第二十八章锐角三角函数知识点

合集下载

最全锐角三角函数概念超经典讲义完整版.doc

最全锐角三角函数概念超经典讲义完整版.doc

锐角三角函数知识点一:锐角三角函数1、锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。

2、锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin 。

3、锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos 。

4、锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即的邻边的对边A A A ∠∠=tan 。

sin α,cos α,tan α都是一个完整的符号,单独的 “sin”没有意义,其中α前面的“∠”一般省略不写;但当用三个大写字母表示一个角时,“∠”的符号就不能省略。

考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cosα=35,sinα=_______,tanα=_______。

3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。

4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。

5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1n cosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形例1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。

(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。

6、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。

7、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 8、如图(2)所示,在正方形网格中,sin ∠AOB 等于( ) A 5B 25C 、12D 、2注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。

初中数学九年级锐角三角函数知识点总结

初中数学九年级锐角三角函数知识点总结

初中数学九年级锐角三角函数知识点总结28锐角三角函数一、知识框架本文介绍了锐角三角函数的知识点和概念总结,包括特殊值的三角函数、互余角的三角函数间的关系、同角三角函数间的关系以及三角函数值的变化情况。

二、知识点、概念总结1.锐角三角函数的定义:在锐角三角形中,对于角A,其对边、邻边、斜边分别为a、b、c,则有:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a2.特殊值的三角函数:对于30°、45°、60°这几个特殊角度,其三角函数值为:3.互余角的三角函数间的关系:对于角度α和其互余角90°-α,有以下关系:sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα4.同角三角函数间的关系:平方关系:sin²α+cos²α=1,tan²α+1=sec²α,cot²α+1=csc²α积的关系:sinα=tanα·cosα,cosα=cotα·sinα,tanα=sinα·secα,cotα=cosα·cscα,secα=tanα·cscα,cscα=secα·cotα倒数关系:tanα·cotα=1,sinα·cscα=1,cosα·secα=15.三角函数值:1)特殊角三角函数值2)0°~90°的任意角的三角函数值,可以查三角函数表。

3)锐角三角函数值的变化情况:i)锐角三角函数值都是正值ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大),正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大)iii)当角度在0°≤∠A≤90°间变化时,0≤sinα≤1,1≥cosA≥0,tanA>0,cotA>0。

锐角三角函数(公式、定理、结论图表) --中考数学知识必备

锐角三角函数(公式、定理、结论图表) --中考数学知识必备

锐角三角函数(公式、定理、结论图表)--中考数学知识必备考点一、锐角三角函数的概念如图所示,在Rt△ABC 中,∠C=90°,∠A 所对的边BC 记为a,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB记为c,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA,即cos A bA c∠==的邻边斜边;BCa c锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为..【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于()A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为()米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为16m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB =tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC 中,∠C=90°,(1)三边之间的关系:222a b c +=;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c ==,1tan tan a A b B==.(4)如图,若直角三角形ABC 中,CD⊥AB 于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a 2=pc;由△CAD∽△BAC,得b 2=qc;由△ACD∽△CBD,得h 2=pq;由△ACD∽△ABC 或由△ABC 面积,得ab=ch.(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD=AD=BD=12AB;②点D 是Rt△ABC 的外心,外接圆半径R=12AB.(6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c ab r a b c +-==++.直角三角形的面积:①如图所示,111sin 222ABC S ab ch ac B === △.(h 为斜边上的高)②如图所示,1()2ABCS r a b c=++△.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为()A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。

人教版九年级数学上册知识点总结:第二十八章锐角三角函数

人教版九年级数学上册知识点总结:第二十八章锐角三角函数

人教版九年级数学上册知识点总结第二十八章、锐角三角函数知识点一:锐角三角函数的定义1.锐角三角函数正弦: sin A=∠A的对边斜边=ac 余弦: cos A=∠A的邻边斜边=bc 正切: tan A=∠A的对边∠A的邻边=ab.2.特殊角的三角函数值度数三角函数30°45°60°sinA 122232cosA 322212tanA 331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cosA=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.6.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.例如17年14年中考题。

九年级人教版数学第二学期第28章锐角三角函数整章知识详解

九年级人教版数学第二学期第28章锐角三角函数整章知识详解
【规律方法】 1.sinA,cosA是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形); 2.sinA,cosA是一个完整的符号,表示∠A的正弦、余弦,习 惯省去“∠”符号; 3.sinA,cosA的大小只与∠A的大小有关,而与直角三角形 的边长无关.
九年级数学第28章锐角三角函数
B
10m
②sinB=
( ×)
6m
③sinA=0.6m ( × )
A
C
④SinB=0.8 ( √ )
sinA是一个比值,无单位.
2)如图,sinA=
(×)
九年级数学第28章锐角三角函数
2.在Rt△ABC中,锐角A的对边和斜边同时扩大100倍,sinA
的值( C )
A.扩大100倍 C.不变
B.缩小 1
100
D.不能确定
3.如图 A
B
1
3
,则 sinA=___2___ .
30°
C
7
九年级数学第28章锐角三角函数
1.(温州中考)如图,在△ABC中,∠C=90°, AB=13,
BC=5,则sinA的值是(

A. 5 13
B. 12
13
C. 5
12
D. 13
5
【解析】选A.由正弦的定义可得
sin A BC 5 . AB 13
AB 5
BC 3
九年级数学第28章锐角三角函数
1、如图,在Rt△ABC中,锐角A的邻边和斜边同时扩大100
倍,tanA的值( C )
B
A.扩大100倍
B.缩小100倍
C.不变
D.不能确定
A
C
2、下图中∠ACB=90°,CD⊥AB,垂足为D.指

锐角三角函数知识点

锐角三角函数知识点

锐角三角函数知识点锐角三角函数:一、基本概念:1、什么是锐角三角函数:锐角三角函数是一类特殊的函数,涉及到角度和角度对应的三角函数值,用于计算平面向量在多边形中和求解三角形的面积。

2、锐角三角函数的定义:锐角三角函数是基于角度θ,从而定义的三角函数值。

一般情况下,它用半圆线直叙指函数如下所示:sinθ,cosθ,tanθ,cotθ,secθ,cscθ。

3、锐角三角函数的基本关系:cosθ= sin (π/2-θ);sinθ= cos (π/2-θ);tanθ=cot (π/2-θ);cotθ=tan (π/2-θ);secθ=csc(π/2-θ);cscθ=sec (π/2-θ)。

二、圆周角:1、什么是圆周角:圆周角是指以圆等分线在a轴上的量度,即由圆心和两个点确定的弧的长度。

圆周角定义在一个圆的周围,与半径的长度有关,可以用角度μ来表示。

2、单位:圆周角的单位是弧度rad,又称为radian,表示当一个圆的半径为1时,圆周角的长度。

三、锐角的余弦定理:1、锐角余弦定理是用弦和角定义的三角形问题,可以求解共有三角形A、B、C三个锐角所对应边长a、b、c满足关系:a²=b²+c²-2bc cosA;b²=a²+c²-2ac cosB;c²=a²+b²-2ab cosC。

2、此外,锐角余弦定理也可以利用三角形所有边长求解A、B、C三个锐角所对应的角度值,记为A=cos-1[(b²+c²-a²)/2bc];B=cos-1[(a²+c²-b²)/2ac];C=cos-1[(a²+b²-c²)/2ab]。

四、锐角的正弦定理:1、锐角正弦定理是求解三角形的已知一边和两个对边角的问题,满足条件如下:a=b sinA/sinB;b=a sinB/sinA;c=a sinC/sinA,c=bsinC/sinB。

第二十八章“锐角三角函数”简介

第二十八章“锐角三角函数”简介

第二十八章“锐角三角函数”简介引言在高中数学中,我们学习了三角函数的基本概念和性质,包括正弦、余弦和正切函数。

这些函数可用于描述角度与三角形之间的关系。

但是,这些函数只适用于锐角,即小于90度的角度。

在本章中,我们将介绍新的三角函数,称为锐角三角函数,用于处理大于90度且小于180度的锐角。

1. 三角函数的复习在介绍锐角三角函数之前,让我们先回顾一下正弦、余弦和正切函数的定义和性质。

正弦函数正弦函数是一个周期函数,其定义域为实数集,值域为[-1, 1]。

正弦函数的图像在锐角范围内是递增的,即随着角度增加,正弦值也会增加。

余弦函数余弦函数是一个周期函数,其定义域为实数集,值域为[-1, 1]。

余弦函数的图像在锐角范围内是递减的,即随着角度增加,余弦值会减小。

正切函数正切函数是一个定义域为实数集的函数。

与正弦和余弦函数不同的是,正切函数在90度和270度处存在无穷大的间断点。

正切函数在锐角范围内是递增的。

三角函数的基本关系在锐角范围内,正弦函数的取值范围位于余弦函数的取值范围之上,而正切函数的取值范围位于正弦函数和余弦函数之间。

2. 锐角三角函数的定义在锐角三角函数中, 我们引入了三个新的三角函数:正割、余割和余切。

正割函数正割函数是余弦函数的倒数。

在锐角范围内,正割值大于等于1。

余割函数余割函数是正弦函数的倒数。

在锐角范围内,余割值大于等于1。

余切函数余切函数是正切函数的倒数。

在锐角范围内,余切值大于等于1。

3. 锐角三角函数的图像锐角三角函数的图像与正弦、余弦和正切函数的图像有些相似,但也存在一些差异。

正割函数的图像正割函数的图像是一个周期函数。

在锐角范围内,正割函数的值递增,与余弦函数的值递减相反。

余割函数的图像余割函数的图像是一个周期函数。

在锐角范围内,余割函数的值递增,与正弦函数的值递减相反。

余切函数的图像余切函数的图像是一个周期函数。

在锐角范围内,余切函数的值递增,与正切函数的值递增相反。

第二十八章 锐角三角函数(单元总结)-2021学年九年级数学下册(人教版)(解析版)

第二十八章 锐角三角函数(单元总结)-2021学年九年级数学下册(人教版)(解析版)

第二十八章 锐角三角函数单元总结【知识要点】 知识点一 锐角三角形锐角三角函数:如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B)【正弦和余弦注意事项】1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。

2.sinA 、cosA 是一个比值(数值,无单位)。

3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。

0°、30°、45°、60°、90°特殊角的三角函数值(重要)正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

正切的增减性:当0°<α<90°时,tan α随α的增大而增大,对边邻边C知识点二 解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形. 直角三角形五元素之间的关系: 1. 勾股定理()2. ∠A+∠B=90°3. sin A==4. cos A= =5.tan A= =【考查题型】考查题型一 正弦典例1.(2020·陕西西安市·西北工业大学附属中学九年级期中)如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A .43B .34C .35D .45【答案】D 【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,∴AC =222234=+=+AC AD CD =5. ∴4sin 5CD BAC AC ∠==. 故选D . 【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.变式1-1.(2018·西城区·北京四中九年级期中)如图,在Rt ABC ∆中,90C =∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .43【答案】A 【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得. 详解:在Rt △ABC 中,∵AB=10、AC=8, ∴2222=108=6AB AC --,∴sinA=63105BC AB ==. 故选:A .点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.变式1-2.(2019·山东淄博市·九年级期中)如图,在Rt△ABC中,∠C=90°,sin A=45,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm 【答案】C【详解】已知sinA=45BCAB=,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案选C.考查题型二余弦典例2.(2020·福建省泉州市培元中学九年级期中)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A 5B25C5D.23【答案】B【详解】由格点可得∠ABC所在的直角三角形的两条直角边为2,4,222425+=∴cos∠25525=.故选B .变式2-1.(2016·辽宁铁岭市·九年级期末)在ABC 中,C 90∠=,AB 6=,1cosA 3=,则AC 等于( ) A .18 B .2C .12D .118【答案】B 【分析】根据三角函数的定义,在直角三角形ABC 中,cosA =ACAB,即可求得AC 的长. 【详解】解:∵在△ABC 中,∠C =90°,∴cosA =ACAB , ∵cosA =13,AB =6,∴AC =123AB =,故答案选:B . 【点睛】本题考查了解直角三角形中三角函数的应用,解题的关键是要熟练掌握直角三角形中边角之间的关系.变式2-2.(2019·山东滨州市·九年级期末)如图,在平面直角坐标系中,点M 的坐标为M (5,2),那么cosα的值是( )A 5B .23C 25D 5【答案】D 【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(5,2),∴OH=5,MH=2,∴OM=22(5)2+=3,∴cosα=5 OHOM=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.考查题型三正切典例3.(2020·广东深圳市·深圳中学八年级期中)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C3D3【答案】B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求. 【详解】 如图,连接BC ,由网格可得AB=BC=5,AC=10,即AB 2+BC 2=AC 2, ∴△ABC 为等腰直角三角形, ∴∠BAC=45°, 则tan ∠BAC=1, 故选B .【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.变式3-1.(2018·江苏苏州市·九年级期末)如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ).A .2B .3C .2D .1【答案】A 【解析】分析:本题考查等腰直角三角形的性质及解直角三角形.解题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式然后求解. 解析:如图,作DE ⊥AB 于E .∵tan ∠DBA==,∴BE=5DE .∵△ABC 为等腰直角三角形,∴∠A=45°,∴AE=DE .∴BE=5AE ,又∵AC=6,∴AB=6,∴AE+BE=AE+5AE=6,∴AE=,∴在等腰直角△ADE中,由勾股定理,得AD=,AE=2.故选A.变式3-2.(2020·河北唐山市·九年级期末)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若2tan5BAC∠=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m 【答案】A【分析】根据BC的长度和tan BAC∠的值计算出AC的长度即可解答.【详解】解:因为2tan5BCBACAC=∠=,又BC=30,所以,3025AC=,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.考查题型四特殊角的三角函数值典例4.(2018·南昌市期末)点M(-sin60°,cos60°)关于x轴对称的点的坐标是( )A.(32,12) B.(-32,-12)C.(312) D.(-123【答案】B 【详解】∵点(-sin60°,cos60°)即为点(312),∴点(-sin60°,cos60°)关于y 3,12).变式4-1.(2019·山东淄博市·九年级期中)下列式子错误的是()A.cos40°=sin50°B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【答案】D【详解】试题分析:选项A,sin40°=sin(90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C,sin225°+cos225°=1正确;选项D,sin60°=3,sin30°=12,则sin60°=2sin30°错误.故答案选D.变式4-2.(2018·河北唐山市·九年级期末)如果△ABC中,sin A=cos B=22,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【答案】C【解析】因为sin A=cos B 2,所以∠A=∠B=45°,所以△ABC是等腰直角三角形. 故选C.考查题型五同角的三角函数典例5.(2018·山东潍坊市·九年级期末)在Rt△ABC中,∠C =90°,sinA=45,则cosB的值等于( )A.35B.45C.34D5【答案】B 【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cos B=sin A=45.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数变式5-1.(2018·浙江台州市·九年级期末)在Rt △ABC 中,cosA= 12,那么sinA 的值是( )A .2B .2C .3D .12【答案】B 【分析】利用同角三角函数间的基本关系求出sinA 的值即可. 【详解】:∵Rt △ABC 中,cosA=12 ,∴ =2, 故选B . 【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.变式5-2.(2018·湖南岳阳市·九年级期末)在Rt ABC 中,C 90∠=,如果4cosA 5=,那么tanA 的值是( ) A .35B .53C .34D .43【答案】C 【分析】本题可以利用锐角三角函数的定义求解. 【详解】解:∵在Rt △ABC 中,∠C=90°,∴cosA=b c ,tanA=ab ,a 2+b 2=c 2. ∵cosA=45,设b=4x ,则c=5x ,a=3x .∴tanA=a b =3344x x =. 故选C.【点睛】利用锐角三角函数的定义,通过设参数的方法求三角函数值.考查题型六 解直角三角形典例6.(2020·东北师大附中明珠学校九年级期中)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα【答案】B【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【详解】在Rt △ABC 中,AB=AC sin α, 在Rt △ACD 中,AD=AC sin β, ∴AB :AD=AC sin α:AC sin β=sin sin βα, 故选B .【点睛】 本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 变式6-1.(2020·山东枣庄市·九年级期末)如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为( )A .10B .15C .6D .10 【答案】D【分析】过点A 作AD BC ⊥,垂足为D ,在Rt ACD ∆中可求出AD ,CD 的长,在Rt ABD ∆中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sinB 的值.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ACD ∆中,1CD CA cosC ⋅==,2215AD AD CD ∴=-=;在Rt ABD ∆中,315BD CB CD AD =﹣=,=,22BD AD 26AB ∴=+=,AD 10sin AB B ∴==. 故选:D .【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.变式6-2.(2019·辽宁沈阳市·九年级期末)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A.11米B.(36﹣153)米C.153米D.(36﹣103)米【答案】D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=103(米),∴AC=ED=BD﹣BE=(36﹣103)(米).∴甲楼高为(36﹣103)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.考查题型七利用解直角三角形相关知识解决实际问题典例7.(2019·河南许昌市·九年级期末)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者.在消防车上点A 处测得点B 和点C 的仰角分别是45°和65°,点A 距地面2.5米,点B 距地面10.5米.为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,2≈1.4)【答案】云梯需要继续上升的高度BC 约为9米.【分析】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,在Rt ABD ∆中,求得AD 的长;在Rt ACD ∆中,求得CD 的长,根据BC=CD-BD 即可求得BC 的长.【详解】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,∵CN EF ⊥ ,∴90AMN MND ADN ∠=∠=∠=︒,∴四边形AMND 为矩形.∴ 2.5DN AM ==米.∴10.5 2.58BD BN DN =-=-=(米),由题意可知,45BAD ∠=︒,65CAD ∠=︒,∵AD BC ⊥,∴90ADB ∠=︒,在Rt ABD ∆中,tan BD BAD AD ∠=, ∴88tan tan45BD AD BAD ===∠︒(米). 在Rt ACD ∆中,tan CD CAD AD∠=, ∴tan 8tan658 2.116.8CD AD CAD =⋅∠=︒≈⨯=(米).∴16.888.89BC CD BD =-≈-=≈(米).答:云梯需要继续上升的高度BC 约为9米.【点睛】本题考查解直角三角形﹣仰角俯角问题,添加辅助线,构造直角三角形,建立直角三角形模型是解决问题的关键.变式7-1.(2018·江苏无锡市·九年级期末)如图,为了测量出楼房AC 的高度,从距离楼底C 处603米的点D (点D 与楼底C 在同一水平面上)出发,沿斜面坡度为i=1:3的斜坡DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC 的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).【答案】153+【分析】如图作BN ⊥CD 于N ,BM ⊥AC 于M ,先在RT △BDN 中求出线段BN ,在RT △ABM 中求出AM ,再证明四边形CMBN 是矩形,得CM=BN 即可解决问题.【详解】如图作BN ⊥CD 于N ,BM ⊥AC 于M .在RT △BDN 中,BD=30,BN :ND=13,∴BN=15,DN=153,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=603153453-=,在RT△ABM中,tan∠ABM=43 AMBM=,∴AM=603,∴AC=AM+CM=15603+.【点睛】构造适当的直角三角形,并应用锐角的三角函数,正确理解坡比的概念.变式7-2.(2018·山西晋中市期末)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【答案】高、低杠间的水平距离CH 的长为151cm .【解析】分析:利用锐角三角函数,在Rt △ACE 和Rt △DBF 中,分别求出AE 、BF 的长.计算出EF .通过矩形CEFH 得到CH 的长.详解:在Rt △ACE 中,∵tan ∠CAE=CE AE, ∴AE=()15515521tan tan82.47.5CE cm CAE =≈≈∠︒ 在Rt △DBF 中,∵tan ∠DBF=DF BF, ∴BF=()23423440tan tan80.3 5.85DF cm DBF =≈=∠︒. ∵EF=EA+AB+BF≈21+90+40=151(cm )∵CE ⊥EF ,CH ⊥DF ,DF ⊥EF∴四边形CEFH 是矩形,∴CH=EF=151(cm ).答:高、低杠间的水平距离CH 的长为151cm .点睛:本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.。

「第二十八章锐角三角函数」

「第二十八章锐角三角函数」

年 级 初三 学 科 数学版 本人教新课标版内容标题 第二十八章 锐角三角函数编稿老师 郑如霞【本讲教育信息】一、教学内容:锐角三角函数1. 锐角三角函数的定义2. 锐角三角函数性质3. 特殊角的三角函数值 4. 解直角三角形及应用二、知识要点:锐角三角函数是解决现实世界中测量、建筑、工程技术等问题的重要数学工具。

在图形中研究各个元素之间的关系(主要是边角之间的关系),把这种关系用数量的形式表示出来,就是数形结合的思想方法。

学生需要理解角的三角函数(正弦、余弦、正切)的概念以及熟悉特殊角的三角函数值等知识,能够联系实际,构建数学模型,利用解直角三角形的知识解决问题。

1. 锐角三角函数的定义:锐角三角函数概念是学习解直角三角形的基础,在解决边之比在不同三角形中的灵活转化的问题时,不必写繁琐的相似过程,方法更加简洁;同时与高中三角函数的知识相衔接。

初步了解正弦、余弦、正切的概念;能较正确地用sin A、cos A、tanA 表示直角三角形中两边的比;归纳三角函数定义。

sinA =斜边的对边A ∠,cos A=斜边的邻边A ∠,tan A=的邻边的对边A A ∠∠例:如图所示的R t△AB C中,∠A CB=90°,BC=4,CA=3,分别求sinA ,cos A,tanA 的值。

分析:锐角三角函数基本概念的应用解:由勾股定理A B=22BC AC +=2243+=5si nA=54,cos A=53,tanA=34点评:熟练掌握锐角三角函数中边的对应关系.2. 锐角三角函数性质:我们在了解三角函数概念的同时,三角函数性质也是方便解题的重要手段. 主要包括同角三角函数性质和互为余角三角函数性质.⑴同角三角函数满足:1cos sin 22=α+α⑵互为余角三角函数满足:sinA=cosB,c osA=si nB,tanA·tanB=1(A+B =90°) 如图:c a A =sin ,c b A =cos ,c b B =sin ,c a B =cos ,b a A =tan ,abB =tan ,可以推导出上述公式.例:若sinα– cosα=22,求sinα·c osα的值. 分析:若题中出现s inα±co sα的表达式,我们都可以把含sinα±cosα的等式两边平方;解:(sinα– cosα)2=(22)2,∴si n2α-2 si nαc osα+ cos 2α=21, ∵si n2α+ c os 2α=1,∴s inα·cosα=41点评:充分利用sin 2α+ cos 2α=1是解题的关键. 思考题:求t an41°·tan42°·……·ta n48°·tan49°的值. 3. 特殊角的三角函数值:在引入正弦、余弦的概念后,相应的求出30°、45°、60°角的正弦、余弦值。

锐角三角函数知识点

锐角三角函数知识点

《锐角三角函数》知识点一:锐角三角函数(正弦、余弦、正切)(1)在Rt △ABC 中,∠C =90°,把锐角A 的对边与斜边的比叫做∠A 的正弦 ,记作sin A ,即sin A aA c∠==的对边斜边;(2)在Rt △ABC 中,∠C =90°,把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即 bcos cA A ∠==的邻边斜边;(3)在Rt △ABC 中,∠C =90°,把∠A 的对边与邻边的比叫做∠A 的正切, 记作tan A ,即atan bA A A ∠=∠的对边=的邻边。

锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。

知识点二、300、450、600的正弦值、余弦值和正切值如下表知识点三、解直角三角形在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。

在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)两锐角之间的关系: A +B =90° (2)三条边之间的关系:(3)边角之间的关系: ①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.已知∠A 为锐角,sinA 随着角度的增大而 增大 正比cosA 随着角度的增大而 减小 反比tanA 随着角度的增大而 增大 正比知识点一、二、三对应基础练习1.在Rt ABC △中,9032C AB BC ∠===°,,,则cos A 的值是 。

2.在Rt △ABC 中,∠C=90°,BC = 1,AB = 4 , 则sin A 的值是( )A .1515 B .41 C .31 D .4153. 如图1,在Rt △ABC 中,ACB ∠90=,CD ⊥AB 于D ,若3BC =,4AC =,则tan BCD ∠的值为 ( )A.34 B.43 C.35 D.454.在△ABC 中,90C ∠=,12sin 13A =,周长为60,CD 是斜边AB 上的高,则CD 的长是 。

锐角三角函数知识点总结

锐角三角函数知识点总结

锐角三角形必背知识点1 定义直角三角形中角A的正弦(sin),余弦(cos)和正切(tan)叫做角A的三角函数。

正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b锐角三角函数值的定义方法是在直角三角形中定义的,所以求锐角的三角函数值,要通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。

2 特殊角的三角函数值角度30°45°60°正弦(sin) 1/2 √2/2 √3/2余弦(cos) √3/2 √2/2 1/2正切(tan) √3/3 1 √3(注θ是锐角:0<sinθ<1 0<cosθ<1 tanθ>0)3锐角三角函数值的符号及其变化规律1)锐角三角函数值都是正值。

2)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小);4同角三角函数基本关系式a a a tan cos sin ⋅=5互为余角的三角函数间的关系a a cos )90sin(=-a a sin )90cos(=-6 解直角三角形的基础知识在Rt ABC ∆中, 90=∠C ,A ∠,B ∠,C ∠所对的边分别为a ,b ,c(1) 三边之间的关系:222c b a =+(2) 锐角之间的关系:A ∠+B ∠=C ∠= 90(3) 边角之间的关系:c a A =sin ;c b A =cos ;ba A =tan ; c a B =cos ;c b B =sin ;ab B =tan (4) 面积公式:ch ab S 2121==∆(h 为斜边上的高) 7 解直角三角形的基本类型及其解法如下表:解直角三角形的思路可概括为“有斜(斜边)用弦(正弦、余弦),无斜用切(正切),宁乘勿除,取原避中”。

九年级数学《锐角三角函数》知识点总结归纳

九年级数学《锐角三角函数》知识点总结归纳

一、三角函数的定义1. 正弦函数sinx:对于任意实数x,将x的终边与x轴正方向的夹角的终点的纵坐标就是sinx。

2. 余弦函数cosx:对于任意实数x,将x的终边与x轴正方向的夹角的终点的横坐标就是cosx。

3. 正切函数tanx:对于任意实数x,将sinx除以cosx就是tanx。

4. 余切函数cotx:对于任意实数x,将cosx除以sinx就是cotx。

5. 正割函数secx:对于任意实数x,将1除以cosx就是secx。

6. 余割函数cscx:对于任意实数x,将1除以sinx就是cscx。

二、三角函数的性质1. 基本关系式:sin^2x + cos^2x = 12. 周期性:sin(x+2kπ) = sinx,cos(x+2kπ) = cosx,其中k为任意整数。

3. 奇偶性:奇函数有sinx、tanx和cotx,偶函数有cosx、secx和cscx。

4. 正函数和负函数:在单位圆上,sinx和cscx为正函数,cosx和secx为负函数。

5. 三角函数的范围:sinx、cosx和tanx的范围是[-1,1],cotx、secx和cscx的范围是(-∞,∞)。

三、特殊角的三角函数值1.0°、30°、45°、60°和90°的三角函数值。

2.30°、45°、60°和90°的三角函数值的推导。

四、角度的度量转换1.度和弧度之间的转换:π弧度=180°,1°=π/180弧度。

2.角度的换算:1°=60',1'=60''。

五、倍角、半角和三倍角公式1. 倍角公式:sin2x = 2sinxcosx,cos2x = cos^2x - sin^2x,tan2x = 2tanx / (1 - tan^2x)。

2. 半角公式:sin(x/2) = ±√[(1-cosx)/2],cos(x/2) =±√[(1+cosx)/2],tan(x/2) = ±√[(1-cosx) / (1+cosx)]。

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点锐角三角函数是初中数学中的一个重要知识点。

本文将系统地介绍锐角三角函数的概念、性质和应用。

一、概念1.边长比在直角三角形中,我们可以定义三角函数。

对于锐角三角形,也可以把边长比看作三角函数的定义。

定义如下:- 正弦函数(sin):指的是对边比斜边的比值,即sinA = 对边AB / 斜边AC。

- 余弦函数(cos):指的是邻边比斜边的比值,即cosA = 邻边BC / 斜边AC。

- 正切函数(tan):指的是对边比邻边的比值,即tanA = 对边AB / 邻边BC。

2.三角函数值的取值范围在锐角三角形中,三角函数的取值范围是(0,1)。

具体来说-正弦函数的值在0到1之间变化。

-余弦函数的值在0到1之间变化。

-正切函数的值在0到正无穷之间变化。

二、性质1.互余关系在锐角三角形中,对于同一个角的正弦和余弦函数,它们的数值互为倒数。

即sinA = 1 / cosA,cosA = 1 / sinA。

证明:由定义可知sinA = 对边AB / 斜边AC,cosA = 邻边BC / 斜边AC。

所以sinA / cosA = (对边AB / 斜边AC) / (邻边BC / 斜边AC) = 对边AB / 邻边BC = tanA。

又由于tanA = sinA / cosA,所以sinA = 1 / cosA。

同理可证cosA = 1 / sinA。

2.正切函数的性质在锐角三角形中,正切函数具有以下性质:-任何一个角的正切函数的值是唯一的。

- 对于锐角A和其补角(即90°-A),它们的正切值互为相反数。

(tanA = -tan(90°-A))。

三、应用锐角三角函数在实际生活和学习中有着广泛的应用,以下是一些常见的应用:1.三角函数在测量中的应用例如,在建筑和工程中,我们经常需要测量高度、角度等,锐角三角函数可以帮助我们计算和测量。

2.角度的计算通过使用正弦函数、余弦函数和正切函数,我们可以根据已知的边长比计算出对应的角度。

锐角三角函数知识点总结

锐角三角函数知识点总结

锐角三角函数知识点总结一、引言锐角三角函数是数学中的基础知识点,它在解决与直角三角形相关的问题中扮演着重要角色。

本文将总结锐角三角函数的基本概念、性质和公式,以及它们在实际问题中的应用。

二、基本概念1. 锐角:角度小于90度的角。

2. 直角三角形:一个角为90度的三角形。

3. 边的命名:- 对边(Opposite side):锐角所对的边。

- 邻边(Adjacent side):锐角旁边的边,但不包括斜边。

- 斜边(Hypotenuse):直角三角形中最长的边,对直角的两边进行闭合。

4. 锐角三角函数:- 正弦(Sine, sin):锐角的对边与斜边的比值。

- 余弦(Cosine, cos):锐角的邻边与斜边的比值。

- 正切(Tangent, tan):锐角的对边与邻边的比值。

三、基本公式1. 定义公式:- sin(θ) = 对边 / 斜边- cos(θ) = 邻边 / 斜边- tan(θ) = 对边 / 邻边2. 互余关系:- sin(90° - θ) = cos(θ)- cos(90° - θ) = sin(θ)- tan(90° - θ) = cot(θ)3. 基本恒等式:- sin²(θ) + cos²(θ) = 1- 1 + tan²(θ) = sec²(θ)- 1 + cot²(θ) = csc²(θ)4. 特殊角的三角函数值:- sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = √3/3 - sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1- sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3四、应用1. 解直角三角形问题:- 利用三角函数求解边长。

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点锐角三角函数是一个重要的数学概念,通常在初中数学学习中进行详细讲解。

下面是一个1200字以上的介绍锐角三角函数的知识点:一、角的概念角是由两条射线共同确定的形状。

有三种表示方法:度、弧度和均分。

1.度表示法度是一种角的度量单位,用符号°表示。

一个圆共有360度,一个直角是90度。

当角小于直角时,角的度数为锐角,大于直角角度且小于平角角度的为钝角。

2.弧度表示法弧度是另一种角的度量单位,用符号rad表示。

一个圆的周长等于2π,所以一个圆有2π弧度。

弧度与角度的转化公式为:角度 = 弧度/π * 180,弧度 = 角度* π/180。

3.均分表示法角的均分表示法将圆分为360个等份,每一份都称为一分。

角的度数可以用分数表示。

二、三角函数的定义锐角三角函数包括正弦、余弦和正切。

它们的定义如下:1. 正弦函数(Sine Function)正弦函数是个周期性函数,用sin表示,定义为对于任意锐角A,正弦函数的值为:sin A = 对边/斜边。

2. 余弦函数(Cosine Function)余弦函数也是个周期性函数,用cos表示,定义为对于任意锐角A,余弦函数的值为:cos A = 邻边/斜边。

3. 正切函数(Tangent Function)正切函数也是个周期性函数,用tan表示,定义为对于任意锐角A,正切函数的值为:tan A = 对边/邻边。

三、三角函数的性质锐角三角函数具有一些重要的性质:1.正弦和余弦的平方和为1对于任意锐角A,有sin^2 A + cos^2 A = 1、这一性质又被称为三角恒等式。

2.三角函数的周期性正弦、余弦和正切函数都是周期函数,它们的周期都是2π。

所以,对于任意锐角A,有sin(A+2πn) = sinA,cos(A+2πn) = cosA和tan(A+2πn) = tanA,其中n是任意整数。

3.正弦、余弦和正切的对称性正弦与余弦函数关于y轴对称,即sin(-A) = -sinA,cos(-A) = cosA。

28.1锐角三角函数定义纯知识点

28.1锐角三角函数定义纯知识点

28.1 锐角三角函数知识点一、锐角三角函数的定义我们把锐角A的对边与斜边的比叫做∠A的正弦把∠A的邻边与斜边的比叫做∠A的余弦把∠A的对边与邻边的比叫做正切注:(1)正弦、余弦、正切函数反映里直角三角形边角之间的关系,是两条线段的比值,没有单位。

锐角三角函数值只与锐角的大小有关,与三角形的边的长短无关,即与三角形的大小无关。

(2)表示某个角的三角函数时,可直接将角的名称或度数写在符号(“sin”、“cos”、“tan”)后面。

如sin∠ABC,sin∠1,sin60°等。

若角的名称是用一个大写字母或一个小写希腊字母表示的,在表示它的三角函数时,习惯省略“∠”的符号,如“sinA,sinα”等。

(3)三角函数的乘方运算,“(sinA )n”可简写为“sin n A”(4)锐角三角函数只能在直角三角形中应用。

(5)锐角三角函数的取值范围:0<sinA<1,0<cosA<1,tanA >0知识点三、求锐角三角函数值的方法(1)直接利用定义求值:当已知条件为直角三角形的两边长时,利用勾股定理可求第三边长,依据三角函数的定义,直接代入求值。

(2)根据特殊角的三角函数值求值,关键要熟记30°,45°,60°角的三角函数。

(3)求等角的三角函数值:当直接用三角函数的定义求某锐角的三角函数值有困难时,可通过转化求等角的三角函数值。

(4)设参数求三角函数值:当已知某两条线段的比或某一三角函数值,可设参数求解。

知识点四、锐角三角函数的增减性当锐角的度数在0°~90°之间变化时,其正弦值、正切值随角度的增大(或减小)而增大(或减小),其余弦值随角度的增大(或减小)而减小(或增大)。

九年级下册数学第28章《锐角三角函数》知识点梳理

九年级下册数学第28章《锐角三角函数》知识点梳理

九年级数学下册第28章《锐角三角函数》知识点梳理一.知识框架
二.知识概念
1.Rt△ABC中
(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边斜边
(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边
(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边
(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边
2.特殊值的三角函数:
本章内容使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。

并能应用这些概念解决一些实际问题。

的解,将其定义扩展到复数系。

】。

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点锐角三角函数是高中数学的重要内容,它涉及到三角函数的定义、性质以及与三角函数相关的常见解题方法。

以下将详细介绍锐角三角函数的知识点。

一、锐角三角函数的定义1. 正弦函数(sine function):在锐角ABC中,以角A为自变量,以对边AB与斜边AC的比值作为函数值。

记作sinA = AB/AC。

2. 余弦函数(cosine function):在锐角ABC中,以角A为自变量,以邻边BC与斜边AC的比值作为函数值。

记作cosA = BC/AC。

3. 正切函数(tangent function):在锐角ABC中,以角A为自变量,以对边AB与邻边BC的比值作为函数值。

记作tanA = AB/BC。

4. 余切函数(cotangent function):在锐角ABC中,以角A为自变量,以邻边BC与对边AB的比值作为函数值。

记作cotA = BC/AB。

5. 正割函数(secant function):在锐角ABC中,以角A为自变量,以斜边AC与邻边BC的比值作为函数值。

记作secA = AC/BC。

6. 余割函数(cosecant function):在锐角ABC中,以角A为自变量,以斜边AC与对边AB的比值作为函数值。

记作cscA = AC/AB。

二、锐角三角函数的性质1. 正弦函数的定义域为[0, π/2],值域为[0, 1],是一个奇函数,即sin(π/2 - A) = cosA。

2. 余弦函数的定义域为[0, π/2],值域为[0, 1],是一个偶函数,即cos(π/2 - A) = sinA。

3.正割函数和余割函数的定义域为(0,π/2)∪(π/2,π),值域为R^+∪R^-。

4.正弦函数和余弦函数的图像是一条周期为2π的曲线,对称于直线x=π/25.正切函数和余切函数的定义域为(0,π/2)∪(π/2,π),值域为R^+∪R^-。

6.正切函数和余切函数的图像是一条周期为π的曲线,对称于直线x=π/2三、常用的锐角三角函数解题方法1. 利用定义求函数值:根据三角函数的定义,利用已知信息计算出函数值。

《锐角三角函数》 知识清单

《锐角三角函数》 知识清单

《锐角三角函数》知识清单一、锐角三角函数的定义在直角三角形中,如果一个锐角为$\angle A$,它的对边与斜边的比值叫做$\angle A$的正弦,记作$\sin A$,即$\sin A =\frac{\text{对边}}{\text{斜边}}$。

它的邻边与斜边的比值叫做$\angle A$的余弦,记作$\cos A$,即$\cos A =\frac{\text{邻边}}{\text{斜边}}$。

它的对边与邻边的比值叫做$\angle A$的正切,记作$\tan A$,即$\tan A =\frac{\text{对边}}{\text{邻边}}$。

二、特殊角的三角函数值1、$\angle A = 30^{\circ}$时,$\sin A =\frac{1}{2}$,$\cos A =\frac{\sqrt{3}}{2}$,$\tan A =\frac{\sqrt{3}}{3}$。

2、$\angle A = 45^{\circ}$时,$\sin A =\frac{\sqrt{2}}{2}$,$\cos A =\frac{\sqrt{2}}{2}$,$\tan A = 1$。

3、$\angle A = 60^{\circ}$时,$\sin A =\frac{\sqrt{3}}{2}$,$\cos A =\frac{1}{2}$,$\tan A =\sqrt{3}$。

这些特殊角的三角函数值需要牢记,在解题时经常会用到。

三、锐角三角函数的性质1、取值范围对于锐角$A$,$0 <\sin A < 1$,$0 <\cos A < 1$,$\tan A > 0$。

2、增减性当角度在$0^{\circ}$到$90^{\circ}$之间变化时,正弦值随着角度的增大而增大,余弦值随着角度的增大而减小,正切值随着角度的增大而增大。

四、解直角三角形1、定义在直角三角形中,除直角外,由已知元素求出未知元素的过程叫做解直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222c b a =+
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
6、正弦、余弦的增减性:当0°≤α≤90°时, (1) 正弦值随α的增大(减小)而增大(减小),
(2) 余弦值随α的增大(减小)而减小(增大)。

(3)正切值随α的增大(减小)而增大(减小),
定 义
表达式
取值范围
关 系
正弦
斜边的对边A A ∠=
sin c a A =sin
1sin 0<<A
(∠A 为锐角)
B A cos sin =
B A sin cos = 1cos sin 2
2
=+A A
余弦 斜边的邻边A A ∠=
cos c b A =cos 1cos 0<<A
(∠A 为锐角) 正切 的邻边的对边A tan ∠∠=
A A b a A =tan
0tan >A
(∠A 为锐角) B A cot tan = B A tan cot =
A
A cot 1
tan =
(倒数) 1cot tan =⋅A A
余切
的对边
的邻边A A A ∠∠=
cot a b A =cot
0cot >A
(∠A 为锐角) 三角函数 0° 30°
45°
60°
90° αsin
0 2
1
22 23 1 αcos 1 23 2
2
2
1 0 αtan 0 3
3 1 3 不存在
αcot
不存在
3
1
3
3 0
)90cot(tan A A -︒=)90tan(cot A A -︒=
B A cot tan = B A tan cot =
)
90cos(sin A A -︒=)
90sin(cos A A -︒=
B
A cos sin =
B A sin cos =A 90B 90∠-︒=∠︒=∠+∠得由B A 对边
邻边
b
斜边 A C
B
b
a c
A
90B 90∠-︒=∠︒=∠+∠得由B A
8、应用举例:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线
水平线
视线
视线俯角
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即h i l
=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan h
i l
α=
=。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向),
南偏西60°(西南方向), 北偏西60°(西北方向)。

:i h l =h
l
α。

相关文档
最新文档