比例度法结合工程实际)。
图3、运动控制器元件构成2.2、控制器编程语言特点为了进一步提高速度、精度和技术先进性的需要,新一代智能化运动控制器具有坐标联动、电子齿轮、板上程序存储器、符号化变量、与外部事件同步的可编程I/O等功能。
DMC运动控制器提供了功能强大且使用方便的编程语言,使用户能快速编程来解决任何运动控制方面的难题。
能够把程序下载到DMC存储器,无需主机干预,即可执行。
多任务功能同时执行8个用户程序,允许各独立任务同时执行。
用DMC来执行复杂程序,让主计算机执行其它任务;不过,即使在程序正在执行中,控制器仍能随时接收来自主计算机的命令。
除标准运动命令外,DMC还提供许多命令,使其做出自行决定,这些命令包含各种跳转、事件触发及子程序。
DMC还提供了用于检测、修正系统误差及处理来自外部开关的中断的自动子程序。
为了更高的编程灵活性,DMC提供了用户自定义变量、阵列及算术函数。
2.3、命令格式(大部分对应英文的首二字母)主计算机能对运动控制器发命令来实现所控制的电机进行的运动。
为了各种运动形态和应用,DMC提供了广泛的指令集,用2字符ASCII命令代表这些指令,使编程简单得尤如英语ABC。
例外,让X、Y轴开始运动的指令规定为BGXY。
可以用指令来指定运动,对输出编程、检查输入状态,使运动与事件同步,如经过的时间、运动完成或输入等。
对于一些特殊应用,也能开发专用指令。
指定这些运动参数的最基本形式是通过“位置分辨率单位”。
2.4、编程实例学习(通过读懂众多的例子、背记几个典型把各指令、语法搞清楚)从最简单的运动是的梯形包络速度轮廓运动,这个运动完整地由距离,转速,加、减速度来表达学起。
例1 :PTP定位例如,编码器分辨率为4000cts/转,假设沿梯形包络速度旋转电机1转总运动时间0.3s,加、减速度时间各为0.1s,简单计算表明,转速等于5r/s,加、减速就是50r/s2。
根据分辨率单位,运动参数可表达为:距离4000计单位, 转速20,000cts/s,加、减速度为200,000cts/s2。
必须将运动参数从主计算机传送到运动控制器,DMC所使用的特殊指令如下。
主计算机发送表示程序的字符,然后立即开始运动。
例1:PTP定位PR4000 //相对距离SP20000 // 速度AC200000 //加速度DC200000 //减速度BGX //起动X轴表示运动主轴恒速转运:JG40000 // JOG速度AC400000 //加速度BGX //开始X轴运动例2:存储程序#A //程序标号PR4000 //距离SP20000 //速度AC200000 // 加速度DC200000 //减速度BGX //开始EN //程序结束例3:位置跟随器#FOLLOW //程序名DP0,0 //定义X、Y位置为0JG0,0 //设定初始X速度为0 BGY //起动Y#LOOP // 标号VE=_TPY-_TPX //求出位置差值VEL=VE*10 //计算速度JGVEL //更改速度JP#LOOP //重复过程EN //程序结束例4、切割长度操作#BEGIN //标号AC800000 //指定加速度DC800000 //指定减速度SP5000 //指定速度LENGTH=3.4 //初始长度以英时为单位#CUT //切割程序IN“Enter length“, //LENGTH 提示键入长度PR LENGTH*4000 //指定计数位置BGX //开始运动AMX //在运动完成后SB1 //设置位1,开切刀WT100;CB1 //等待100ms,关切刀JP#CUT //重复切割过程EN //结束程序例5:多任务后台PLC#MAIN //主程序Task0AI1 //在Input1变高后XQ# PLC1,1 //执行Task1XQ# PLC2,2 //执行Task2XQ#MOVE,3 //执行Task3AI-1 //在Input1变低后HX //停止所有任务EN //结束程序#PLC1//Task1OB2,@IN﹝2﹞&@IN﹝3 ﹞ //若Input 2和Input3为高,则设置Output2JP #PLC1 //循环EN //结束Task1# PLC2 //Task2AT0 //设置参考时间#LOOP //循环标号SB1;AT10 //设置output1;等待10ms CB1;AT-50 // 清除output1;维持50ms,复位定时器JP #LOOP //循环EN //结束Task2#MOVE //Task3PR100;BGX;AMX //移动100计数单位WT20;JP#MOVE //等待20ms并重复EN //结束Task33、各模块的安装联接(实物连接及I/O口分配)4、课堂小结与练习小结各知识点。
1、考虑下图所描述的运动轨迹,并编写一个程序。
已知:运动处于XY平面,拐角的半径是1000计数单位,矢量速度为20,000cts/s,矢量加速度、减速度为100,000cts/s2。
参考答案:#M 标号VMXY 指定XY平面VP60000 移动到B点CR1000,270,180 移动到C点VP-6000,2000 移动到D点CR1000,90,180 移动到E点VP0,0 返回到A点VE 轨迹终点VS20000 矢量速度VA100000 矢量加速度VD100000 矢量减速度BGS 开始运动EN 程序结束2、学生自己结合实际需求出题,并编程序完成;各项指标依工程实际设定。
5、课后练习/作业要求:将塑料条从馈料滚拉出,且必须切割成所需长度,切片数及切割长度必须是可编程的,相关参数依据工程背景所需(大、小作业)。