2017年上海市八校联考高考数学模拟试卷(3月)含答案解析
2017年上海市虹口区高考数学一模试卷(解析版)
2017年上海市虹口区高考数学一模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B=.2.已知,则复数z的虚部为.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.6.已知角A是△ABC的内角,则“”是“的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于.8.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是.11.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于.12.当实数x ,y 满足x 2+y 2=1时,|x +2y +a |+|3﹣x ﹣2y |的取值与x ,y 均无关,则实数a 的取范围是 .二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m ,n 表示二条直线,则下列命题中错误的是( )A .若m ∥α,m 、n 不平行,则n 与α不平行B .若m ∥α,m 、n 不垂直,则n 与α不垂直C .若m ⊥α,m 、n 不平行,则n 与α不垂直D .若m ⊥α,m 、n 不垂直,则n 与α不平行14.已知函数在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( )A .B .C .D .15.如图,在圆C 中,点A 、B 在圆上,则的值( )A .只与圆C 的半径有关B .既与圆C 的半径有关,又与弦AB 的长度有关 C .只与弦AB 的长度有关D .是与圆C 的半径和弦AB 的长度均无关的定值16.定义f (x )={x }(其中{x }表示不小于x 的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是( ) ①f (2x )=2f (x ); ②若f (x 1)=f (x 2),则x 1﹣x 2<1;③任意x 1,x 2∈R ,f (x 1+x 2)≤f (x 1)+f (x 2);④.A .①②B .①③C .②③D .②④三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.2017年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8} .【考点】交集及其运算.【分析】先分别求出集合A和B,由此能出A∩B.【解答】解:∵集合A={1,2,4,6,8},∴B={x|x=2k,k∈A}={2,4,8,12,19},∴A∩B={2,4,8}.故答案为:{2,4,8}.2.已知,则复数z的虚部为1.【考点】复数代数形式的乘除运算.【分析】由,得,利用复数复数代数形式的乘法运算化简,求出z,则答案可求.【解答】解:由,得=2﹣2i+i﹣i2=3﹣i,则z=3+i.∴复数z的虚部为:1.故答案为:1.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=0.【考点】二倍角的正弦.【分析】由已知可得sinα﹣cosα=1,两边平方,利用二倍角的正弦函数公式,同角三角函数基本关系式即可得解.【解答】解:∵f(x)=sinx﹣cosx,且f(α)=1,∴sinα﹣cosα=1,∴两边平方,可得:sin2α+cos2α﹣2sinαcosα=1,∴1﹣sin2α=1,可得:sin2α=0.故答案为:0.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.【考点】系数矩阵的逆矩阵解方程组.【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【解答】解:由题意,方程组解之得故答案为5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.【考点】数列的极限.【分析】求出数列的和以及通项公式,然后求解数列的极限即可.【解答】解:数列{a n}是首项为1,公差为2的等差数列,S n==n2.a n=1+(n﹣1)×2=2n﹣1,则==故答案为:;6.已知角A是△ABC的内角,则“”是“的充分不必要条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数值判断即可.【解答】解:A为△ABC的内角,则A∈(0,180°),若命题p:cosA=成立,则A=60°,sinA=;而命题q:sinA=成立,又由A∈(0,180°),则A=60°或120°;因此由p可以推得q成立,由q推不出p,可见p是q的充分不必要条件.故答案为:充分不必要.7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于6.【考点】双曲线的简单性质.【分析】根据焦点到其渐近线的距离求出b的值即可得到结论.【解答】解:双曲线的渐近线为y=±bx,不妨设为y=﹣bx,即bx+y=0,焦点坐标为F(c,0),则焦点到其渐近线的距离d===b=2,则c====3,则双曲线的焦距等于2c=6,故答案为:68.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为2.【考点】等比数列的性质.【分析】利用数列{a n}是各项均为正数的等比数列,可得a3a5=a42,再利用基本不等式,即可求得a4的最大值.【解答】解:∵数列{a n}是各项均为正数的等比数列,∴a3a5=a42,∵等比数列{a n}各项均为正数,∴a3+a5≥2,当且仅当a3=a5=2时,取等号,∴a3=a5=2时,a4的最大值为2.故答案是:2.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.【考点】椭圆的简单性质.【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=8,∵a2=b2+c2,∴c==2,∴椭圆的焦距为;故答案为:4.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是60.【考点】分段函数的应用.【分析】根据分段函数的解析式先求出f[f(x)]表达式,再根据利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为2求得r,再代入系数求出结果【解答】解:由函数f(x)=,当x≤﹣1时,f(x)=﹣2x﹣1,此时f(x)min=f(﹣1)=2﹣1=1,∴f[f(x)]=(﹣2x﹣1)6=(2x+1)6,=C6r2r x r,∴T r+1当r=2时,系数为C62×22=60,故答案为:6011.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于42或22.【考点】抛物线的简单性质.【分析】过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,当M,P,D共线时,|PM|+|PF|的距离最小,20+=41,解得:p=42,当M(20,40)位于抛物线外,由勾股定理可知:=41,p=22或58,当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,即可求得p的值.【解答】解:由抛物线的定义可知:抛物线上的点到焦点距离=到准线的距离,过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,∴|PM|+|PF|=|PM|+|PD|,当M,P,D共线时,|PM|+|PF|的距离最小,由最小值为41,即20+=41,解得:p=42,当M(20,40)位于抛物线外,当P,M,F共线时,|PM|+|PF|取最小值,即=41,解得:p=22或58,由当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,故答案为:42或22.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是[,+∞).【考点】圆方程的综合应用.【分析】根据实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,求出x+2y的取值范围,再讨论a的取值范围,求出|x+2y+a|+|3﹣x﹣2y|的值与x,y均无关时a的取范围.【解答】解:∵实数x,y满足x2+y2=1,可设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=sin(θ+α),其中α=arctan2;∴﹣≤x+2y≤,∴当a≥时,|x+2y+a|+|3﹣x﹣2y|=(x+2y+a)+(3﹣x﹣2y)=a+3,其值与x,y均无关;∴实数a的取范围是[,+∞).故答案为:.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n⊂α,即可得出结论.【解答】解:对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n ⊂α,故不正确.故选A.14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.【考点】正弦函数的单调性.【分析】由条件利用正弦函数的单调性,可得2a+≤,求得a的范围.【解答】解:∵函数在区间[0,a](其中a>0)上单调递增,则2a+≤,求得a≤,故有0<a≤,故选:B.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值【考点】平面向量数量积的运算.【分析】展开数量积,结合向量在向量方向上投影的概念可得=.则答案可求.【解答】解:如图,过圆心C作CD⊥AB,垂足为D,则=||||•cos∠CAB=.∴的值只与弦AB的长度有关.故选:C.16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④【考点】函数与方程的综合运用.【分析】充分理解“取上整函数”的定义.如果选项不满足题意,只需要举例说明即可【解答】解:对于①,当x=1.4时,f(2x)=f(2.8)=3.2,f(1.4)=4.所以f (2x)≠2f(x);①错.对于②,若f(x1)=f(x2).当x1为整数时,f(x1)=x1,此时x2>x1﹣1,即x1﹣x2<1.当x1不是整数时,f(x1)=[x1]+1.[x1]表示不大于x1的最大整数.x2表示比x1的整数部分大1的整数或者是和x1保持相同整数的数,此时﹣x1﹣x2<1.故②正确.对于③,当x1,x2∈Z,f(x1+x2)=f(x1)+f(x2),当x1,x2∉Z,f(x1+x2)<f(x1)+f(x2),故正确;对于④,举例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④错误.故选:C.三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积;直线与平面垂直的性质.【分析】(1)取BC的中点M,连AM、BM.由△ABC是等边三角形,可得AM ⊥BC.再由PB=PC,得PM⊥BC.利用线面垂直的判定可得BC⊥平面PAM,进一步得到PA⊥BC;(2)记O是等边三角形的中心,则PO⊥平面ABC.由已知求出高,可求三棱锥的体积.求出各面的面积可得三棱锥的全面积.【解答】(1)证明:取BC的中点M,连AM、BM.∵△ABC是等边三角形,∴AM⊥BC.又∵PB=PC,∴PM⊥BC.∵AM∩PM=M,∴BC⊥平面PAM,则PA⊥BC;(2)解:记O是等边三角形的中心,则PO⊥平面ABC.∵△ABC是边长为6的等边三角形,∴.∴,,∵,∴;.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).【考点】直线与圆的位置关系.【分析】(1)依题意,在△ABD中,∠DAB=60°,由余弦定理求得DB;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,求解直角三角形可得HE、AE的值,进一步得到sin∠EAH,则∠EAH可求,求出外国船只到达E处的时间t,由求得速度的最小值.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.可得A,D,B的坐标,设经过t小时外国船到达点,结合ED=12,得,列等式求得t,则,,再由求得速度的最小值.【解答】解:(1)依题意,在△ABD中,∠DAB=60°,由余弦定理得DB2=AD2+AB2﹣2AD•AB•cos60°=182+202﹣2×18×15×cos60°=364,∴,即此时该外国船只与D岛的距离为海里;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,AH=10,∴HD=AD﹣AH=8,以D为圆心,12为半径的圆交BH于点E,连结AE、DE,在Rt△DEH中,HE=,∴,又AE=,∴sin∠EAH=,则≈41.81°.外国船只到达点E的时间(小时).∴海监船的速度(海里/小时).又90°﹣41.81°=48.2°,故海监船的航向为北偏东48.2°,速度的最小值为6.4海里/小时.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.则A(0,0),D(18,0),,设经过t小时外国船到达点,又ED=12,得,此时(小时).则,,∴监测船的航向东偏北41.81°.∴海监船的速度(海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.【考点】二次函数的性质.【分析】(1)由二次函数f(x)=ax2﹣4x+c的值域,推出ac=4,判断f(﹣1)≠f(1),f(﹣1)≠﹣f(1),得到此函数是非奇非偶函数.(2)求出函数的单调递增区间.设x1、x2是满足的任意两个数,列出不等式,推出f(x2)>f(x1),即可判断函数是单调递增.(3)f(x)=ax2﹣4x+c,当,即0<a≤2时,当,即a>2时求出最小值即可.【解答】解:(1)由二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),得a>0且,解得ac=4.…∵f(1)=a+c﹣4,f(﹣1)=a+c+4,a>0且c>0,从而f(﹣1)≠f(1),f(﹣1)≠﹣f(1),∴此函数是非奇非偶函数.…(2)函数的单调递增区间是[,+∞).设x1、x2是满足的任意两个数,从而有,∴.又a>0,∴,从而,即,从而f(x2)>f(x1),∴函数在[,+∞)上是单调递增.…(3)f(x)=ax2﹣4x+c,又a>0,,x∈[1,+∞)当,即0<a≤2时,最小值g(a)=f(x0)=0当,即a>2时,最小值综上,最小值…当0<a≤2时,最小值g(a)=0当a>2时,最小值综上y=g(a)的值域为[0,+∞)…20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F 的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.【考点】直线与椭圆的位置关系.【分析】(1)利用已知条件求出b,即可求解椭圆方程.(2)直线l:y=﹣x+1,设AB坐标,联立利用韦达定理以及斜率公式求解即可.(3)当直线AB的斜率不存在时,不妨设A,B,求出斜率,即可;当直线AB 的斜率存在时,设其为k,求直线AB:y=k(x﹣1),联立直线与椭圆的方程组,利用韦达定理以及斜率公式化简求解即可.【解答】解:(1)∵a=2,又c=1,∴,∴椭圆方程为…(2)直线l:y=﹣x+1,设A(x1,y1)B(x2,y2),由消y得7x2﹣8x﹣8=0,有,.……(3)当直线AB的斜率不存在时,不妨设A(1,),B(1,﹣),则,,故k1+k2=2.…当直线AB的斜率存在时,设其为k,则直线AB:y=k(x﹣1),设A(x1,y1)B (x2,y2),由消y得(4k2+3)x2﹣8k2x+(4k2﹣12)=0,有,.…=…21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.【考点】数列与函数的综合.【分析】(1)化简函数f(x)为分段函数,然后求出a n=f(n)=n+3.(2)如果{a n}是等差数列,求出公差d,首项,然后求解a的范围.(3)当a≥﹣1时,求出前n项和,当﹣2≤a≤﹣1时,当a≤﹣2时,分别求出n项和即可.【解答】解:(1)∵函数f(x)=2|x+2|﹣|x+1|=,…又n≥1且n∈N*,∴a n=f(n)=n+3.…(2)如果{a n}是等差数列,则a n﹣a n﹣1=d,a n=a n﹣1+d,由f(x)知一定有a n=a n﹣1+3,公差d=3.当a1≥﹣1时,符合题意.当﹣2≤a1≤﹣1时,a2=3a1+5,由a2﹣a1=3得3a1+5﹣a1=3,得a1=﹣1,a2=2.当a1≤﹣2时,a2=﹣a1﹣3,由a2﹣a1=3得﹣a1﹣3﹣a1=3,得a1=﹣3,此时a2=0.综上所述,可得a的取值范围是a≥﹣1或a=﹣3.…(3)当a≥﹣1时,a n=f(a n﹣1)=a n﹣1+3,∴数列{a n}是以a为首项,公差为3的等差数列,.…当﹣2≤a≤﹣1时,a2=3a1+5=3a+5≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*)…当a≤﹣2时,a2=﹣a1﹣3=﹣a﹣3≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*).综上所述:S n=.….。
2017年上海市春季高考数学试卷(含答案详解)
2017年上海市春季高考数学试卷一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B= .2.不等式|x﹣1|<3的解集为.3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= .4.若,则= .5.若关于x、y的方程组无解,则实数a= .6.若等差数列{an }的前5项的和为25,则a1+a5= .7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为.8.已知数列{an}的通项公式为,则= .9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为.10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是.11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为.12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是()A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]14.设a∈R,“a>0”是“”的()条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是()A.三角形B.长方形C.对角线不相等的菱形 D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为()A.B.C D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.18.(12分)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.21.(12分)已知函数f (x )=log 2;(1)解方程f (x )=1;(2)设x ∈(﹣1,1),a ∈(1,+∞),证明:∈(﹣1,1),且f ()﹣f (x )=﹣f ();(3)设数列{x n }中,x 1∈(﹣1,1),x n+1=(﹣1)n+1,n ∈N *,求x 1的取值范围,使得x 3≥x n 对任意n ∈N *成立.2017年上海市春季高考数学试卷参考答案与试题解析一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B= {1,2,3,4} .2.不等式|x﹣1|<3的解集为(﹣2,4).3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= 2﹣3i .4.若,则= .5.若关于x、y的方程组无解,则实数a= 6 .6.若等差数列{an }的前5项的和为25,则a1+a5= 10 .7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为 2 .8.已知数列{an}的通项公式为,则= .9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为160 .10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是 6 .11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为48 .12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为(0,1).解:函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒,如图画出数对(a,b)所表示的区域,目标函数z=f(1)═a+b+1∴z的最小值为z=a+b+1过点(1,﹣2)时,z的最大值为z=a+b+1过点(4,﹣4)时∴f(1)的取值范围为(0,1)故答案为:(0,1)二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是( B )A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]14.设a∈R,“a>0”是“”的( C )条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是( A )A.三角形B.长方形C.对角线不相等的菱形 D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为( B )A.B.C.D.解:由题意,正八边形A1A2A3A4A5A6A7A8的每一个内角为135°,且,,,.再由正弦函数的单调性及值域可得,当P与A8重合时,最小为==.结合选项可得的取值范围为.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,∴四棱锥A1﹣ABCD的体积:====4.(2)∵DD1∥CC1,∴∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),∵tan∠A1CC1===,∴=.∴异面直线A1C与DD1所成角的大小为;18.(12分)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.解:(1)由f(x)的定义域为R,且f(x)为奇函数,可得f(0)=0,即有=0,解得a=﹣1.则f(x)=,f(﹣x)===﹣f(x),则a=﹣1满足题意;(2)对任意x∈R成立,即为<恒成立,等价为<,即有2(a﹣1)<a(2x+1),当a=0时,﹣1<0恒成立;当a>0时,<2x+1,由2x+1>1,可得≤1,解得0<a≤2;当a<0时,>2x+1不恒成立.综上可得,a的取值范围是[0,2].19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)解:(1)M1半径=60tan30°≈34.6,M2半径=60tan15°≈16.1;(2)设∠BAD=2α,则总造价y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α),设1+tanα=x,则y=12π•(8x+﹣17)≥84π,当且仅当x=,tanα=时,取等号,∴M1半径30,M2半径20,造价42.0千元.20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.解:(1)∵双曲线(b>0),点(2,0)是Γ的一个焦点,∴c=2,a=1,∴b2=c2﹣a2=4﹣1=3,∴Γ的标准方程为: =1,Γ的渐近线方程为.(2)∵b=1,∴双曲线Γ为:x2﹣y2=1,P(﹣1,0),P′(1,0),∵=,设Q(x2,y2),则有定比分点坐标公式,得:,解得,∵,∴,∴=.(3)设P (x 1,y 1),Q (x 2,y 2),k PQ =k 0,则,由,得(b 2﹣k 2)x 2﹣4kx ﹣4﹣b 2=0,,,由,得()x 2﹣2k 0nx ﹣n 2﹣b 2=0,﹣x 1+x 2=,﹣x 1x 2=,∴x 1x 2==,即,即=,====,化简,得2n 2+n (4+b 2)+2b 2=0,∴n=﹣2或n=,当n=﹣2,由=,得2b 2=k 2+k 02,由,得,即Q (,),代入x 2﹣=1,化简,得:,解得b 2=4或b 2=kk 0,当b 2=4时,满足n=,当b 2=kk 0时,由2b 2=k 2+k 02,得k=k 0(舍去),综上,得n=.21.(12分)已知函数f (x )=log 2;(1)解方程f (x )=1;(2)设x ∈(﹣1,1),a ∈(1,+∞),证明:∈(﹣1,1),且f ()﹣f (x )=﹣f ();(3)设数列{x n }中,x 1∈(﹣1,1),x n+1=(﹣1)n+1,n ∈N *,求x 1的取值范围,使得x 3≥x n 对任意n ∈N *成立.解:(1)∵f (x )=log 2=1,∴=2,解得;(2)令g (x )=,ax a a x g --+-=21)(∵a ∈(1,+∞),∴g (x )在(﹣1,1)上是增函数,又g (﹣1)=,g (1)==1,∴﹣1<g (x )<1,即∈(﹣1,1).∵f (x )﹣f ()=log 2﹣log 2=log 2﹣log 2=log 2()=log 2,f ()=log 2=log 2.∴f ()=f (x )﹣f (),∴f ()﹣f (x )=﹣f ().(3)∵f (x )的定义域为(﹣1,1),f (﹣x )=log 2=﹣log 2=﹣f (x ),∴f (x )是奇函数.∵x n+1=(﹣1)n+1,∴x n+1=.①当n 为奇数时,f (x n+1)=f ()=f (x n )﹣f ()=f (x n )﹣1,∴f (x n+1)=f (x n )﹣1;②当n 为偶数时,f (x n+1)=f (﹣)=﹣f ()=1﹣f (x n ),∴f (x n+1)=1﹣f (x n ).∴f (x 2)=f (x 1)﹣1,f (x 3)=1﹣f (x 2)=2﹣f (x 1),f (x 4)=f (x 3)﹣1=1﹣f (x 1),f (x 5)=1﹣f (x 4)=f (x 1),f (x 6)=f (x 5)﹣1=f (x 1)﹣1,…∴f (x n )=f (x n+4),n ∈N +. 设12111)(---=-+=x x x x h∴h (x )在(﹣1,1)上是增函数,∴f (x )=log 2=log 2h (x )在(﹣1,1)上是增函数.∵x 3≥x n 对任意n ∈N *成立,∴f (x 3)≥f (x n )恒成立,∴,即,1)≤1,即log2≤1,∴0<≤2,解得:﹣1<x1≤.解得:f(x。
2017年上海市静安区高考数学一模试卷(解析版)
2017年上海市静安区高考数学一模试卷一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每一个空格填对得5分,不然一概得零分.1.“x<0”是“x<a”的充分非必要条件,那么a的取值范围是.2.函数的最小正周期为.3.假设复数z为纯虚数,且知足(2﹣i)z=a+i(i为虚数单位),那么实数a的值为.4.二项式展开式中x的系数为.5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.6.已知α为锐角,且,那么sinα=.7.依照有关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,通过x个小时,酒精含量降为p 毫克/100毫升,且知足关系式(r为常数).假设某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,那么这人饮酒后需通过小时方可驾车.(精准到小时)8.已知奇函数f(x)是概念在R上的增函数,数列{x n}是一个公差为2的等差数列,知足f(x7)+f(x8)=0,那么x2017的值为.9.直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,那么的最大值为.10.已知f(x)=a x﹣b((a>0且且a≠1,b∈R),g(x)=x+1,假设对任意实数x均有f(x)•g(x)≤0,那么的最小值为.二、选择题本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必需把答题纸上相应题序内的正确结论代号涂黑,选对得5分,不然一概得零分.11.假设空间三条直线a、b、c知足a⊥b,b⊥c,那么直线a与c()A.必然平行B.必然相交C.必然是异面直线D.平行、相交、是异面直线都有可能12.在无穷等比数列{a n}中,,那么a1的取值范围是()A.B. C.(0,1) D.13.某班班会预备从含甲、乙的6名学生当选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种14.已知椭圆C1,抛物线C2核心均在x轴上,C1的中心和C2极点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,那么C1的左核心到C2的准线之间的距离为()x3﹣24y0﹣4A.B.C.1 D.215.已知y=g(x)与y=h(x)都是概念在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),假设y=g(x)﹣h(x)恰有4个零点,那么正实数k的取值范围是()A.B. C.D.三、解答题(此题总分值75分)本大题共有5题,解答以下各题必需在答题纸的规定区域(对应的题号)内写出必要的步骤.16.已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F别离是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.17.设双曲线C:,F1,F2为其左右两个核心.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)假设动点P与双曲线C的两个核心F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.18.在某海边城市周围海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是不是开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时刻为多久?19.设集合M a={f(x)|存在正实数a,使得概念域内任意x都有f(x+a)>f(x)}.(1)假设f(x)=2x﹣x2,试判定f(x)是不是为M1中的元素,并说明理由;(2)假设,且g(x)∈M a,求a的取值范围;(3)假设(k∈R),且h(x)∈M2,求h(x)的最小值.20.由n(n≥2)个不同的数组成的数列a1,a2,…a n中,假设1≤i<j≤n时,a j<a i(即后面的项a j小于前面项a i),那么称a i与a j组成一个逆序,一个有穷数列的全数逆序的总数称为该数列的逆序数.如关于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣1,…a1的逆序数.2017年上海市静安区高考数学一模试卷参考答案与试题解析一、填空题本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每一个空格填对得5分,不然一概得零分.1.“x<0”是“x<a”的充分非必要条件,那么a的取值范围是(0,+∞).【考点】必要条件、充分条件与充要条件的判定.【分析】依照充分必要条件的概念求出a的范围即可.【解答】解:假设“x<0”是“x<a”的充分非必要条件,那么a的取值范围是(0,+∞),故答案为:(0,+∞).2.函数的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得f(x)的最小正周期.【解答】解:函数=1﹣3•=1﹣•(1+sin2x)=﹣﹣sin2x 的最小正周期为=π,故答案为:π.3.假设复数z为纯虚数,且知足(2﹣i)z=a+i(i为虚数单位),那么实数a的值为.【考点】复数代数形式的乘除运算.【分析】由(2﹣i)z=a+i,得,然后利用复数代数形式的乘除运算化简复数z,由复数z 为纯虚数,列出方程组,求解即可得答案.【解答】解:由(2﹣i)z=a+i,得==,∵复数z为纯虚数,∴,解得a=.那么实数a的值为:.故答案为:.4.二项式展开式中x的系数为10.【考点】二项式定理.【分析】利用二项式展开式的通项公式即可求得答案.,【解答】解:设二项式展开式的通项为T r+1=x2(5﹣r)•x﹣r=•x10﹣3r,那么T r+1令10﹣3r=1得r=3,∴二项式展开式中x的系数为=10.故答案为:10.5.用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为立方米.【考点】棱柱、棱锥、棱台的体积.【分析】由已知求出圆锥的底面半径,进一步求得高,代入圆锥体积公式得答案.【解答】解:半径为1米的半圆的周长为=π,那么制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,那么2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:.6.已知α为锐角,且,那么sinα=.【考点】两角和与差的余弦函数.【分析】由α为锐角求出α+的范围,利用同角三角函数间的大体关系求出sin(α+)的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,那么sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为:7.依照有关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,通过x个小时,酒精含量降为p毫克/100毫升,且知足关系式(r为常数).假设某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,那么这人饮酒后需通过8小时方可驾车.(精准到小时)【考点】函数模型的选择与应用.【分析】先求出e r=,再利用89•e xr<20,即可得出结论.【解答】解:由题意,61=89•e2r,∴e r=,∵89•e xr<20,∴x≥8,故答案为8.8.已知奇函数f(x)是概念在R上的增函数,数列{x n}是一个公差为2的等差数列,知足f(x7)+f(x8)=0,那么x2017的值为4019.【考点】数列与函数的综合.【分析】设设x7=x,那么x8=x+2,那么f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,f (x+1)=0=f(0),x7=﹣1.设数列{x n}通项x n=x7+2(n﹣7).取得通项x n=2n﹣15.由此能求出x2020的值.【解答】解:设x7=x,那么x8=x+2,∵f(x7)+f(x8)=0,∴f(x)+f(x+2)=0,结合奇函数关于原点的对称性可知,∴f(x+1)=0=f(0),即x+1=0.∴x=﹣1,设数列{x n}通项x n=x7+2(n﹣7)=2n﹣15∴x2017=2×2017﹣15=4019.故答案为:40199.直角三角形ABC中,AB=3,AC=4,BC=5,点M是三角形ABC外接圆上任意一点,那么的最大值为12.【考点】向量在几何中的应用.【分析】成立坐标系,设M (),那么=(),,【解答】解:如图成立平面直角坐标系,A(0,0),B(3,0),C(0.4),三角形ABC外接圆(x﹣)2+(y﹣2)2=,设M (),那么=(),,,故答案为:12.10.已知f(x)=a x﹣b((a>0且且a≠1,b∈R),g(x)=x+1,假设对任意实数x均有f(x)•g (x)≤0,那么的最小值为4.【考点】大体不等式.【分析】依照对任意实数x均有f(x)•g(x)≤0,求出a,b的关系,可求的最小值.【解答】解:f(x)=a x﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(a x﹣b)(x+1)≤0.对任意实数x均成立,可得a x﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当x=y=时取等号.故的最小值为4.故答案为:4.二、选择题本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必需把答题纸上相应题序内的正确结论代号涂黑,选对得5分,不然一概得零分.11.假设空间三条直线a、b、c知足a⊥b,b⊥c,那么直线a与c()A.必然平行B.必然相交C.必然是异面直线D.平行、相交、是异面直线都有可能【考点】空间中直线与直线之间的位置关系.【分析】利用正方体的棱与棱的位置关系及异面直线所成的角的概念即可得出,假设直线a、b、c 知足a⊥b、b⊥c,那么a∥c,或a与c相交,或a与c异面.【解答】解:如下图:a⊥b,b⊥c,a与c能够相交,异面直线,也可能平行.从而假设直线a、b、c知足a⊥b、b⊥c,那么a∥c,或a与c相交,或a与c异面.应选D.12.在无穷等比数列{a n}中,,那么a1的取值范围是()A.B. C.(0,1) D.【考点】数列的极限.【分析】利用无穷等比数列和的极限,列出方程,推出a1的取值范围.【解答】解:在无穷等比数列{a n}中,,可知|q|<1,那么=,a1=∈(0,)∪(,1).应选:D.13.某班班会预备从含甲、乙的6名学生当选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有()A.336种B.320种C.192种D.144种【考点】排列、组合的实际应用.【分析】依照题意,分2种情形讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情形数量,由加法原理计算可得答案.【解答】解:依照题意,分2种情形讨论,假设只有甲乙其中一人参加,有C21•C43•A44=192种情形;假设甲乙两人都参加,有C22•C42•A44=144种情形,那么不同的发言顺序种数192+144=336种,应选:A.14.已知椭圆C1,抛物线C2核心均在x轴上,C1的中心和C2极点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,那么C1的左核心到C2的准线之间的距离为()x3﹣24y0﹣4A.B.C.1 D.2【考点】抛物线的简单性质;椭圆的简单性质.【分析】由表可知:抛物线C2核心在x轴的正半轴,设抛物线C2:y2=2px(p>0),那么有=2p (x≠0),将(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,即可求得抛物线方程,求得准线方程,设椭圆C1:(a>b>0),把点(﹣2,0),(,),即可求得椭圆方程,求得核心坐标,即可求得C1的左核心到C2的准线之间的距离.【解答】解:由表可知:抛物线C2核心在x轴的正半轴,设抛物线C2:y2=2px(p>0),那么有=2p (x≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,∴抛物线C2的标准方程为y2=4x.那么核心坐标为(1,0),准线方程为:x=﹣1,设椭圆C1:(a>b>0),把点(﹣2,0),(,)代入得,,解得:,∴C1的标准方程为+y2=1;由c==,左核心(,0),C1的左核心到C2的准线之间的距离﹣1,应选B.15.已知y=g(x)与y=h(x)都是概念在(﹣∞,0)∪(0,+∞)上的奇函数,且当x>0时,,h(x)=klog2x(x>0),假设y=g(x)﹣h(x)恰有4个零点,那么正实数k的取值范围是()A.B. C.D.【考点】根的存在性及根的个数判定.【分析】问题转化为g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,结合图象取得关于k的不等式组,解出即可.【解答】解:假设y=g(x)﹣h(x)恰有4个零点,即g(x)和h(x)有4个交点,画出函数g(x),h(x)的图象,如图示:,结合图象得:,解得:<k<log32,应选:C.三、解答题(此题总分值75分)本大题共有5题,解答以下各题必需在答题纸的规定区域(对应的题号)内写出必要的步骤.16.已知正四棱柱ABCD﹣A1B1C1D1,AB=a,AA1=2a,E,F别离是棱AD,CD的中点.(1)求异面直线BC1与EF所成角的大小;(2)求四面体CA1EF的体积.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)连接A1C1,由E,F别离是棱AD,CD的中点,可得EF∥AC,进一步取得EF∥A1C1,可知∠A1C1B为异面直线BC1与EF所成角.然后求解直角三角形得答案;(2)直接利用等体积法把四面体CA1EF的体积转化为三棱锥A1﹣EFC的体积求解.【解答】解:(1)连接A1C1,∵E,F别离是棱AD,CD的中点,∴EF∥AC,那么EF∥A1C1,∴∠A1C1B为异面直线BC1与EF所成角.在△A1C1B中,由AB=a,AA1=2a,得,,∴cos∠A1C1B=,∴异面直线BC1与EF所成角的大小为;(2).17.设双曲线C:,F1,F2为其左右两个核心.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)假设动点P与双曲线C的两个核心F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【考点】直线与双曲线的位置关系.【分析】(1)设M(x,y),,左核心,通过利用二次函数的性质求出对称轴,求出的取值范围.(2)写出P点轨迹为椭圆,利用,|PF1|+|PF2|=2a,结合余弦定理,和大体不等式求解椭圆方程即可.【解答】解:(1)设M(x,y),,左核心,=…=()对称轴,…(2)由椭圆概念得:P点轨迹为椭圆,,|PF1|+|PF2|=2a=…由大体不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4所求动点P的轨迹方程为…18.在某海边城市周围海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.(1)问10小时后,该台风是不是开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时刻为多久?【考点】圆方程的综合应用.【分析】(1)成立直角坐标系,…,那么城市A(0,0),当前台风中心,设t 小时后台风中心P的坐标为(x,y),由题意成立方程组,能求出10小时后,该台风尚未开始侵袭城市A.(2)t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,由此利用圆的性质能求出结果.【解答】解:(1)如图成立直角坐标系,…那么城市A(0,0),当前台风中心,设t小时后台风中心P的坐标为(x,y),则,现在台风的半径为60+10t,10小时后,|PA|≈184.4km,台风的半径为r=160km,∵r<|PA|,…∴10小时后,该台风尚未开始侵袭城市A.…(2)由(1)知t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,假设城市A受到台风侵袭,则,∴300t2﹣10800t+86400≤0,即t2﹣36t+288≤0,…解得12≤t≤24…∴该城市受台风侵袭的持续时刻为12小时.…19.设集合M a={f(x)|存在正实数a,使得概念域内任意x都有f(x+a)>f(x)}.(1)假设f(x)=2x﹣x2,试判定f(x)是不是为M1中的元素,并说明理由;(2)假设,且g(x)∈M a,求a的取值范围;(3)假设(k∈R),且h(x)∈M2,求h(x)的最小值.【考点】函数与方程的综合运用.【分析】(1)利用f(1)=f(0)=1,判定f(x)∉M1.(2)f(x+a)﹣f(x)>0,化简,通过判别式小于0,求出a的范围即可.(3)由f(x+a)﹣f(x)>0,推出,取得对任意x∈[1,+∞)都成立,然后分离变量,通过当﹣1<k≤0时,当0<k<1时,别离求解最小值即可.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M1.…(2)由…∴,…故a>1.…(3)由,…即:∴对任意x∈[1,+∞)都成立∴…当﹣1<k≤0时,h(x)min=h(1)=log3(1+k);…当0<k<1时,h(x)min=h(1)=log3(1+k);…当1≤k<3时,.…综上:…20.由n(n≥2)个不同的数组成的数列a1,a2,…a n中,假设1≤i<j≤n时,a j<a i(即后面的项a j小于前面项a i),那么称a i与a j组成一个逆序,一个有穷数列的全数逆序的总数称为该数列的逆序数.如关于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列的逆序数为4.(1)计算数列的逆序数;(2)计算数列(1≤n≤k,n∈N*)的逆序数;(3)已知数列a1,a2,…a n的逆序数为a,求a n,a n﹣1,…a1的逆序数.【考点】数列的求和.【分析】(1)由{a n}为单调递减数列,可得逆序数为99+98+ (1)(2)当n为奇数时,a1>a3>…>a2n﹣1>0.当n为偶数时:0>a2>a4>…>a2n.可得逆序数.(3)在数列a1,a2,…a n中,假设a1与后面n﹣1个数组成p1个逆序对,那么有(n﹣1)﹣p1不组成逆序对,可得在数列a n,a n﹣1,…a1中,逆序数为(n﹣1)﹣p1+(n﹣2)﹣p2+…+(n﹣n)﹣p n.【解答】解:(1)∵{a n}为单调递减数列,∴逆序数为.(2)当n为奇数时,a1>a3>…>a2n﹣1>0.当n为偶数时:∴0>a2>a4>…>a2n.当k为奇数时,逆序数为;当k为偶数时,逆序数为.(3)在数列a1,a2,…a n中,假设a1与后面n﹣1个数组成p1个逆序对,那么有(n﹣1)﹣p1不组成逆序对,因此在数列a n,a n﹣1,…a1中,逆序数为.。
2024年上海市高考高三数学模拟试卷试题及答案详解
2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
2017年高考数学上海卷-答案
上海市2017年普通高等学校招生全国统一考试数学答案解析一、填空题1.【答案】{3,4}解析:利用交集定义直接求解。
【考点】交集的求法。
2.【答案】3m =解析:36654P =⨯⨯,故3m =.【考点】实数值的求法。
3.【答案】(,0)-∞【解析】由11x x ->得:11110x x x ->⇒⇒<0<。
【考点】解分式不等式4.【答案】9π【解析】代解:球的体积为36π,设球的半径为R ,可得34π36π3R =,可得3R =,该球主视图为半径为3的圆,可得面积为2π9πR =.故答案为:9π.【考点】球的体积公式,以及主视图的形状和面积求法。
5.【解析】设i(,)z a b a b =+∈R ,代入23z =-,由复数相等的条件列式求得a ,b 的值得答案.【考点】复数代数形式的乘除运算。
6.【答案】11【解析】根据题意,由双曲线的方程可得a 的值,结合双曲线的定义可得12||||||6PF PF -=,解可得2||PF 的值,即可得答案.【考点】双曲线的几何性质。
7.【答案】(4,3,2)-【解析】解:如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵1DB 的坐标为(4,3,2),∴(4,0,0)A ,1(0,3,2)C ,∴1(4,3,2)AC =-.故答案为:(4,3,2)-.【考点】空间向量的坐标的求法。
8.【答案】89【解析】由奇函数的定义,当0x >时,0x -<,代入已知解析式,即可得到所求0x >的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.【考点】函数的奇偶性和运用。
9.【答案】13【解析】从四个函数中任选2个,基本事件总数246n C ==,再利用列举法求出事件A :“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A :“所选2个函数的图象有且只有一个公共点”的概率.【考点】概率的求法。
2017年上海市浦东区高考数学一模试卷(含答案)
上海市浦东新区2017届高三一模数学试卷2016。
12一. 填空题(本大题共12题,1—6每题4分,7-12每题5分,共54分)1。
已知U R =,集合{|421}A x x x =-≥+,则U C A =2。
三阶行列式351236724---中元素5-的代数余子式的值为 3。
8(1)2x -的二项展开式中含2x 项的系数是4。
已知一个球的表面积为16π,则它的体积为5. 一个袋子中共有6个球,其中4个红色球,2个蓝色球,这些球的质地和形状一样,从中 任意抽取2个球,则所抽的球都是红色球的概率是6。
已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6,则b =7. 若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =8.函数()cos sin )f x x x x x =+-的最小正周期为 9。
过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10。
若关于x 的不等式1|2|02x x m --<在区间[0,1]内恒 成立,则实数m 的范围11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是边BC 、CD 上的两个动点,且MN =AM AN ⋅的取值范围是12。
已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=二. 选择题(本大题共4题,每题5分,共20分)13。
将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A 。
cos(2)3y x π=+ B 。
cos(2)6y x π=+C. cos(2)3y x π=- D 。
cos(2)6y x π=- 14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像( )A 。
2017年上海市春季高考数学试题(含答案)
(3)设数列 { xn } 中, x1 ∈ (−1,1) , xn +1 = (−1) n +1 使得 x3 ≥ xn 对任意 n ∈ N 成立.
*
3 xn − 1 , n ∈ N * ,求 x1 的取值范围, 3 − xn
3
【简答】 一、填空题: 1. {1, 2,3, 4} 7. 2 二、选择题: 13. D 三、解答题: 17. (1)4; (2) arctan 14. C 15. 2. 8.
2 ; 2
1 ; (2)作差法 3
4
′
两点, P 为 P 关于 y 轴的对称点,直线 P Q 与 y 轴交于点 N (0, n) , (1)若点 (2, 0) 是 Γ 的一个焦点,求 Γ 的渐近线方程; (2)若 b = 1 ,点 P 的坐标为 (−1, 0) ,且 NP = (3)若 m = 2 ,求 n 关于 b 的表达式. 21.已知函数 f ( x) = log 2
)
C 对角线不相等的菱形 D 六边形
16.如图所示,正八边形 A1 A2 A3 A4 A5 A6 A7 A8 的边长为 2 , 若 P 为该正八边形边上的动点, 则 A1 A3 ⋅ A1 P 的取值范围是( A [0,8 + 6 2] C [−8 − 6 2, 2 2]
)
B [−2 2,8 + 6 2] D [−8 − 6 2,8 + 6 2]
18.设 a ∈ R ,函数 f ( x) =
2x + a , 2x + 1
(1)求 a 的值,使得 f ( x) 为奇函数; (2)若 f ( x) <
a+2 对任意 x ∈ R 成立,求 a 的取值范围. 2
2017年高考数学真题(含答案)
2017年高考数学真题(含答案)本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.函数()21x f x =-的定义域为 A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为 A .33 B .32 C .233 D .2635.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |= A .1 B .2 C .3 D . 2 7.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离为3,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα=; (Ⅱ)若,,1962AB ππαβ===,求BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当P A =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x ) =ln x +1x -1,1()ln x g x x-= (Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。
2017年上海市高中数学竞赛试卷及答案 精品
2017年上海市高中数学竞赛试卷(2017年3月27日 星期日 上午8:30~10:30)【说明】解答本试卷不得使用计算器一、填空(前4小题每小题7分,后4小题每小题8分,供60分)1.计算:0!1!2!100!i +i +i ++i = 95+2i .(i 表示虚数单位)2.设θ是某三角形的最大内角,且满足sin 8sin 2θθ=,则θ可能值构成的集合是279,,,,3321010πππππ⎧⎫⎨⎬⎩⎭.(用列举法表示) 3.一个九宫格如图,每个小方格内都填一个复数,它的每行、每列及对角线上三个格内的复数和都相等,则x 表示的复数是 1122i + .4.如图,正四面体ABCD 的棱长为6cm ,在棱AB 、CD 上各有一点E 、F ,若1AE =cm ,2CF =cm ,则线段EF.5.若关于x 的方程4(3)250x xa ++⋅+=至少有一个实根在区间[1,2]内,则实数a 的取值范围为 8.25,3⎡---⎣ . 6.a 、b 、c 、d 、e 是从集合{}1,2,3,4,5中任取的5个元素(允许重复),则abcd e +为奇数的概率为 17943125. 7.对任意实数x 、y ,函数()f x 满足()()()1f x f y f x y xy +=+--,若(1)1f =,则对负整数n ,()f n的表达式 2322n n +- . 8.实数x 、y 、z 满足0x y z ++=,且2221x y z ++=,记m 为2x 、2y 、2z 中最大者,则m 的最小值为 12. i x 1A B F D E二、(本题满分14分)设()f x =a 的值:至少有一个正数b ,使()f x 的定义域和值域相同.解:若a =0,则对每个正数b,()f x =[)0,+∞,故a =0满足条件若a >0,则对每个正数b,()f x =D ={}[)20,0,b x a x bx a ⎛⎤+≥=-∞-+∞ ⎥⎝⎦,但()f x =A [)0,⊆+∞ 故D ≠A ,即a >0不合条件若a <0,则对每个正数b,()f x =D =0,b a ⎡⎤-⎢⎥⎣⎦, 由于此时()max 2b f x f a ⎛⎫=-= ⎪⎝⎭,故()f x =⎡⎢⎣所以,04a b a a a <⎧⎪-=⇔⇔=-⎨=-⎪⎩综合所述,a 的值为0或-4三、(本题满分14分) 已知双曲线22221x y a b-=(a 、b ∈+R )的半焦距为c ,且2b ac =.,P Q 是双曲线上任意两点,M 为PQ 的中点,当PQ 与OM 的斜率PQ k 、OM k 都存在时,求PQ OM k k ⋅的值. 解:∵M 是PQ 的中点,设M (x 0,y 0),P (x 0+α,y 0+β-),Q (x 0-α,y 0-β) 于是00,OM PQ y k k x βα== ∵P 、Q 都在双曲线上,所以 ()()()()2222220022222200220020220440OM PQ b x a y a b b x a y a b b x a y y b ac c k k x a a aαβαβαββα+-+=---=-=∴⋅====相减得: 又由)222212c a b c a b ac⎧=+⎪⇒=⎨=⎪⎩舍负根∴12OM PQ k k ⋅=四、(本题满分16分)设[]x 表示不超过实数x 的最大整数.求集合2|,12004,2005k n n k k ⎧⎫⎡⎤⎪⎪=≤≤∈⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭N 的元素个数. 解:由()2212111002200520052005k k k k ++-=≤≤,解得 即当()()2222111,2,3,,100212005200520052005k k k k k ⎡⎤⎡⎤++⎡⎤⎡⎤===+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 时或 22210021500,0,1,2,,1002,0,1,,500200520052005k k ⎡⎤⎡⎤⎡⎤==∴=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 当时能取遍 ()()222222222211003,1004,,2004,1,2005200511003100420041,,,,2005200520052005200520041002100210031002501,200520052k k k k k k n n +=->⎡⎤+⎡⎤⎡⎤⎡⎤⎡⎤≥+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦-=⎡⎤⎡⎤>⎢⎥⎢⎥⎣⎦⎣⎦= 另外,当时由于故即各不相同,这些数有个注意到=就知集合,12004,50110021503005k k N ⎧⎫⎡⎤⎪⎪≤≤∈⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭共有+=个元素.五、(本题满分16分)数列{}n f的通项公式为n n n f ⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,n ∈+Z . 记1212C +C +C n n n n n n S f f f =,求所有的正整数n ,使得n S 能被8整除.解:记αβ==则()()()()1000S11n ni i i i i in n ni in nn ni i i in ni in nC CC Cαβαβαβαβ=====--⎫⎤=-=+-+⎪⎦⎭⎡⎤⎥=-⎥⎝⎭⎝⎭⎦∑∑注意到3553,12222+=⋅=,可得()1121S3S Sn n n n nn n++++⎧⎫⎡⎤⎡⎤⎡⎤⎪⎢⎥⎢⎥=-+--⎢⎥⎬⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎣⎦⎭=-*因此,S n+2除以8的余数,完全由S n+1、S n除以8的余数确定11211122122,3S C f S C f C f==+=,故由(*)式可以算出{}n S各项除以8的余数依次是1,3,0,5,7,0,1,3,……,它是一个以6为周期的数列,从而83nS n⇔故当且仅当38nn S时,。
上海高三数学一模试卷
上海高三数学一模试卷一、选择题(本题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的。
)1. 若函数f(x) = 2x^2 - 3x + 1,则f(-1)的值为:A. 0B. 4C. -4D. 62. 已知等差数列{a_n}的首项a_1 = 2,公差d = 3,则a_5的值为:A. 17B. 14C. 13D. 113. 已知圆C的方程为(x-2)^2 + (y-3)^2 = 25,圆心C到直线x + y - 5 = 0的距离为:A. 4B. 5C. 3D. 24. 若向量a = (3, -4),向量b = (-2, 3),则向量a与向量b的点积为:A. 5B. -5C. 2D. -25. 已知函数y = x^3 - 6x^2 + 9x + 1,求导数y'的值为:A. 3x^2 - 12x + 9B. x^3 - 6x^2 + 9C. 3x^2 - 12x + 1D. x^3 - 6x^2 + 9x6. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的值为:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}7. 已知函数f(x) = sin(x),g(x) = cos(x),则f(x)g(x)的值为:A. sin(x)cos(x)B. sin^2(x)C. cos^2(x)D. sin(x) + cos(x)8. 已知复数z = 3 + 4i,求|z|的值为:A. 5B. √7C. √25D. √419. 已知函数y = e^x,求y'的值为:A. e^xB. xC. 1D. ln(e)10. 已知矩阵A = [[1, 2], [3, 4]],B = [[2, 0], [1, 3]],则AB 的值为:A. [[2, 6], [7, 12]]B. [[5, 6], [3, 4]]C. [[4, 6], [3, 6]]D. [[2, 4], [6, 8]]二、填空题(本题共5小题,每小题4分,共20分。
2017年上海市宝山区高考数学一模试卷含详解
2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)=.2.(4分)设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B=.3.(4分)不等式的解集为.4.(4分)椭圆(θ为参数)的焦距为.5.(4分)设复数z满足(i为虚数单位),则z=.6.(4分)若函数的最小正周期为aπ,则实数a的值为.7.(5分)若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.(5分)已知向量,,则在的方向上的投影为.9.(5分)已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.(5分)某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.(5分)设常数a>0,若的二项展开式中x5的系数为144,则a=.12.(5分)如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.(5分)某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80B.96C.108D.11015.(5分)设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1B.2C.3D.416.(5分)在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.(14分)已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.19.(14分)设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.20.(16分)设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.21.(18分)设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.2017年上海市宝山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)=2.【考点】6F:极限及其运算.【专题】35:转化思想;4R:转化法;52:导数的概念及应用.【分析】分子、分母都除以n,从而求出代数式的极限值即可.【解答】解:==2,故答案为:2.【点评】本题考查了极限的求值运算,是一道基础题.2.(4分)设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B= {﹣1,0,1} .【考点】1H:交、并、补集的混合运算.【专题】37:集合思想;4O:定义法;5J:集合.【分析】根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解析:因为全集U=R,集合B={x|x≥2},所以∁U B={x|x<2}=(﹣∞,2),且集合A={﹣1,0,1,2,3},所以A∩∁U B={﹣1,0,1}故答案为:{﹣1,0,1}.【点评】本题考查了集合的定义与计算问题,是基础题目.3.(4分)不等式的解集为(﹣2,﹣1).【考点】7E:其他不等式的解法.【专题】35:转化思想;4R:转化法.【分析】不等式转化(x+1)(x+2)<0求解即可.【解答】解:不等式等价于(x+1)(x+2)<0,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).【点评】本题考查分式不等式的解法,基本知识的考查.4.(4分)椭圆(θ为参数)的焦距为6.【考点】QL:椭圆的参数方程.【专题】17:选作题;34:方程思想;4G:演绎法;5S:坐标系和参数方程.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.【点评】本题考查椭圆的参数方程,考查椭圆的性质,正确转化为普通方程是关键.5.(4分)设复数z满足(i为虚数单位),则z=1+i.【考点】A5:复数的运算.【专题】11:计算题;35:转化思想;4A:数学模型法;5N:数系的扩充和复数.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的充要条件,是基础题.6.(4分)若函数的最小正周期为aπ,则实数a的值为1.【考点】H1:三角函数的周期性.【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.【点评】本题主要考查行列式的计算,二倍角公式,余弦函数的周期性,属于基础题.7.(5分)若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为f ﹣1(x)=2x﹣1..【考点】4R:反函数.【专题】33:函数思想;4O:定义法.【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.【解答】解:函数f(x)=1+log a x图象过点(8,4),可得:4=1+log a8,解得:a=2.∴f(x)=y=1+log2x则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.【点评】本题考查了反函数的求法,属于基础题.8.(5分)已知向量,,则在的方向上的投影为.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;38:对应思想;41:向量法;5A:平面向量及应用.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:【点评】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.9.(5分)已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】15:综合题;34:方程思想;4G:演绎法;5F:空间位置关系与距离.【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,S侧==18π.故答案为18π.【点评】本题考查该圆锥的侧面积,考查学生的计算能力,比较基础.10.(5分)某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;35:转化思想;4O:定义法;5I:概率与统计.【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.11.(5分)设常数a>0,若的二项展开式中x5的系数为144,则a=2.【考点】DA:二项式定理.【专题】34:方程思想;35:转化思想;5O:排列组合;5P:二项式定理.【分析】利用通项公式T r=(r=0,1,2,…,9).令9﹣2r=5,解得+1r,即可得出.【解答】解:T r==(r=0,1,2,…,9).+1令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.【点评】本题考查了二项式定理的应用、组合数的计算公式,考查了推理能力与计算能力,属于基础题.12.(5分)如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为6.【考点】D9:排列、组合及简单计数问题.【专题】12:应用题;32:分类讨论;4G:演绎法;5O:排列组合.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.【点评】本题考查组合知识的运用,考查等差数列的求和公式,属于中档题.二.选择题(本大题共4题,每题5分,共20分)13.(5分)设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4R:转化法;5L:简易逻辑.【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.【点评】本题考查了充分必要条件,考查纯虚数的定义,是一道基础题.14.(5分)某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80B.96C.108D.110【考点】B3:分层抽样方法.【专题】15:综合题;34:方程思想;4G:演绎法;5I:概率与统计.【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为:=108,故选:C.【点评】本题主要考查分层抽样的应用,根据比例关系是解决本题的关键.15.(5分)设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1B.2C.3D.4【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题;35:转化思想;4O:定义法;5I:概率与统计.【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P(MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.【点评】本题考查命题真假判断,是基础题,解题时要认真审题,注意对立事件概率计算公式、互斥事件概率加法公式、相互独立事件概率乘法公式的合理运用.16.(5分)在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3C.D.2【考点】3H:函数的最值及其几何意义.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f(t)|=|t2+t+f(0)|=|f(2)+f(﹣2)+f(0)|≤|t(t+2)|+|t(t﹣2)|+|4﹣t2|=|t|(t+2)+|t|(2﹣t)+(4﹣t2)═﹣(|t|﹣1)2+≤,故选:C.【点评】本题考查了求函数的解析式问题,考查二次函数的性质以及不等式的性质,求函数最值问题,是一道中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】11:计算题;35:转化思想;4O:定义法;5F:空间位置关系与距离.【分析】(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC﹣A1B1C1的体积.(2)由AB∥A1B1,知∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),由此能求出异面直线A1C与AB所成的角.【解答】解:(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,则,解得a=3,h=4,∴正三棱柱ABC﹣A1B1C1的体积V=S△ABC•h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.【点评】本题考查正三棱柱的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.18.(14分)已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【考点】K4:椭圆的性质.【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=•=•=,由丨AB丨=,=,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,弦长公式的应用,考查计算能力,属于中档题.19.(14分)设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.【考点】8K:数列与不等式的综合.【专题】34:方程思想;35:转化思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)由4x n﹣S n﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n ≥2时,由S n=4x n﹣3,可得x n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.﹣y n=x n=,且y1=2,利用y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n (2)y n+1)与等比数列的求和公式即可得出y n.代入不等式,化简即可﹣y n﹣1得出.【解答】解:(1)∵4x n﹣S n﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由S n=4x n﹣3,∴x n=S n﹣S n﹣1=4x n﹣3﹣(4x n﹣1﹣3),∴x n=,∴数列{x n},是等比数列,公比为.∴x n=.(2)y n﹣y n=x n=,且y1=2,+1∴y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴y n=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.【点评】本题考查了数列递推关系、等比数列的通项公式与求和公式、“累加求和”方法、不等式的解法,考查了推理能力与计算能力,属于中档题.20.(16分)设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.【考点】4N:对数函数的图象与性质.【专题】33:函数思想;35:转化思想;4R:转化法.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即cos(2n x)<0对n∈N均成立,若x是满足条件的实数,则有cosx≤﹣,因为,若﹣<cosx<0,则cos2x=2cos2x﹣1<﹣,则cos4x=2cos22x﹣1>0,所以必有cos(2n x)≤﹣;得|cos(2n x)﹣|≥,又|cos2x+|=2|cosx+||cosx﹣|≥|cosx+|,得|cosx+|≤|cos2x+|,重复运用得到|cosx+|≤…≤|cos(2n x)+|<n为自然数,∴cosx+=0,级x=2kπ±,k∈Z.验证,当x=2kπ±,k∈Z时,有cos(2n x)=﹣,满足题意.所以,x的取值范围为{x|x=2kπ±,k∈Z}【点评】本题考查了对数的性质及其运算以及不等式恒成立的问题在对数与三角函数中的运用.有点难度.21.(18分)设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【考点】KC:双曲线的性质.【专题】11:计算题;23:新定义;35:转化思想;37:集合思想;4R:转化法;5D:圆锥曲线的定义、性质与方程;5J:集合.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得a n=,S n=n2,则S m+S n﹣λS k >0恒成立,⇔>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n≥2时表示双曲线,故a n=2=,∴a1+a2+a3+…+a n=,∵B=,∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n()=3•﹣m=n2,∴S m+S n﹣λS k>0恒成立,⇔>λ恒成立,∵m+n=3k,且m≠n,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:设整数集合A={x|x=(﹣1)n•F n,n∈N*,n≥2},其中{F n}为斐波那契数列,即F1=F2=1,F n+2=F n+F n+1,n∈N*,下证:整数集合A既是自生集又是N*的基底集,①由F n=F n+2﹣F n+1得:(﹣1)n•F n=(﹣1)n+2•F n+2+(﹣1)n+1•F n+1,故A是自生集;②对于任意n≥2,对于任一正整数t∈[1,F2n﹣1],存在集合Ar一个有限子集+1{a1,a2,…,a m},使得t=a1+a2+…+a m,(|a i<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,,F2k+3]讨论,则n=k+1时,只须对任何整数m∈[F2k+1,则m=F2k+2+,∈(﹣F2k+1,0),若m<F2k+2+m′,m′∈[1,F2k+1),故=﹣F2k+1由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k的元素的和.+1﹣F2k+1+m′=(﹣1)2k+2•F2k+2+(﹣1)2k+1•F2k+1+m′,因为m=F2k+2的元素的和.所以m可以表示为集合A中有限个绝对值小于F2k+3,则结论显然成立.若m=F2k+2<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),若F2k+2的元素的和.由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.【点评】本题考查的知识点是新定义“自生集”和“N*的基底集”,双曲线的性质,数列求和,集合的元素,本题综合性强,转化困难,属于难题.。
2017年全国卷3文科数学高考真题 试题及答案解析
an 2n
1
的前 n 项和.
18.(12 分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每
瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,
每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于 25,需求量为 500 瓶;
2
V r 2h
3 2
2 1
3 4
,故选
B.
10.【答案】C 【解析】由三垂线定理逆定理,平面内的一条直线垂直于平面的斜线,则这条直线也垂
直于斜线在平面内的射影。
A 项中,若 A1E DC1 ,那么 D1E DC1 ,显然不成立; B 项中,若 A1E BD 那么 BD AE 也显然不成立; C 项 中 , 若 A1E BC1 , 那 么 BC1 B1C 成 立 , 反 之 BC1 B1C 成 立 也 必 有 BC1 A1E ,故 C 项正确。 D 项中,若 A1E AC ,则 AE AC 不成立。
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题, 每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:60 分.
17.(12 分)设数列an 满足 a1 3a2 (2n 1)a n 2n .
(1)求
an
的通项公式;(2)求数列
2.【答案】B
【解析】由题意: z 1 2i .本题选择 B 选项.
3.【答案】A
【解析】由折线图,7 月份后月接待游客量减少,A 错误;本题选择 A 选项.
4.【答案】A
【解析】 sin 2 2sin cos sin cos 2 1 7 .本题选择 A 选项.
2017年数学三真题答案解析
所以Z的概率密度为
O<z <L
几(z)�r-- 2, 2<z<3,
(23)解
0'
其他.
CI) Z1 的分布函数为
厂王) -], F(z)�P{Z,,s;;z}�P{IX,-pl,s;;z}�
z�o.
o,
z < 0,
所以Z1 的概率密度为 f(z)�{f•';';,'
z歹o,
z<O.
=厂叮 z 厂 C II) EZ1
已AB与C相互独立,故应选C. (8) B
解 因为X, �NCµ ,1),
所以X,
— µ
�N(O,l),
�ex, 则
—µ尸~贮(n), 故A正确;
,-1
一` (n — 1)S 2
�(X,
,-1
因为 z =
�X气n — 1)'
C,
1
故C正确;
因为
X
�N(
µ
,—1 ), n
X—µ
所以
�N(O,l),
1
石
(z)dz =
ze 三 dz
芦a o
z a.
v冗
z z a
=
卢
�1 n
EZ1, 令Z=亡让,得
6
的矩估计最为aA
石
dx
。 =
1 +=
1
4J (1+x2
—
1 1+2x 2)dx
。) 勹1 (arctanx
/
产
0
—
过 了arctan,/2x
+=
(17)解
2 —迈 = 16 兀
n (--;;) --;; 杻心: -杻心: n k
高考数学《函数》专题复习
函数一、17届 一模一、填空、选择题1、(宝山区2017届高三上学期期末) 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为2、(崇明县2017届高三第一次模拟)设函数2log ,0()4,0x x x f x x >⎧⎪=⎨⎪⎩≤,则((1))f f -= .3、(虹口区2017届高三一模)定义{}()f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{}2.13=,{}44=.以下关于“取上整函数”性质的描述,正确的是( ).①(2)2()f x f x =; ②若12()()f x f x =,则121x x -<; ③任意12,x x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=..A ①② .B ①③ .C ②③ .D ②④4、(黄浦区2017届高三上学期期终调研)已知函数()y f x =是奇函数,且当0x ≥时,2()log (1)f x x =+.若函数()y g x =是()y f x =的反函数,则(3)g -= .5、(静安区2017届向三上学期期质量检测)已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.6、(闵行区2017届高三上学期质量调研)函数()1f x =的反函数是_____________.7、(浦东新区2017届高三上学期教学质量检测)已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有()*f n N ∈,且()()3f f n n =恒成立,则()()20171999f f -=____________.8、(普陀区2017届高三上学期质量调研)函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f .9、(青浦区2017届高三上学期期末质量调研)如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和(012)am a <<,不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD .设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位2m )的图像大致是……………………( ).A .B .C .D .10、(松江区2017届高三上学期期末质量监控)已知函数()1xf x a =-的图像经过(1,1)点,则1(3)f -=▲ .11、(徐汇区2017届高三上学期学习能力诊断)若函数22,0(),0xx f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(],1-∞,则实数m 的取值范围是____________12、(杨浦区2017届高三上学期期末等级考质量调研)若函数2()log 1x af x x -=+的反函数的图像过点(2,3)-,则a =________.13、(长宁、嘉定区2017届高三上学期期末质量调研)若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.14、(崇明县2017届高三第一次模拟)下列函数在其定义域内既是奇函数又是增函数的是A .tan y x =B .3xy =C .13y x =D .lg y x =15、(浦东新区2017届高三上学期教学质量检测)已知函数()y f x =的反函数为()1y f x -=,则函数()y f x =-与()1y f x -=-的图像( ). A .关于y 轴对称 B .关于原点对称C .关于直线0x y +=对称D .关于直线0x y -=对称16、(普陀区2017届高三上学期质量调研)设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是 .17、(普陀区2017届高三上学期质量调研)方程()()23log 259log 22-+=-x x 的解=x .18、(普陀区2017届高三上学期质量调研)已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是 .19、(奉贤区2017届高三上学期期末)方程1lg )3lg(=+-x x 的解=x ____________ 20、(金山区2017届高三上学期期末)函数()2xf x m =+的反函数为1()y fx -=,且1()y f x -=的图像过点(5,2)Q ,那么m =二、解答题1、(崇明县2017届高三第一次模拟)设12()2x x af x b+-+=+(,a b 为实常数).(1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c ,都有2()33f x c c <-+成立?若存在试找出所有这样的D ;若不存在,请说明理由.2、(虹口区2017届高三一模)已知二次函数2()4f x ax x c =-+的值域为[)0,+∞.(1)判断此函数的奇偶性,并说明理由; (2)判断此函数在2,a⎡⎫+∞⎪⎢⎣⎭的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域.3、(黄浦区2017届高三上学期期终调研)已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)f t +()(2)f t f =+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围;(3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.4、(静安区2017届向三上学期期质量检测)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x-=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.5、(普陀区2017届高三上学期质量调研)已知∈a R ,函数||1)(x a x f += (1)当1=a 时,解不等式x x f 2)(≤;(2)若关于x 的方程02)(=-x x f 在区间[]1,2--上有解,求实数a 的取值范围.6、(青浦区2017届高三上学期期末质量调研)已知函数2()2(0)f x x ax a =->. (1)当2a =时,解关于x 的不等式3()5f x -<<;(2)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式;(3)函数()y f x =在[ 2]t t +,的最大值为0,最小值是4-,求实数a 和t 的值.7、(松江区2017届高三上学期期末质量监控)已知函数21()(21x xa f x a ⋅-=+为实数) . (1)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由; (2)若对任意的1x ≥ ,都有1()3f x ≤≤,求a 的取值范围.8、(徐汇区2017届高三上学期学习能力诊断)某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?参考答案:一、填空、选择题1、解析:1+log 8a =4,log 8a =3,化为指数:3a =8,所以,a =221log y x =+,即:12y x -=,所以反函数为12x y -=2、-23、C4、-75、C6、()()211(1)fx x x -=-≥ 7、548、【解析】∵x ≥1,∴y=1+2log x ≥1,由y=1+2log x ,解得x=2y ﹣1,故f ﹣1(x )=2x ﹣1(x ≥1).故答案为:2x ﹣1(x ≥1). 9、B 10、211、01m <≤ 12、2a =13、【解析】函数a x x f ++=)1(log )(2的反函数的图象经过点(4,1), 即函数a x x f ++=)1(log )(2的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3.故答案为:3. 14、C 15、D16、【解析】由题意:函数()11)(32+++=mx x m x f 是偶函数,则mx=0,故得m=0, 那么:f (x )=23x +1,根据幂函数的性质可知:函数f (x )的单点增区间为(0,+∞). 故答案为:(0,+∞). 17、【解析】由题意可知:方程log 2(9x ﹣5)=2+log 2(3x ﹣2)化为:log 2(9x ﹣5)=log 24(3x ﹣2) 即9x ﹣5=4×3x ﹣8 解得x=0或x=1;x=0时方程无意义,所以方程的解为x=1. 故答案为1. 18、【解析】定义域为R 的函数y=f (x )满足f (x +2)=f (x ), 可得f (x )的周期为2, F (x )=f (x )﹣g (x ),则令F (x )=0,即f (x )=g (x ), 分别作出y=f (x )和y=g (x )的图象, 观察图象在[﹣5,10]的交点个数为14.x =0时,函数值均为1,则函数F (x )零点的个数是15. 故答案为:15.19、5 20、1二、解答题1、解:(1)证明:511212)1(2-=++-=f ,412121)1(=+-=-f ,所以)1()1(f f -≠-,所以)(x f 不是奇函数............................3分(2))(x f 是奇函数时,)()(x f x f -=-,即bab a x x x x ++--=++-++--112222对定义域内任意实数x 都成立即0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x ,对定义域内任意实数x 都成立...........................................5分所以⎩⎨⎧=-=-042,02ab b a 所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a .经检验都符合题意........................................8分(2)当⎩⎨⎧==21b a 时,121212212)(1++-=++-=+x x x x f ,因为02>x ,所以112>+x ,11210<+<x, 所以21)(21<<-x f .......................................10分 而4343)23(3322≥+-=+-c c c 对任何实数c 成立;所以可取D =R 对任何x 、c 属于D ,都有33)(2+-<c c x f 成立........12分当⎩⎨⎧-=-=21b a 时,)0211212212)(1≠-+-=---=+x x f xx x (, 所以当0>x 时,21)(-<x f ;当0<x 时,21)(>x f .............14分1)因此取),0(+∞=D ,对任何x 、c 属于D ,都有33)(2+-<c c x f 成立. 2)当0<c 时,3332>+-c c ,解不等式321121≤-+-x 得:75log 2≤x .所以取]75log ,(2-∞=D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立.....16分2、解:(1)由二次函数2()4f x ax x c =-+的值域为[)0,+∞,得0a >且41604ac a-=,解得4ac =.……………………2分(1)4f a c =+-,(1)4f a c -=++,0a >且0c >,从而(1)(1)f f -≠,(1)(1)f f -≠-,∴此函数是非奇非偶函数.……………………6分(2)函数的单调递增区间是2,a ⎡⎫+∞⎪⎢⎣⎭.设1x 、2x 是满足212x x a >≥的任意两个数,从而有21220x x a a->-≥,∴222122()()x x a a ->-.又0a >,∴222122()()a x a x a a ->-,从而22212424()()a x c a x c a a a a-+->-+-,即22221144ax x c ax x c -+>-+,从而21()()f x f x >,∴函数在2,a ⎡⎫+∞⎪⎢⎣⎭上是单调递增.……………………10分(3)2()4f x ax x c =-+,又0a >,02x a=,[)1,x ∈+∞ 当021x a =≥,即02a <≤时,最小值0()()0g a f x == 当021x a =<,即2a >时,最小值4()(1)44g a f a c a a==+-=+-综上,最小值002()442a g a a a a <≤⎧⎪=⎨+->⎪⎩……………………14分 当02a <≤时,最小值()0g a = 当2a >时,最小值4()4(0,)g a a a=+-∈+∞ 综上()y g a =的值域为[0,)+∞……………………16分3、解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+ ……2分 此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+,故()32f x x =+不属于集合M . ……………………………4分(2)由2()lg2af x x =+属于集合M ,可得 方程22lg lg lg (2)226a a ax x =++++有实解22[(2)2]6(2)a x x ⇔++=+有实解2(6)46(2)0a x ax a ⇔-++-=有实解,………7分若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤+故所求a的取值范围是[1212-+. ……………………………10分 (3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔+2222(2)244x x b x bx b ++=+++⇔32440x bx ⨯+-=, ………………12分令()3244x g x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点;当0b <时,(0)10g =-<,11()320bg b =⨯>,故()g x 在1(,0)b内至少有一个零点;故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈. ………………………16分 4、解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分(3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xkx x k x +>+++∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k xk x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33min k k k k x h ……………………………1分5、【解】(1)当1=a 时,||11)(x x f +=,所以x x f 2)(≤x x 2||11≤+⇔……(*) ①若0>x ,则(*)变为,0)1)(12(≥-+x x x 021<≤-⇔x 或1≥x ,所以1≥x ;②若0<x ,则(*)变为,0122≥+-xx x 0>⇔x ,所以φ∈x 由①②可得,(*)的解集为[)+∞,1。
2017年上海市松江区高考数学一模试卷解析版
实用标准文档文案大全2017年上海市松江区高考数学一模试卷一.填空题(本大题满分56分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.设集合M={x|x2=x},N={x|lgx≤0},则M∩N2.已知a,b∈R,i是虚数单位.若a+i=2﹣bi,则(a+bi)2=3.已知函数f(x)=a x﹣1的图象经过(1,1)点,则f﹣1(3)4.不等式x|x﹣1|>0的解集为5.已知向量=(sinx,cosx),=(sinx,sinx),则函数f(x)=?的最小正周期为6.里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道.在由2名中国运动员和6名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为7.按如图所示的程序框图运算:若输入x=17,则输出的x值是8.设(1+x)n=a0+a1x+a2x2+a3x3+…+a n x n,若=,则n=9.已知圆锥底面半径与球的半径都是1cm,如果圆锥的体积与球的体积恰好也相等,那么这个圆锥的侧面积是cm2.10.设P(x,y)是曲线C: +=1上的点,F1(﹣4,0),F2(4,0),则|PF1|+|PF2|的最大值=11.已知函数f(x)=,若F(x)=f(x)﹣kx在其定义域内有3个零点,则实数k∈12.已知数列{a n}满足a1=1,a2=3,若|a n+1﹣a n|=2n(n∈N*),且{a2n﹣1}是递增数列、{a2n}是递减数列,则=实用标准文档文案大全二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知a,b∈R,则“ab>0“是“+>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在截面A1DB上,则线段AP的最小值等于()A.B.C.D.15.若矩阵满足:a11,a12,a21,a22∈{0,1},且=0,则这样的互不相等的矩阵共有()A.2个B.6个C.8个D.10个16.解不等式()x﹣x+>0时,可构造函数f(x)=()x﹣x,由f(x)在x∈R是减函数,及f(x)>f(1),可得x<1.用类似的方法可求得不等式arcsinx2+arcsinx+x6+x3>0的解集为()A.(0,1] B.(﹣1,1)C.(﹣1,1] D.(﹣1,0)三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.如图,在正四棱锥P﹣ABCD中,PA=AB=a,E是棱PC的中点.(1)求证:PC⊥BD;(2)求直线BE与PA所成角的余弦值.实用标准文档文案大全18.已知函数F(x)=,(a为实数).(1)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由;(2)若对任意的x≥1,都有1≤f(x)≤3,求a的取值范围.19.上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角k∠HAP=45°,过O点与OA成120°的地面上选B点,使仰角∠HPB=45°(点A、B、O都在同一水平面上),此时测得∠OAB=27°,A与B之间距离为33.6米.试求:(1)塔高(即线段PH的长,精确到0.1米);(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).20.已知双曲线C:﹣=1经过点(2,3),两条渐近线的夹角为60°,直线l交双曲线于A、B两点.(1)求双曲线C的方程;(2)若l过原点,P为双曲线上异于A,B的一点,且直线PA、PB的斜率k PA,实用标准文档文案大全k PB均存在,求证:k PA?k PB为定值;(3)若l过双曲线的右焦点F1,是否存在x轴上的点M(m,0),使得直线l绕点F1无论怎样转动,都有?=0成立?若存在,求出M的坐标;若不存在,请说明理由.21.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“H型数列”.(1)若数列{a n}为“H型数列”,且a1=﹣3,a2=,a3=4,求实数m的取值范围;(2)是否存在首项为1的等差数列{a n}为“H型数列”,且其前n项和S n 满足S n<n2+n(n∈N*)?若存在,请求出{a n}的通项公式;若不存在,请说明理由.(3)已知等比数列{a n}的每一项均为正整数,且{a n}为“H型数列”,b n=a n,c n=,当数列{b n}不是“H型数列”时,试判断数列{c n}是否为“H型数列”,并说明理由.2017年上海市松江区高考数学一模试卷参考答案与试题解析一.填空题(本大题满分56分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.设集合M={x|x2=x},N={x|lgx≤0},则M∩N {1} .【考点】交集及其运算.【分析】先求出集合M和N,由此能求出M∩N.【解答】解:∵集合M={x|x2=x}={0,1},N={x|lgx≤0}{x|0<x≤1},∴M∩N={1}.实用标准文档文案大全故答案为:{1}.2.已知a,b∈R,i是虚数单位.若a+i=2﹣bi,则(a+bi)2=3﹣4i【考点】复数代数形式的乘除运算.【分析】由已知等式结合复数相等的条件求得a,b的值,则复数a+bi可求,然后利用复数代数形式的乘法运算得答案.【解答】解:由a,b∈R,且a+i=2﹣bi,得,即a=2,b=﹣1.∴a+bi=2﹣i.∴(a+bi)2=(2﹣i)2=3﹣4i..故答案为:3﹣4i..3.已知函数f(x)=a x﹣1的图象经过(1,1)点,则f﹣1(3)2【考点】反函数.【分析】根据反函数的与原函数的关系,原函数的定义域是反函数的值域可得答案.【解答】解:函数f(x)=a x﹣1的图象经过(1,1)点,可得:1=a﹣1,解得:a=2.∴f(x)=2x﹣1那么:f﹣1(3)的值即为2x﹣1=3时,x的值.由2x﹣1=3,解得:x=2.∴f﹣1(3)=2.故答案为2.4.不等式x|x﹣1|>0的解集为(0,1)∪(1,+∞)【考点】绝对值不等式的解法.【分析】通过讨论x的范围,去掉绝对值号,求出不等式的解集即可.【解答】解:∵x|x﹣1|>0,实用标准文档文案大全∴x>0,|x﹣1|>0,故x﹣1>0或x﹣1<0,解得:x>1或0<x<1,故不等式的解集是(0,1)∪(1,+∞),故答案为:(0,1)∪(1,+∞).5.已知向量=(sinx,cosx),=(sinx,sinx),则函数f(x)=?的最小正周期为π【考点】平面向量数量积的运算.【分析】由平面向量的坐标运算可得f(x),再由辅助角公式化积,利用周期公式求得周期.【解答】解:∵=(sinx,cosx),=(sinx,sinx),∴f(x)=?=sin2x﹣sinxcosx===.∴T=..故答案为:π.6.里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道.在由2名中国运动员和6名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=,再求出2名中国运动员恰好抽在相邻泳道的概率为m=,由此能求出2名中国运动员恰好抽在相邻泳道的概率.【解答】解:里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道.在由2名中国运动员和6名外国运动员组成的小组中,基本事件总数n=,2名中国运动员恰好抽在相邻泳道的概率为m=,实用标准文档文案大全∴2名中国运动员恰好抽在相邻泳道的概率为p===.故答案为:.7.按如图所示的程序框图运算:若输入x=17,则输出的x值是143【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的x,k的值,当x=143时满足条件x>115,退出循环,输出x的值为143,即可得解.【解答】解:模拟程序的运行,可得x=17,k=0执行循环体,x=35,k=1不满足条件x>115,执行循环体,x=71,k=2不满足条件x>115,执行循环体,x=143,k=3满足条件x>115,退出循环,输出x的值为143.故答案为:143.8.设(1+x)n=a0+a1x+a2x2+a3x3+…+a n x n,若=,则n=11【考点】二项式系数的性质.【分析】利用二项式定理展开可得:(1+x)n=+x3+…=a0+a1x+a2x2+a3x3+…+a n x n,比较系数即可得出.【解答】解:∵(1+x)n=+x3+…=a0+a1x+a2x2+a3x3+…+a n x n,又=,∴=,∴=,n﹣2=9,则n=11.故答案为:11.实用标准文档文案大全9.已知圆锥底面半径与球的半径都是1cm,如果圆锥的体积与球的体积恰好也相等,那么这个圆锥的侧面积是πcm2【考点】旋转体(圆柱、圆锥、圆台)【分析】由已知求出圆锥的母线长,代入圆锥的侧面积公式,可得答案.【解答】解:由题意可知球的体积为:×13=cm3,圆锥的体积为:×π×12×h=hcm3,因为圆锥的体积恰好也与球的体积相等,所以=h,所以h=4cm,圆锥的母线:l==cm..故圆锥的侧面积S=πrl=πcm2,故答案为:π10.设P(x,y)是曲线C: +=1上的点,F1(﹣4,0),F2(4,0),则|PF1|+|PF2|的最大值=10【考点】曲线与方程.【分析】先将曲线方程化简,再根据图形的对称性可知|PF1|+|PF2|的最大值为10.【解答】解:曲线C可化为:=1,它表示顶点分别为(±5,0),(0,±3)的平行四边形,根据图形的对称性可知|PF1|+|PF2|的最大值为10,当且仅当点P为(0,±3)时取最大值,故答案为10.11.已知函数f(x)=,若F(x)=f(x)﹣kx在其定实用标准文档文案大全义域内有3个零点,则实数k∈(0,)【考点】根的存在性及根的个数判断.【分析】问题转化为f(x)和y=kx有3个交点,画出函数f(x)和y=kx的图象,求出临界值,从而求出k的范围即可.【解答】解:若F(x)=f(x)﹣kx在其定义域内有3个零点,即f(x)和y=kx有3个交点,画出函数f(x)和y=kx的图象,如图示:,点(2,0)到直线y=kx的距离d==1,解得:k=,故:0<k<;故答案为:(0,).12.已知数列{a n}满足a1=1,a2=3,若|a n+1﹣a n|=2n(n∈N*),且{a2n﹣1}是递增数列、{a2n}是递减数列,则=﹣【考点】数列的极限.【分析】依题意,可求得a3﹣a2=22,a4﹣a3=﹣23,…,a2n﹣a2n﹣1=﹣22n﹣1,累加求和,可得a2n=﹣?22n,a2n﹣1=a2n+22n﹣1=+?22n;从而可求得的值.实用标准文档文案大全【解答】解:∵a1=1,a2=3,|a n+1﹣a n|=2n(n∈N*),∴a3﹣a2=±22,又{a2n﹣1}是递增数列、{a2n}是递减数列,∴a3﹣a2=4=22;同理可得,a4﹣a3=﹣23,a5﹣a4=24,a6﹣a5=﹣25,…,a2n﹣1﹣a2n﹣2=22n﹣2,a2n﹣a2n﹣1=﹣22n﹣1,∴a2n=(a2n﹣a2n﹣1)+(a2n﹣1﹣a2n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=1+2+(22﹣23+24﹣…+22n﹣2﹣22n﹣1)=3+=﹣?22n﹣2=﹣?22n;∴a2n﹣1=a2n+22n﹣1=+?22n;∴则===﹣.故答案为:﹣.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知a,b∈R,则“ab>0“是“+>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由+>2,得:>0,实用标准文档文案大全故ab>0且a≠b,故“ab>0“是“+>2”的必要不充分条件,故选:B.14.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在截面A1DB上,则线段AP的最小值等于()A.B.C.D.【考点】点、线、面间的距离计算.【分析】由已知可得AC1⊥平面A1DB,可得P为AC1与截面A1DB的垂足时线段AP最小,然后利用等积法求解.【解答】解:如图,连接AC1交截面A1DB于P,由CC1⊥底面,可得CC1⊥BD,又AC⊥BD,可得BD⊥平面ACC1,则AC1⊥BD.同理可得AC1⊥A1B,得到AC1⊥平面A1DB,此时线段AP最小.由棱长为1,可得等边三角形A1DB的边长为,∴.由,可得,得AP=..故选:C.15.若矩阵满足:a11,a12,a21,a22∈{0,1},且=0,则这样的互不相等的矩阵共有()A.2个B.6个C.8个D.10个【考点】几种特殊的矩阵变换.【分析】根据题意,分类讨论,考虑全为0;全为1;三个0,一个1;两个0,两个1,即可得出结论.实用标准文档文案大全【解答】解:由=0,可得a11a22﹣a12a21=0,由于a11,a12,a21,a22∈{0,1},可得矩阵可以是,,,,,,,,,.则这样的互不相等的矩阵共有10个.故选:D.16.解不等式()x﹣x+>0时,可构造函数f(x)=()x﹣x,由f(x)在x∈R是减函数,及f(x)>f(1),可得x<1.用类似的方法可求得不等式arcsinx2+arcsinx+x6+x3>0的解集为()A.(0,1] B.(﹣1,1)C.(﹣1,1] D.(﹣1,0)【考点】类比推理.【分析】由题意,构造函数g(x)=arcsinx+x3,在x∈[﹣1,1]上是增函数,且是奇函数,不等式arcsinx2+arcsinx+x6+x3>0可化为g(x2)>g(﹣x),即可得出结论.【解答】解:由题意,构造函数g(x)=arcsinx+x3,在x∈[﹣1,1]上是增函数,且是奇函数,不等式arcsinx2+arcsinx+x6+x3>0可化为g(x2)>g(﹣x),∴﹣1≤﹣x<x2≤1,∴0<x≤1,故选:A.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.如图,在正四棱锥P﹣ABCD中,PA=AB=a,E是棱PC的中点.(1)求证:PC⊥BD;实用标准文档文案大全(2)求直线BE与PA所成角的余弦值.【考点】异面直线及其所成的角;直线与平面垂直的性质.【分析】(1)推导出△PBC,△PDC都是等边三角形,从而BE⊥PC,DE⊥PC,由此能证明PC⊥BD.(2)连接AC,交BD于点O,连OE,则AP∥OE,∠BOE即为BE与PA所成的角,由此能求出直线BE与PA所成角的余弦值.【解答】证明:(1)∵四边形ABCD为正方形,且PA=AB=a,∴△PBC,△PDC都是等边三角形,…∵E是棱PC的中点,∴BE⊥PC,DE⊥PC,又BE∩DE=E,∴PC⊥平面BDE…又BD?平面BDE,∴PC⊥BD…解:(2)连接AC,交BD于点O,连OE.四边形ABCD为正方形,∴O是AC的中点…又E是PC的中点∴OE为△ACP的中位线,∴AP∥OE∴∠BOE即为BE与PA所成的角…在Rt△BOE中,BE=,EO=,…∴.∴直线BE与PA所成角的余弦值为.…实用标准文档文案大全18.已知函数F(x)=,(a为实数).(1)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由;(2)若对任意的x≥1,都有1≤f(x)≤3,求a的取值范围.【考点】函数恒成立问题.【分析】(1)、根据题意,先求出函数的定义域,易得其定义域关于原点对称,求出F(﹣x)的解析式,进而分2种情况讨论:①若y=f(x)是偶函数,②若y=f(x)是奇函数,分别求出每种情况下a的值,综合即可得答案;(2)根据题意,由f(x)的范围,分2种情况进行讨论:f(x)≥1以及f(x)≤3,分析求出每种情况下函数的恒成立的条件,可得a的值,进而综合2种情况,可得答案.【解答】解:(1)函数F(x)=定义域为R,且F(﹣x)==,①若y=f(x)是偶函数,则对任意的x 都有f(x)=f(﹣x),即=,即2x(a+1)=a+1,解可得a=﹣1;②若y=f(x)是奇函数,则对任意的x 都有f(x)=﹣f(﹣x),即=﹣,即2x(a﹣1)=1﹣a,解可得a=1;故当a=﹣1时,y=f(x)是偶函数,实用标准文档文案大全当a=1时,y=f(x)是奇函数,当a≠±1时,y=f(x)既非偶函数也非奇函数,(2)由f(x)≥1可得:2x+1≤a?2x﹣1,即≤a﹣1 …∵当x≥1时,函数y1= 单调递减,其最大值为1,则必有a≥2,同理,由f(x)≤3 可得:a?2x﹣1≤3?2x+3,即a﹣3≤,∵当x≥1时,y2=单调递减,且无限趋近于0,故a≤3,综合可得:2≤a≤3.19.上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角k∠HAP=45°,过O点与OA成120°的地面上选B点,使仰角∠HPB=45°(点A、B、O都在同一水平面上),此时测得∠OAB=27°,A与B之间距离为33.6米.试求:(1)塔高(即线段PH的长,精确到0.1米);(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).【考点】点、线、面间的距离计算;异面直线及其所成的角.【分析】(1)由题意可知:△PAH,△PBH均为等腰直角三角形,AH=BH=x,∠实用标准文档文案大全HAB=27°,AB=33.6,即可求得x===18.86;(2)∠OBH=180°﹣120°﹣2×27°=6°,BH=18.86,由正弦定理可知:=,OH==2.28,则倾斜角∠OPH=arctan=arctan=6.89°【解答】解:(1)设塔高PH=x,由题意知,∠HAP=45°,∠HBP=45°,∴△PAH,△PBH均为等腰直角三角形,∴AH=BH=x…在△AHB中,AH=BH=x,∠HAB=27°,AB=33.6,∴x===18.86…(2)在△BOH中,∠BOH=120°,∴∠OBH=180°﹣120°﹣2×27°=6°,BH=18.86,由=,得OH==2.28,…∴∠OPH=arctan=arctan=6.89°,…∴塔高18.9米,塔的倾斜度为6.8°…20.已知双曲线C:﹣=1经过点(2,3),两条渐近线的夹角为60°,直线l交双曲线于A、B两点.实用标准文档文案大全(1)求双曲线C的方程;(2)若l过原点,P为双曲线上异于A,B的一点,且直线PA、PB的斜率k PA,k PB均存在,求证:k PA?k PB为定值;(3)若l过双曲线的右焦点F1,是否存在x轴上的点M(m,0),使得直线l绕点F1无论怎样转动,都有?=0成立?若存在,求出M的坐标;若不存在,请说明理由.【考点】直线与双曲线的位置关系.【分析】(1)利用双曲线C:﹣=1经过点(2,3),两条渐近线的夹角为60°,建立方程,即可求双曲线C的方程;(2)设M(x0,y0),由双曲线的对称性,可得N的坐标,设P(x,y),结合题意,又由M、P在双曲线上,可得y02=3x02﹣3,y2=3x2﹣3,将其坐标代入k PM?k PN中,计算可得答案.(3)先假设存在定点M,使MA⊥MB恒成立,设出M点坐标,根据数量级为0,求得结论.【解答】(1)解:由题意得…解得a=1,b= …∴双曲线C的方程为;…(2)证明:设A(x0,y0),由双曲线的对称性,可得B(﹣x0,﹣y0).设P(x,y),…则k PA?k PB=,∵y02=3x02﹣3,y2=3x2﹣3,…所以k PA?k PB==3 …(3)解:由(1)得点F1为(2,0)当直线l的斜率存在时,设直线方程y=k(x﹣2),A(x1,y1),B(x2,y2)实用标准文档文案大全将方程y=k(x﹣2)与双曲线方程联立消去y得:(k2﹣3)x2﹣4k2x+4k2+3=0,∴x1+x2=,x1x2=假设双曲线C上存在定点M,使MA⊥MB恒成立,设为M(m,n)则?=(x1﹣m)(x2﹣m)+[k(x1﹣2)﹣n][k(x2﹣2)﹣n]=(k2+1)x1x2﹣(2k2+kn+m)(x1+x2)+m2+4k2+4kn+n2==0,故得:(m2+n2﹣4m﹣5)k2﹣12nk﹣3(m2+n2﹣1)=0对任意的k2>3恒成立,∴,解得m=﹣1,n=0∴当点M为(﹣1,0)时,MA⊥MB恒成立;当直线l的斜率不存在时,由A(2,3),B(2,﹣3)知点M(﹣1,0)使得MA⊥MB也成立.又因为点(﹣1,0)是双曲线C的左顶点,所以双曲线C上存在定点M(﹣1,0),使MA⊥MB恒成立.…21.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“H型数列”.(1)若数列{a n}为“H型数列”,且a1=﹣3,a2=,a3=4,求实数m的取值范围;(2)是否存在首项为1的等差数列{a n}为“H型数列”,且其前n项和S n 满足S n<n2+n(n∈N*)?若存在,请求出{a n}的通项公式;若不存在,请说明理由.(3)已知等比数列{a n}的每一项均为正整数,且{a n}为“H型数列”,b n=a n,c n=,当数列{b n}不是“H型数列”时,试判断数列{c n}是否为“H型数列”,并说明理由.【考点】数列的求和.实用标准文档文案大全【分析】(1)由题意得,a2﹣a1=3>2,a3﹣a2=4﹣>2,即2﹣=>0,解得m范围即可得出.(2)假设存在等差数列{a n}为“H型数列”,设公差为d,则d>2,由a1=1,可得:S n=n+,由题意可得:n+<n2+n对n∈N*都成立,即d都成立.解出即可判断出结论.(3)设等比数列{a n}的公比为q,则a n=,且每一项均为正整数,且a n+1﹣a n=a n(q﹣1)>2>0,可得a n+1﹣a n=a n(q﹣1)>a n﹣a n﹣1,即在数列{a n ﹣a n﹣1}(n≥2)中,“a2﹣a1”为最小项.同理在数列{b n﹣b n﹣1}(n≥2)中,“b2﹣b1”为最小项.由{a n}为“H型数列”,可知只需a2﹣a1>2,即a1(q﹣1)>2,又因为{b n}不是“H型数列”,且“b2﹣b1”为最小项,可得b2﹣b1≤2,即a1(q﹣1)≤3,由数列{a n}的每一项均为正整数,可得a1(q﹣1)=3,a1=1,q=4或a1=3,q=2,通过分类讨论即可判断出结论.【解答】解:(1)由题意得,a2﹣a1=3>2,a3﹣a2=4﹣>2,即2﹣=>0,解得m或m<0.∴实数m的取值范围时(﹣∞,0)∪.(2)假设存在等差数列{a n}为“H型数列”,设公差为d,则d>2,由a1=1,可得:S n=n+,由题意可得:n+<n2+n对n∈N*都成立,即d都成立.∵=2+>2,且=2,∴d≤2,与d>2矛盾,因此不存在等差数列{a n}为“H型数列”.(3)设等比数列{a n}的公比为q,则a n=,且每一项均为正整数,且a n+1﹣a n=a n(q﹣1)>2>0,∴a1>0,q>1.∵a n+1﹣a n=a n(q﹣1)>a n﹣a n﹣1,即在数列{a n﹣a n﹣1}(n≥2)中,“a2﹣a1”为最小项.同理在数列{b n﹣b n﹣1}(n≥2)中,“b2﹣b1”为最小项.由{a n}为“H型数列”,可知只需a2﹣a1>2,即a1(q﹣1)>2,又因为{b n}不是“H型数列”,且“b2﹣b1”为最小项,∴b2﹣b1.实用标准文档文案大全≤2,即a1(q﹣1)≤3,由数列{a n}的每一项均为正整数,可得a1(q﹣1)=3,∴a1=1,q=4或a1=3,q=2,①当a1=1,q=4时,,则,令,则,令,则=,∴{d n}为递增数列,即d n>d n﹣1>d n﹣2>…>d1,即c n+1﹣c n>c n﹣c n﹣1>c n﹣1﹣c n﹣2>…>c2﹣c1,∵,所以,对任意的n∈N*都有c n+1﹣c n>2,即数列{c n}为“H型数列”.②当a1=3,q=2时,,则,显然,{c n}为递减数列,c2﹣c1<0≤2,故数列{c n}不是“H型数列”;综上:当时,数列{c n}为“H型数列”,当时,数列{c n}不是“H型数列”.。
2017年上海高考春考卷(精确回忆版)
专业课原理概述部分一、选择题(每题1分,共5分)1. 高中物理中,下列哪个物理量是标量?A. 速度B. 力C. 位移D. 质量2. 在化学反应中,下列哪种变化表示放热反应?A. 燃烧B. 光合作用C. 碘与淀粉反应D. 氨水吸收二氧化碳3. 下列哪种细胞器在动物细胞中不存在?A. 内质网B. 高尔基体C. 叶绿体D. 线粒体4. 下列哪个元素是人体内含量最多的金属元素?A. 钙B. 铁C. 钾D. 镁5. 在地球上的四种基本地貌类型中,下列哪个类型是由内力作用主导形成的?A. 山地B. 河谷C. 沙漠D. 海岸二、判断题(每题1分,共5分)1. 物体做匀速圆周运动时,速度大小不变,但速度方向时刻在改变。
()2. 生物学上,种群是指同一物种在同一地区内的所有个体总和。
()3. 在酸碱中和反应中,酸和碱的摩尔比一定是1:1。
()4. 地球自转产生的地理现象包括昼夜更替和时差。
()5. 热力学第一定律表明,能量可以从一种形式完全转化为另一种形式,不产生任何损失。
()三、填空题(每题1分,共5分)1. 物体在水平面上受到两个力的作用,当这两个力的大小相等、方向相反时,物体将处于______状态。
2. 化学反应速率的单位通常是______/______。
3. 细胞膜的主要成分是______和______。
4. 地球的外部圈层包括______、______和______。
5. 在DNA分子中,碱基对之间的连接方式是______。
四、简答题(每题2分,共10分)1. 简述牛顿第三定律的内容。
2. 什么是温室效应?列举两个导致温室效应的主要气体。
3. 简述植物细胞和动物细胞的区别。
4. 解释什么是氧化还原反应。
5. 简述地球自转和公转的周期。
五、应用题(每题2分,共10分)1. 一辆汽车以20m/s的速度行驶,突然刹车,加速度为5m/s²,求汽车停止前行驶的距离。
2. 在一定温度下,将0.1mol/L的NaOH溶液与0.1mol/L的HCl 溶液等体积混合,计算混合后溶液的pH值。
2024年成人高考模拟试题
2024年成人高考模拟试题一、语文部分(共30分)1. 下列词语中,加点字的读音完全正确的一项是(5分)A. 慰藉(jí)炽热(zhì)莘莘学子(shēn)B. 狡黠(xiá)锲而不舍(qiè)戛然而止(jiá)C. 殷红(yīn)强词夺理(qiáng)叱咤风云(zhà)D. 龟裂(guī)相形见绌(chù)义愤填膺(yīng)答案:B。
解析:A项慰藉(jiè),炽热(chì);C项殷红(yān),强词夺理(qiǎng);D项龟裂(jūn)。
2. 下列句子中,没有语病的一项是(5分)A. 通过这次活动,使我明白了团结的重要性。
B. 他那崇高的革命品质,经常浮现在我的脑海中。
C. 为了防止这类交通事故不再发生,我们加强了交通安全的教育和管理。
D. 他的写作水平明显提高了。
答案:D。
解析:A项“通过……使”造成句子缺少主语,可删去“通过”或“使”;B项“品质”不能“浮现”,可把“品质”改为“形象”;C项“防止……不再”表意错误,应删去“不再”。
3. 默写一句描写秋天景色的古诗(5分)答案:“停车坐爱枫林晚,霜叶红于二月花。
”解析:这句诗出自杜牧的山行,描绘了秋天枫叶经霜变红,比二月春花还要艳丽的美景。
4. 作文(15分)请以“梦想与现实”为主题,写一篇不少于300字的短文。
我觉得梦想就像夜空中最闪亮的星,在现实的黑夜里给我们指引方向。
有时候,我们的梦想超级远大,感觉就像要飞到外太空去摘星星似的。
可是现实呢,就像脚下的大地,有时候坑坑洼洼,让我们走得磕磕绊绊。
我有个朋友,他的梦想是当一名超级厉害的画家。
他每天都在努力画画,可是现实是他要面临很多生活的压力,没有太多时间和金钱去专心学习绘画。
但他没有放弃,他在现实的压力下,一点一点地朝着梦想前进。
我们不能因为现实的残酷就放弃梦想,也不能只活在梦想里而不顾现实。
2017上海高考数学试题(含解析)
2017年上海市高考数学试题(真题含答案)2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654m P =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 605414. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( ) A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =【解析】{3,4}AB =2. 若排列数6654m P =⨯⨯,则m = 【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞4. 已知球的体积为36π,则该球主视图的面积等于 【解析】3436393r r S πππ=⇒=⇒= 5. 已知复数z 满足30z z+=,则||z =【解析】23||z z z =-⇒=⇒=6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为 【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为【解析】()31(2)918x f x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =【解析】222149161491612341234lg()()2lg()n n a b n n b b b b b a b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++,即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“ ”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“ ”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 6054【解析】C14. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+= 【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅=(2)tanθ== 18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【解析】(1)12341234()()96530935a a a a b b b b +++-+++=-= (2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.【解析】(1)联立22:14x y Γ+=与222x y +=,可得(33P (2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设00(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =,∴003(,3)2Q x y --,∵2AQ AC =,∴00133(,)42y C x --,代入并联立椭圆方程,解得09x =,019y =-,∴1()3Q ,∴直线AQ 的方程为110y x =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”. 【解析】(1)0a ≥;(2)略;(3)略.。
高考数学习题及答案 (3)
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、圆:06422=+-+y x y x 和圆:0622=-+x y x 交于A、B 两点,则AB 的垂直平分线的方程是()A、x+y+3=0B、2x-y-5=0C、3x-y-9=0D、4x-3y+7=02、圆:012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是()A、2B、21+C、221+D、221+3、若M、N 是两个集合,则下列关系中成立的是()A.∅MB.MN M ⊆)( C.NN M ⊆)( D.N )(N M 4、若a>b,R c ∈,则下列命题中成立的是()A.bcac >B.1>ba C.22bc ac ≥D.ba 11<5、直线x+2y+3=0的斜率和在y 轴上的截距分别是()A.21-和-3B.21和-3C.21-和23D.21-和23-6、不等式21<-x 的解集是()A.x<3B.x>-1C.x<-1或x>3D.-1<x<37、下列等式中,成立的是()A.)2cos()2sin(x x -=-ππB.x x sin )2sin(-=+πC.xx sin )2sin(=+πD.xx cos )cos(=+π8、互相平行的三条直线,可以确定的平面个数是()A.3或1B.3C.2D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m∥ B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A.B.C.2D.111.等边△ABC 的边长为a,过△ABC 的中心O 作OP⊥平面ABC,且OP=63a,则点P 到△ABC 的边的距离为()A.a B.32a C.33a D.63a 12.已知函数f (x)是定义域为R 的奇函数,给出下列6个函数:①g (x)=sin x (1-sin x)1-sin x ;②g (x)=sin(52π+x);③g (x)=1+sin x-cos x 1+sin x+cos x;④g (x)=lg sin x ;⑤g (x)=lg(x2+1+x);⑥g (x)=2ex+1-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年上海市八校联考高考数学模拟试卷(3月份)一、填空(本大题共54分,1-6每题4分,7-12每题5分)1.关于x,y的二元一次方程的增广矩阵为.若D x=5,则实数m=.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为石.3.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2=.4.在的二项式展开式中,x3的系数是,则实数a=.5.在Rt△ABC中,A=90°,AB=1,AC=2,D是斜边BC上一点,且BD=2DC,则•(+)=.6.已知集合A={x|},集合B={x|(x﹣a)(x﹣b)<0},若“a=﹣3”是“A∩B≠∅”的充分条件,则实数b的取值范围是.7.已知M是球O半径OP的中点,过M做垂直于OP的平面,截球面得圆O1,则以圆O1为大圆的球与球O的体积比是.8.从集合{,,2,3}中任取一个数记做a,从集合{﹣2,﹣1,1,2}中任取一个数记做b,则函数y=a x+b的图象经过第三象限的概率是.9.已知m>0,n>0,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是.10.如图,在地上有同样大小的5块积木,一堆2个,一堆3个,要把积木一块一块的全部放到某个盒子里,每次只能取出其中一堆最上面的一块,则不同的取法有种(用数字作答).11.定义H n=为数列{a n}的均值,已知数列{b n}的均值,记数列{b n﹣kn}的前n项和是S n,若S n≤S3对于任意的正整数n恒成立,则实数k的取值范围是.12.已知函数f(x)=|x﹣a|+m|x+a|(0<m<1,m,a∈R),若对于任意的实数x不等式f(x)≥2恒成立时,实数a的取值范围是{a|a≤﹣5或a≥5},则所有满足条件的m的组成的集合是.二、选择题(本大题满分20分,每题5分)13.已知两点O(0,0),Q(a,b),点P1是线段OQ的中点,点P2是线段QP1的中点,P3是线段P1P2的中点,┅,P n+2是线段P n P n+1的中点,则点P n的极限位置应是()A.(,)B.()C.()D.()14.已知函数f(x)=sin(ωx﹣)+(ω>0),且f(a)=﹣,f(β)=,若|α﹣β|的最小值为,则函数的单调递增区间为()A.[﹣+2kπ,π+2kπ],k∈Z B.[﹣+3kπ,π+3kπ],k∈ZC.[π+2kπ, +2kπ],k∈Z D.[π+3kπ, +3kπ],k∈Z15.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,下列命题中正确的是()A.若α⊥β,β⊥γ,则α∥γB.若m⊊α,n⊊β,m∥n,则α∥βC.若m,n是异面直线,m⊊α,m∥β,n⊊β,n∥α,则α∥βD.平面α内有不共线的三点到平面β的距离相等,则α∥β16.若点P是△ABC的外心,且++λ=,∠C=120°,则实数λ的值为()A.B.﹣C.﹣1 D.1三、解答题(本大题满分76分)17.如图所示为一名曰“堑堵”的几何体,已知AE⊥底面BCFE,DF∥AE,DF=AE=1,CE=,四边形ABCD是正方形.(1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑,判断四面体EABC是否为鳖臑,若是,写出其每一个面的直角,并证明;若不是,请说明理由.(2)求四面体EABC的体积.18.一栋高楼上安放了一块高约10米的LED广告屏,一测量爱好者在与高楼底部同一水平线上的C处测得广告屏顶端A处的仰角为31.80°.再向大楼前进20米到D处,测得广告屏顶端A处的仰角为37.38°(人的高度忽略不计).(1)求大楼的高度(从地面到广告屏顶端)(精确到1米);(2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长椅的高度忽略不计),长椅需安置在距大楼底部E处多远?已知视角∠AMB(M为观测者的位置,B为广告屏底部)越大,观看得越清晰.19.已知双曲线C经过点(2,3),它的渐近线方程为y=±x,椭圆C1与双曲线C有相同的焦点,椭圆C1的短轴长与双曲线C的实轴长相等.(1)求双曲线C和椭圆C1的方程;(2)经过椭圆C1左焦点F的直线l与椭圆C1交于A、B两点,是否存在定点D,使得无论AB怎样运动,都有∠ADF=∠BDF;若存在,求出D点坐标;若不存在,请说明理由.20.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是定义在R上的偶函数和奇函数.(1)求函数h(x)的反函数;(2)已知φ(x)=g(x﹣1),若函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),求实数a的取值范围;(3)若对于任意x∈(0,2]不等式g(2x)﹣ah(x)≥0恒成立,求实数a的取值范围.21.若存在常数k(k∈N*,k≥2)、d、t(d,t∈R),使得无穷数列{a n}满足=,则称数列{a n}为“段差比数列”,其中常数k、d、t分别叫做a n+1段长、段差、段比,设数列{b n}为“段差比数列”.(1)已知{b n}的首项、段长、段差、段比分别为1、2、d、t,若{b n}是等比数列,求d、t的值;(2)已知{b n}的首项、段长、段差、段比分别为1、3、3、1,其前3n项和为S3n,若不等式对n∈N*恒成立,求实数λ的取值范围;(3)是否存在首项为b,段差为d(d≠0)的“段差比数列”{b n},对任意正整数n都有b n=b n.若存在,写出所有满足条件的{b n}的段长k和段比t组成的有序+6数组(k,t);若不存在,说明理由.2017年上海市八校联考高考数学模拟试卷(3月份)参考答案与试题解析一、填空(本大题共54分,1-6每题4分,7-12每题5分)1.关于x,y的二元一次方程的增广矩阵为.若D x=5,则实数m=﹣2.【考点】矩阵变换的性质.【分析】由题意,D x==5,即可求出m的值.【解答】解:由题意,D x==5,∴m=﹣2,故答案为﹣2.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为168石.【考点】简单随机抽样.【分析】根据254粒内夹谷28粒,可得比例,即可得出结论.【解答】解:由题意,这批米内夹谷约为1524×≈168石,故答案为:168.3.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2=z2=.【考点】复数代数形式的乘除运算.【分析】设复数z2=a+bi(a,b∈R),求出z1z2,再根据已知条件列出方程组,求解即可得答案.【解答】解:设复数z2=a+bi(a,b∈R),z2=,z1∵|z2|=3,z1z2是正实数,∴,解得:.则复数z2=.故答案为:z2=.4.在的二项式展开式中,x3的系数是,则实数a=4.【考点】二项式系数的性质.【分析】利用二项式展开式的通项公式即可得出.【解答】解:在的二项式展开式中,通项公式==,T r+1令﹣9=3,解得r=8.∴=,解得a=4.故答案为:4.5.在Rt△ABC中,A=90°,AB=1,AC=2,D是斜边BC上一点,且BD=2DC,则•(+)=3.【考点】平面向量数量积的运算.【分析】由题意画出图形,把转化为含有的式子求解.【解答】解:如图,∵BD=2DC,∴=.∴•(+)===.故答案为:3.6.已知集合A={x|},集合B={x|(x﹣a)(x﹣b)<0},若“a=﹣3”是“A∩B≠∅”的充分条件,则实数b的取值范围是b>﹣1.【考点】必要条件、充分条件与充要条件的判断.【分析】分别求出关于A、B的不等式,通过A∩B≠∅”,求出b的范围即可.【解答】解:A={x|}={x|x>﹣1},B={x|(x﹣a)(x﹣b)<0}=(﹣3,b)或(b,﹣3),由“A∩B≠∅”,得b>﹣1,故答案为:b>﹣1.7.已知M是球O半径OP的中点,过M做垂直于OP的平面,截球面得圆O1,则以圆O1为大圆的球与球O的体积比是.【考点】球的体积和表面积.【分析】由题意,设出圆M的半径,球的半径,二者与OM构成直角三角形,求出半径关系,然后可求以圆O1为大圆的球与球O的体积比.【解答】解:由题意,设出圆M的半径r,球的半径R,由勾股定理得R2=r2+()2,r=R.∴以圆O1为大圆的球与球O的体积比是.故答案为:.8.从集合{,,2,3}中任取一个数记做a,从集合{﹣2,﹣1,1,2}中任取一个数记做b,则函数y=a x+b的图象经过第三象限的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件(a,b)的个数n=4×4=16,再利用列举法求出函数y=a x+b 的图象经过第三象限的情况,由此能求出函数y=a x+b的图象经过第三象限的概率.【解答】解:从集合{,,2,3}中任取一个数记做a,从集合{﹣2,﹣1,1,2}中任取一个数记做b,基本事件(a,b)的个数n=4×4=16,∵函数y=a x+b的图象经过第三象限有:①当a=3、b=﹣1时,②当a=3、b=﹣2时,③当a=4、b=﹣1时,④当a=4、b=﹣2时,⑤当a=,b=﹣2 时,⑥当a=,b=﹣2 时,共6种情况,∴函数y=a x+b的图象经过第三象限的概率是p=.故答案为:.9.已知m>0,n>0,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是[2+2,+∞).【考点】直线与圆的位置关系.【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤()2,设m+n=x(x>0),则有x+1≤,即x2﹣4x﹣4≥0,解得:x≥2+2,则m+n的取值范围为[2+2,+∞).故答案为[2+2,+∞).10.如图,在地上有同样大小的5块积木,一堆2个,一堆3个,要把积木一块一块的全部放到某个盒子里,每次只能取出其中一堆最上面的一块,则不同的取法有10种(用数字作答).【考点】排列、组合的实际应用.【分析】根据题意,假设左边的积木从上至下依次为1、2、3,右边的积木从上至下依次为4、5,分析可得必须先取1或4,据此分2种情况讨论,分别列举2种情况下的取法数目,由分类计数原理计算可得答案.【解答】解:根据题意,假设左边的积木从上至下依次为1、2、3,右边的积木从上至下依次为4、5,分2种情况讨论:若先取1,有12345、12453、12435、14235、14253、14523,共6种取法;若先取4,有45123、41523、41253、41235,共4种取法;则一共有6+4=10中不同的取法;故答案为:10.11.定义H n=为数列{a n}的均值,已知数列{b n}的均值,记数列{b n﹣kn}的前n项和是S n,若S n≤S3对于任意的正整数n恒成立,则实数k的取值范围是[,] .【考点】数列的求和.【分析】由题意,b1+2b2+…+2n﹣1b n=n•2n+1,b1+2b2+…+2n﹣2b n﹣1=(n﹣1)•2n,从而求出b n=2(n+1),可得数列{b n﹣kn}为等差数列,从而将S n≤S5对任意的n (n∈N*)恒成立化为b5≥0,b6≤0;从而求解.【解答】解:由题意,H n==2n+1,则b1+2b2+…+2n﹣1b n=n•2n+1,=(n﹣1)•2n,b1+2b2+…+2n﹣2b n﹣1则2n﹣1b n=n•2n+1﹣(n﹣1)•2n=(n+1)•2n,则b n=2(n+1),对b1也成立,故b n=2(n+1),则b n﹣kn=(2﹣k)n+2,则数列{b n﹣kn}为等差数列,故S n≤S5对任意的n(n∈N*)恒成立可化为:b5≥0,b6≤0;即,解得,≤k≤,故答案为:[,].12.已知函数f(x)=|x﹣a|+m|x+a|(0<m<1,m,a∈R),若对于任意的实数x不等式f(x)≥2恒成立时,实数a的取值范围是{a|a≤﹣5或a≥5},则所有满足条件的m的组成的集合是{} .【考点】绝对值三角不等式.【分析】根据绝对值的性质得到2m|a|≥2,解出a,得到关于m的方程,解出即可.【解答】解:f(x)=|x﹣a|+m|x+a|=m(|x﹣a|+|x+a|)+(1﹣m)|x﹣a|≥2m|a|+(1﹣m)|x﹣a|≥2m|a|≥2,解得:a≤﹣或a≥,∵数a的取值范围是{a|a≤﹣5或a≥5},故=5,解得:m=,∴实数m 的集合是{}.故答案为{}.二、选择题(本大题满分20分,每题5分)13.已知两点O (0,0),Q (a ,b ),点P 1是线段OQ 的中点,点P 2是线段QP 1的中点,P 3是线段P 1P 2的中点,┅,P n +2是线段P n P n +1的中点,则点P n 的极限位置应是( )A .(,)B .() C .() D .()【考点】中点坐标公式;极限及其运算.【分析】由中点坐标公式求得部分中点的坐标,再寻求规律,求极限得之.【解答】解:∵点P n 的位置应是(∴点P n 的极限位置应是().故答案选C .14.已知函数f (x )=sin (ωx ﹣)+(ω>0),且f (a )=﹣,f (β)=,若|α﹣β|的最小值为,则函数的单调递增区间为( )A .[﹣+2kπ,π+2kπ],k ∈Z B .[﹣+3kπ,π+3kπ],k ∈ZC .[π+2kπ, +2kπ],k ∈ZD .[π+3kπ,+3kπ],k ∈Z【考点】正弦函数的图象.【分析】根据f (a )=﹣,f (β)=求出α、β的值,再根据|α﹣β|的最小值求出ω的值,写出f (x )的解析式,从而求出f (x )的单调增区间.【解答】解:函数f (x )=sin (ωx ﹣)+(ω>0),且f (a )=﹣,f (β)=,∴f (α)=sin (ωα﹣)+=﹣,可得ωα﹣=2k 1π﹣,k 1∈Z ,解得:α=,k 1∈Z ;f (β)=sin (ωβ﹣)+=,可得ωβ﹣=k 2π,k 2∈Z ,解得:β=,k 2∈Z ;∵|α﹣β|的最小值为,∴|α﹣β|=||=|2k 1﹣k 2﹣|≥,k 1∈Z ,k 2∈Z ,可解得:ω≤|2k 1﹣k 2﹣|,k 1∈Z ,k 2∈Z ,取k 1=1.k 2=2,可得ω=;∴f (x )=sin (x ﹣)+,由2kπ﹣≤x ﹣≤2kπ+,k ∈Z ,解得3kπ﹣≤x ≤3kπ+π,k ∈Z ;∴函数f (x )的单调递增区间为:[3kπ﹣,3kπ+π],k ∈Z .故选:B .15.已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面,下列命题中正确的是( )A .若α⊥β,β⊥γ,则α∥γB .若m ⊊α,n ⊊β,m ∥n ,则α∥βC .若m ,n 是异面直线,m ⊊α,m ∥β,n ⊊β,n ∥α,则α∥βD .平面α内有不共线的三点到平面β的距离相等,则α∥β 【考点】空间中直线与平面之间的位置关系.【分析】在A 中,α与γ相交或平行;在B 中,α与β相交或平行;在C 中,由面面平行的判定定理得α∥β;在D 中,α与β相交或平行.【解答】解:由m、n是两条不同的直线,α、β、γ是三个不同的平面,知:在A中,若α⊥β,β⊥γ,则α与γ相交或平行,故A错误;在B中,若m⊊α,n⊊β,m∥n,则α与β相交或平行,故B错误;在C中,若m,n是异面直线,m⊊α,m∥β,n⊊β,n∥α,则由面面平行的判定定理得α∥β,故C正确;在D中,平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故D错误.故选:C.16.若点P是△ABC的外心,且++λ=,∠C=120°,则实数λ的值为()A.B.﹣C.﹣1 D.1【考点】向量的线性运算性质及几何意义.【分析】如图所示,利用点P是△ABC的外心,∠C=120°,可得||=||=||=R,∠APB=120°.由于++λ=,可得+=﹣λ.两边做数量积可得(+)2=λ22,展开相比较即可得出λ.【解答】解:如图所示,∵++λ=,∴+=﹣λ.,∴(+)2=λ22,展开为2+2+2||||cos∠APB=λ2||2.∵点P是△ABC的外心,∠C=120°,∴||=||=||=R,∠APB=120°.∴2R2﹣R2=λ2R2,化为λ2=1.∵++λ=,∴λ=﹣1.故选:C.三、解答题(本大题满分76分)17.如图所示为一名曰“堑堵”的几何体,已知AE⊥底面BCFE,DF∥AE,DF=AE=1,CE=,四边形ABCD是正方形.(1)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑,判断四面体EABC是否为鳖臑,若是,写出其每一个面的直角,并证明;若不是,请说明理由.(2)求四面体EABC的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(1)推导出AE⊥EC,AE⊥EB,AE⊥BC,从而BC⊥AB,再上BC⊥面ABE,知BC⊥BE,从而得到四面体EABC是鳖臑.(2)AE是三棱锥A﹣BCE的高,求出正方形ABCD的边长,由此能求出四面体EABC的体积.【解答】解:(1)∵AE⊥底面BCFE,EC,EB,BC都在底面BCFE上,∴AE⊥EC,AE⊥EB,AE⊥BC,∵四边形ABCD是正方形有,∴BC⊥AB,∴BC⊥面ABE,又BE⊂面ABE,∴BC⊥BE,∴四面体EABC是鳖臑.(2)由(1)得AE是三棱锥A﹣BCE的高,设正方形ABCD的边长为x,则AB=BC=x,BE==,EC=,在Rt△BEC中,EC2=BE2+BC2,即()2=x2+x2﹣1,解得x=2,∴,∴四面体EABC的体积=.18.一栋高楼上安放了一块高约10米的LED广告屏,一测量爱好者在与高楼底部同一水平线上的C处测得广告屏顶端A处的仰角为31.80°.再向大楼前进20米到D处,测得广告屏顶端A处的仰角为37.38°(人的高度忽略不计).(1)求大楼的高度(从地面到广告屏顶端)(精确到1米);(2)若大楼的前方是一片公园空地,空地上可以安放一些长椅,为使坐在其中一个长椅上观看广告屏最清晰(长椅的高度忽略不计),长椅需安置在距大楼底部E处多远?已知视角∠AMB(M为观测者的位置,B为广告屏底部)越大,观看得越清晰.【考点】解三角形的实际应用.【分析】(1)由正弦定理可得AD=≈101.2,即可求大楼的高度;(2)tanα=tan(∠AME﹣∠BME)==≤,即可得出结论.【解答】解:(1)由题意,∠ACD=31.80°,∠ADE=37.78°,∠CAD=5.98°,CD=20,由正弦定理可得AD=≈101.2,∴AE=ADsin∠ADE≈62m;(2)设∠AMB=α,,EM=x,x>0,tan∠AME=,tan∠AME=,tanα=tan(∠AME﹣∠BME)==≤当且仅当x=≈57m时,tanα取得最大值,此时α也最大.19.已知双曲线C经过点(2,3),它的渐近线方程为y=±x,椭圆C1与双曲线C有相同的焦点,椭圆C1的短轴长与双曲线C的实轴长相等.(1)求双曲线C和椭圆C1的方程;(2)经过椭圆C1左焦点F的直线l与椭圆C1交于A、B两点,是否存在定点D,使得无论AB怎样运动,都有∠ADF=∠BDF;若存在,求出D点坐标;若不存在,请说明理由.【考点】椭圆的简单性质;双曲线的简单性质.【分析】(1)双曲线C和椭圆C1的方程为:3x2﹣y2=λ,则λ=3×22﹣32=3.设椭圆C1的方程;椭圆C1的短轴长与双曲线C的实轴长相等,椭圆C1与双曲线C有相同的焦点(±2,0)即即可得b、c、a(2)直线l垂直x轴时,A、B两点关于x轴对称,要使∠ADF=∠BDF,则点D必在x轴上,设D(a,0),直线l不垂直x轴时,l的方程设为:y=k(x+2),设A(x1,y1),B(x2,y2),联立得(1+5k2)x2+20k2x+20k2﹣5=0.要使∠ADF=∠BDF,即直线AD、BD的斜率互为相反数,即,求得a【解答】解:(1)双曲线C和椭圆C1的方程为:3x2﹣y2=λ,则λ=3×22﹣32=3.∴双曲线C的方程为.设椭圆C1的方程;椭圆C1的短轴长与双曲线C的实轴长相等,∴椭圆C1的短轴长为2b=2,椭圆C1与双曲线C有相同的焦点(±2,0),即c=2,∴a=,椭圆C1的方程为:;(2)直线l垂直x轴时,A、B两点关于x轴对称,∵F(﹣2,0),∴要使∠ADF=∠BDF,则点D必在x轴上,设D(a,0),直线l不垂直x轴时,l的方程设为:y=k(x+2),设A(x1,y1),B(x2,y2),联立得(1+5k2)x2+20k2x+20k2﹣5=0.∴.∵∠ADF=∠BDF,∴直线AD、BD的斜率互为相反数,即,k=0时恒成立.k≠0时,a=;∴存在定点D(﹣,0),使得无论AB怎样运动,都有∠ADF=∠BDF.20.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是定义在R上的偶函数和奇函数.(1)求函数h(x)的反函数;(2)已知φ(x)=g(x﹣1),若函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),求实数a的取值范围;(3)若对于任意x∈(0,2]不等式g(2x)﹣ah(x)≥0恒成立,求实数a的取值范围.【考点】反函数;指数函数的图象与性质.【分析】(1)由题意可得:e x=g(x)+h(x),e﹣x=g(﹣x)+h(﹣x)=g(x)﹣h(x),联立解得:g(x),h(x).由y=,化为:(e x)2﹣2ye x﹣1=0,e x>0,解得e x=y+.可得h﹣1(x).(2)φ(x)=g(x﹣1),函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),转化为:函数g(x)在[﹣2,2]上满足:g(2a)>g(﹣﹣1),由于函数g(x)在[0,+∞)上单调递增,且函数g(x)为偶函数,可得|2a|>|﹣﹣1|,﹣2≤2a≤2,﹣2≤﹣﹣1≤2,解得a范围.(3)不等式g(2x)﹣ah(x)≥0,即﹣≥0,令t=e x﹣e﹣x,由x∈(0,2],可得t∈(0,e2﹣e﹣2],不等式转化为:t2+2﹣at≥0,a≤t+,利用基本不等式的性质即可得出.【解答】解:(1)由题意可得:e x=g(x)+h(x),e﹣x=g(﹣x)+h(﹣x)=g(x)﹣h(x),联立解得:g(x)=,h(x)=.由y=,化为:(e x)2﹣2ye x﹣1=0,e x>0,解得e x=y+.∴h﹣1(x)=ln(x∈R).(2)φ(x)=g(x﹣1),函数φ(x)在[﹣1,3]上满足φ(2a+1>φ(﹣),转化为:函数g(x)在[﹣2,2]上满足:g(2a)>g(﹣﹣1),由于函数g(x)在[0,+∞)上单调递增,且函数g(x)为偶函数,∴|2a|>|﹣﹣1|,﹣2≤2a≤2,﹣2≤﹣﹣1≤2,解得a∈∪.(3)不等式g(2x)﹣ah(x)≥0,即﹣≥0,令t=e x﹣e﹣x,由x∈(0,2],可得t∈(0,e2﹣e﹣2],不等式转化为:t 2+2﹣at ≥0,∴a ≤t +,∵t +≥2,当且仅当t=时取等号.∴a ≤2.21.若存在常数k (k ∈N *,k ≥2)、d 、t (d ,t ∈R ),使得无穷数列{a n }满足a n +1=,则称数列{a n }为“段差比数列”,其中常数k 、d 、t 分别叫做段长、段差、段比,设数列{b n }为“段差比数列”.(1)已知{b n }的首项、段长、段差、段比分别为1、2、d 、t ,若{b n }是等比数列,求d 、t 的值;(2)已知{b n }的首项、段长、段差、段比分别为1、3、3、1,其前3n 项和为S 3n ,若不等式对n ∈N *恒成立,求实数λ的取值范围;(3)是否存在首项为b ,段差为d (d ≠0)的“段差比数列”{b n },对任意正整数n 都有b n +6=b n .若存在,写出所有满足条件的{b n }的段长k 和段比t 组成的有序数组(k ,t );若不存在,说明理由. 【考点】数列的应用.【分析】(1){b n }的前4项依次为1,1+d ,t (1+d ),t (1+d )+d ,先求出t ,再代入验证,可得结论;(2)由{b n }的首项、段长、段比、段差,⇒b 3n +2﹣b 3n ﹣1=(b 3n +1+d )﹣b 3n ﹣1=(qb 3n +d )﹣b 3n ﹣1=[q (b 3n ﹣1+d )+d ]﹣b 3n ﹣1=2d=6,⇒{b 3n ﹣1}是等差数列,又b 3n ﹣2+b 3n ﹣1+b 3n =(b 3n ﹣1﹣d )+b 3n ﹣1+(b 3n ﹣1+d )=3b 3n ﹣1,即可求S 3n ,从而求实数λ的取值范围;(3)k 取2,3,4时存在,有序数组可以是(2,),(3,),(3,﹣1),(6,).【解答】解:(1){b n }的前4项依次为1,1+d ,t (1+d ),t (1+d )+d , 由前三项成等比数列得(1+d )2=t (1+d ), ∵1+≠0,∴t=1+d ,那么第2,3,4项依次为t ,t 2,t 2+t ﹣1,∴t 4=t (t 2+t ﹣1),∴t=±1. t=1时,d=0,b n =1,满足题意;t=﹣1时,d=﹣2,b n =(﹣1)n ﹣1,满足题意;(2)∵{b n }的首项、段长、段比、段差分别为1、3、1、3,∴b 3n +2﹣b 3n ﹣1=(b 3n +1+d )﹣b 3n ﹣1=(qb 3n +d )﹣b 3n ﹣1=[q (b 3n ﹣1+d )+d ]﹣b 3n ﹣1=2d=6,∴{b 3n ﹣1}是以b 2=4为首项、6为公差的等差数列,又∵b 3n ﹣2+b 3n ﹣1+b 3n =(b 3n ﹣1﹣d )+b 3n ﹣1+(b 3n ﹣1+d )=3b 3n ﹣1,∴S 3n =(b 1+b 2+b 3)+(b 4+b 5+b 6)+…+(b 3n ﹣2+b 3n ﹣1+b 3n )=3(b 2+b 5+…+b 3n ﹣1)=3[4n +]=9n 2+3n ,…∵,∴,设c n =,则λ≥(c n )max ,又c n +1﹣c n =,当n=1时,3n 2﹣2n ﹣2<0,c 1<c 2;当n ≥2时,3n 2﹣2n ﹣2>0,c n +1<c n , ∴c 1<c 2>c 3>…,∴(c n )max =c 2=14,… ∴λ≥14,得λ∈[14,+∞).…(3)k 取2,3,4时存在,有序数组可以是(2,),(3,),(3,﹣1),(6,).2017年3月15日。