人教版数学七年级上教案 3.4 第1课时 产品配套问题和工程问题1
人教版数学七年级上册3.4.1实际问题与一元一次方程--工程问题教案
4.通过工程问题,加深对一元一次方程的理解,提高学生解决实际问题的能力。
二、核心素养目标
本节课的核心素养目标包括:
1.培养学生运用数学知识解决实际问题的能力,特别是在工程领域的应用,使学生能够理解数学与生活实际的紧密联系。
2.强化学生的逻辑推理能力,通过找等量关系、列方程的过程,让学生体验数学的严谨性和逻辑性。
3.重点难点解析:在讲授过程中,我会特别强调找等量关系和列方程这两个重点。对于难点部分,如含有分数的方程求解,我会通过具体例子和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与工程问题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的模拟实验。通过实验操作,演示如何根据实际情况找等量关系,并列出方程。
在新课讲授环节,我发现理论介绍部分学生们理解得比较快,但在案例分析时,有些学生对于如何将问题转化为方程还是感到困惑。我意识到,可能需要更多的实际例子和逐步引导,帮助他们更好地理解这个过程。
实践活动环节,学生们在分组讨论中表现积极,但我也观察到有些小组在讨论时可能会偏离主题。在未来的教学中,我需要更明确地给出讨论的指导方向,确保每个小组都能围绕核心知识点进行深入探讨。
-另一个难点是让学生理解方程两边的对等性,即方程左右两边代表的实际意义是相等的,这需要学生在理解实际问题的基础上,对数学符号和方程有更深入的认识。
在教学过程中,教师需要通过实例讲解、互动提问、小组讨论等多种教学方法,帮助学生把握重点,突破难点,确保学生能够理解并掌握一元一次方程在工程问题中的应用。
四、教学流程
2.教学难点
-本节课的难点内容在于:
人教版七年级上册3.4.1配套与工作量教案
3.培养学生的数据分析素养,让学生在实际问题中学会收集、整理、分析数据,从而作出合理的判断和决策;
4.培养学生的应用意识,使学生能够将所学知识运用到生活实际中,感受数学在生活中的价值,激发学习兴趣;
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如模拟一个工作场景,通过实际操作来体验工作量的分配和计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果,分享他们的发现和解决方法。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“配套与工作量在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版七年级上册3.4.1配套与工作量教案
一、教学内容
人教版七年级上册3.4.1节,本节课主要内容包括:
1.理解配套概念,掌握配套关系在生活中的应用;
2.学会计算简单的工作量问题,了解工作量与工作时间、工作效率之间的关系;
3.能够运用配套与工作量的知识解决实际问题,提高解决问题的能力。
教学内容涉及到的例题和练习题包括:
5.培养学生的团队合作精神,通过小组讨论和合作完成练习题,提高学生的沟通与协作能力。
三、教学难点与重点
1.教学重点
-配套关系的理解和应用:学生需要掌握配套概念,并能将其应用到实际生活中,例如识别两种商品之间的配套关系。
-工作量、工作时间和工作效率之间的数量关系:学生应理解并能够运用工作量=工作效率×工作时间的公式,解决实际问题。
五、教学反思
今天在教授《配套与工作量》这一课时,我发现学生们对配套概念的理解普遍较好,能够很快地抓住关键点。在导入新课时,通过日常生活中的例子引起学生的兴趣,这个方法效果不错,大家都很积极地参与到课堂讨论中。
人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案
最后,我觉得自己在课堂上的语言表达和引导方式还有待改进。在今后的教学中,我将努力提高自己的教学水平,用更生动、更贴近学生生活的例子来讲解知识,使课堂氛围更加活跃,让学生在轻松愉快的氛围中学习数学。
人教版七年级数学上册3.4《实际问题与一元一次方程(1)-配套问题和工程问题》教案
一、教学内容
人教版七年级数学上册3.4节《实际问题与一元一次方程(1)-配套问题和工程问题》主要包括以下内容:
1.配套问题:通过实际生活情境,引入配套问题的概念,让学生理解并掌握如何建立一元一次方程解决配套问题。
-例如:某一个乙产品需要4个A零件和1个B零件。若工厂现有A零件20个,B零件18个,求甲、乙两种产品各能生产多少个?
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了如何运用一元一次方程解决配套问题和工程问题。通过实践活动和小组讨论,我们加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,学生们表现得积极主动,能够围绕实际问题展开讨论,并提出自己的观点。但在引导讨论时,我发现部分学生对于开放性问题的思考还不够深入,这可能是因为他们对问题的理解不够透彻。为此,我将在以后的课堂中尝试用更多实例和问题引导学生,帮助他们深入思考。
实践活动环节,学生们通过分组讨论和实验操作,加深了对一元一次方程的理解。但从实验结果来看,部分学生对实验操作还不够熟练,这可能影响他们对知识的掌握。因此,我考虑在接下来的课程中增加实践活动的时间,让学生有更多的机会动手操作,提高他们的实践能力。
最新人教版初中七年级上册数学《配套问题与工程问题》教案
3.4实际问题与一元一次方程第1课时配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法.【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力.【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣.【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题.一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮.②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮.③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______.【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考.教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、②依次填:(85-x)、16x、10(85-x).依次我们可列得方程为3×16x=2×\[10×(85-x)\].问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母.所以这类题可看作是与去分母解方程有关的实际问题.解决这类问题需要知道“工作量=人均效率×人数×时间”这一基本数量关系式,该题中第①问是不对的,第②问依次应填120,112,x20,x12,教师教学时可让学生稍作思考后作答.二、思考探究,获取新知探究1教材第100页例1.【分析】(1)每人每天平均生产螺钉1200个或螺母2000个表示什么意思?(2)刚好配套,说明螺钉和螺母个数一样多吗?(3)为了使每天的产品刚好配套,应使生产的螺母数量恰好为螺钉数量的_______.解:设分配x名工人生产螺钉,则有人生产螺母,一天共生产螺钉个,螺母_______个.问题:你能列出方程吗?【教学说明】众所周知,理解题意是学好数学的前提,本例通过分析使学生深入理解题意,便于学生找出相等关系.通过多媒体或实物演示,有效分解教学难点,从而更有效地突破教学难点.此外,前面栏目中的问题也有利于解答本题.教师组织并引导学生通过具体的生活实例或实物演示使学生深入理解螺钉的数量是螺母数量的二分之一,螺母数量是螺钉数量的二倍,引导学生找出相等关系列方程.教师重点关注学生能否理解“刚好配套”,关注学生能否理解在配套的情况下相等关系应为:螺钉的数量×2=螺母的数量;而不是:螺母的数量×2=螺钉的数量.试一试教材第101页练习第1题.探究2 教材第100~101页例2.【分析】这里可以把总工作量看作1.请填空:人均效率(一个人1h完成的工作量)为.由x人先做4h,完成的工作量为.再增加2人和前一部分人一起做8h,完成的工作量为_____.这项工作分两段完成,两段完成的工作量之和为.【教学说明】前面问题1 和问题2为本题作了铺垫,所以学生比较好理解.教学时,教师引导学生完成“分析”中的空,上面的空依次应填:1/40,4x/40,8(x+2)/40,4x/40+8(x+2)/40,填完空后,教师让学生上台板演此题.随后师生一起运用一元一次方程解决问题的基本思路,具体可参见教材第101页的相关表述.试一试教材第101页练习第2题.三、典例精析,掌握新知例1 用白铁皮做罐头盒,每张白铁皮可制盒身16个或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?【分析】这是一个“配套”问题,我们可以运用上一栏目中的“配套”问题的解题思路来分析.本题需要找出等量关系:做盒身的白铁皮张数+做盒底的白铁皮张数=100;用白铁皮做盒身的总个数×2=用白铁皮做盒底的总个数.解:设用x张制盒身,则用(100-x)张制盒底.根据题意列方程,得2×16x=48×(100-x).去括号,得32x=4800-48x.移项及合并同类项,得80x=4800.系数化为1,得x=60.制盒底的铁皮数:100-60=40.答:用60张制盒身,40张制盒底.例2 整理一批图书,如果由一个人单独做要花60小时,现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?【分析】本题中含有一些基本等量关系:工作总量=工作时间×工作效率.一般把工作总量看作总体“1”.解:设先安排整理的人员为x人,根据题意得解此方程,得x=10.答:先安排整理的人员有10人.例3一项工程,由甲单独做需30天,由乙单独做需50天,现由甲、乙共同完成这项工程且施工期间乙要休息14天,那么完成这项工程需要几天?【分析】把全部工作量看成1,则甲的效率为1/30,乙的效率为1/50.若设这项工程需要x天完成,则甲的工作量为1/30x,乙的工作量为1/50(x-14),由此列出方程.解:设这项工程需要x天完成.由题意,得1/30x+1/50(x-14)=1.去分母,得5x+3(x-14)=150.去括号,得5x+3x-42=150.移项、合并同类项,得8x=192.系数化为1,得x=24.答:完成这项工程需要24天.四、运用新知,深化理解1.某车间90名工人生产凳子面和凳子腿,每人每天平均生产凳子面10个或凳子腿50个,一个凳子面要配四个凳子腿.为了使每天的产品刚好配套,应该分配多少名工人生产凳子面,多少名工人生产凳子腿?2.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?3.有甲、乙、丙三个水管,单独开放甲管5h可注满一池水;甲、乙两管齐放,2h 可注满一池水;甲、丙两管齐开放,3h可注满一池水.现把三管一齐开放,过了一段时间后甲管因故障停开,停开后2h水池注满,问三管齐开放了多少小时水?【教学说明】上面前两道题分别是与本课时所学应用题相对应的,第1题为配套问题,可设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿,由题意分析可知其中的相等关系为:x名工人一天生产凳子面的4倍=(90-x)名工人生产凳子腿的数量,教师应让学生通过思考找出这个等量关系.第2题为工作量问题,教师应注意让学生找到本题关键点:由乙单独完成需要几小时.在对这两题进行分析后,教师可让学生上台板演.第3题综合性强,题较难,教师应给予充分的提示,此题是一个工程问题,基本关系是:工作量=工作效率×工作时间.各个工作量之和=总工作量.将注满一池水的工作量设为1,设三管齐开放了xh,可列表如下:如若教师在进行上面的提示之后,学生仍无法动手,教师可与学生进行互动,不必要求学生上台板演.【答案】1.解:设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿.依题意可列方程,得:4×10x=(90-x)×50去括号,得40x=4500-50x移项,得40x+50x=4500合并同类项,得90x=4500系数化为1,得x=50所以90-x=40答:应分配50名工人生产凳子面,40名工人生产凳子腿.2.解:设还需x小时完成,依题意列方程得:去分母,得35+2x=60移项及合并同类项,得2x=25系数化为1,得x=12.5答:还需12.5小时完成.3.设三管齐开放注水xh,根据题意得去分母,得6x+9x+18+4x+8=30.移项,得6x+9x+4x=30-8-18.合并同类项,得19x=4.系数化为1,得x=4/19.答:三管齐开放了4/19h水.五、师生互动,课堂小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决应用问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?1.布置作业::从教材习题3.4中选取.2.完成练习册中本课时的练习.本课时的内容主要是结合前面所学内容解决实际问题,所以教学时教师应给予学生充分的独立思考空间,注重与学生进行互动.引导学生应注意找出等量关系,因为这是列方程解应用题的关键所在.此外,考虑到这是第1课时,所以教学时应注意让学生总结解决实际问题的步骤,让学生养成规范化解题和答题的习惯.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
人教版数学七上3.4 第1课时《 产品配套问题和工程问题》精品教学设计1
人教版数学七上3.4 第1课时《产品配套问题和工程问题》精品教学设计1一. 教材分析人教版数学七上3.4第1课时《产品配套问题和工程问题》是本册教材中的一个重要内容,主要让学生通过解决实际问题,掌握配套问题和工程问题的解决方法。
本节课通过具体的案例,引导学生理解并掌握配套问题的两个步骤:首先找出成套产品中的关键部分,然后根据实际需要确定购买方案。
同时,让学生学会通过列表或画图的方法,找出问题的最优解。
二. 学情分析学生在进入七年级之前,已经掌握了基本的算术运算和方程解法,但对于解决实际问题,尤其是涉及到多个条件的问题,可能会感到困惑。
因此,在教学过程中,需要引导学生将实际问题转化为数学问题,并通过列表或画图的方式,找出解决问题的方法。
三. 教学目标1.让学生理解配套问题的概念,并掌握解决配套问题的基本方法。
2.让学生通过解决实际问题,提高分析问题和解决问题的能力。
3.培养学生团队合作的精神,提高学生的口头表达能力。
四. 教学重难点1.重点:让学生掌握解决配套问题的基本方法。
2.难点:如何引导学生将实际问题转化为数学问题,并通过列表或画图的方式,找出解决问题的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题,掌握配套问题的解决方法。
2.利用多媒体辅助教学,通过动画和图片,使抽象问题形象化,提高学生的学习兴趣。
3.分组讨论,让学生在团队合作中,提高口头表达能力和解决问题的能力。
六. 教学准备1.准备相关的实际问题案例,用于引导学生解决配套问题。
2.准备多媒体教学材料,包括动画和图片,用于辅助教学。
3.准备分组讨论的素材,让学生在讨论中,提高解决问题的能力。
七. 教学过程1.导入(5分钟)通过一个实际问题案例,引导学生进入本节课的主题。
例如:某商店有一批成套的学习用品,包括一个文具盒、一支铅笔和一本笔记本,现在商店需要进货,问如何确定购买方案,才能使文具盒、铅笔和笔记本的数量相等。
人教版七年级数学上册 3.4 第1课时 产品配套问题和工程问题 教案设计
第三章一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1.理解配套问题、工程问题的背景.2.分清有关数量关系,能正确找出作为列方程依据的主要等量关系.(重点)3.掌握用一元一次方程解决实际问题的基本过程.(重点)学习重点:1.配套问题:某车间工人生产螺钉和螺母,一个螺钉要配两个螺母,要使生产的产品刚好配套,则应生产的螺母数量恰好是螺钉数量的2倍2.工程问题:(1)工作时间、工作效率、工作量之间的关系:①工作量=工作时间×工作效率.②工作时间=工作量÷工作效率.③工作效率=工作量÷工作时间.(2)通常设完成全部工作的总工作量为1,如果一项工作分几个阶段完成,那么各阶段工作量的和=总工作量,这是工程问题列方程的依据..(3)一项工作,甲用a小时完成,若总工作量可看成1,则甲的工作效率是1/a .若这项工作乙用b小时完成,则乙的工作效率是1/b .(4)人均工作效率:人均工作效率表示平均每人单位时间完成的工作量.例如,一项工作由m个人用n小时完成,那么人均工作效率为1/mn ,a个人b小时完成的工作量=人均工作效率×a×b.一、自主学习判断(打“√”或“×”)(1)用纸板折无盖的纸盒,则一个盒身与两个盒底配套.( )(2)一件工作,某人5小时单独完成,其工作效率为( )(3)一项工程,甲单独做4小时能完成,乙单独做3小时能完成,则两人合作1小时完成全部工作的( )二、合作探究知识点1 用一元一次方程解决配套问题【例1】用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,1个盒身与2个盒底配成1个罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?【解题探究】1.设x张铁皮制盒身,则36-x张铁皮制盒底.2.用x怎样表示所制盒身、盒底的个数?提示:由题意可知制盒身25x个,盒底40(36-x)个.3.制成的盒身与盒底有什么数量关系?提示:盒身个数的2倍=盒底的个数.4.所以可列方程:2×25x=40(36-x)5.解方程,得:x=166.用16张制盒身,20张制盒底.配套问题的两个未知量及两个等量关系1.两个未知量:这类问题有两个未知数,设其中哪个为x 都可以,另一个用含x 的代数式表示,两种设法所列方程没有繁简或难易的区别.2.两个等量关系:例如本题,一个是“制盒身的铁皮张数+制盒底的铁皮张数=36”,此关系用来设未知数.另一个是制成的盒身数与盒底数的倍数关系,这是用来列方程的等量关系.知识点 2 用一元一次方程解决工程问题【例2】一本稿件,甲打字员单独打20天可以完成,甲、乙两打字员合打,12天可以完成,现由两人合打7天后,余下部分由乙打,还需多少天完成?【思路点拨】先求出甲一天的工作效率,甲、乙合作一天的工作效率及甲乙合打7天的工作量,再求出乙一天的工作效率,设乙还需x 天完成,用含x 的代数式表示乙x 天的工作量,根据“两人合打7天的工作量+乙x 天的工作量=1”,列出方程,求解并作答.【自主解答】设乙还需x 天完成,根据题意,得解这个方程,得x=12.5.答:乙还需12.5天完成.【总结提升】解决工程问题的思路1.三个基本量:工程问题中的三个基本量:工作量、工作效率、工作时间,它们之间的关系是:工作量=工作效率×工作时间.若把工作量看作1,则工作效率=2.相等关系: (1)按工作时间,各时间段的工作量之和=完成的工作量.(2)按工作者,若一项工作有甲、乙两人参与,则甲的工作量+乙的工作量=完成的工作量. 711()x 1.121220+-=1.工作时间。
人教版数学七上3.4 第1课时《 产品配套问题和工程问题》精品教学设计2
人教版数学七上3.4 第1课时《产品配套问题和工程问题》精品教学设计2一. 教材分析人教版数学七上3.4第1课时《产品配套问题和工程问题》是本册教材中的一个重要内容,主要让学生通过解决实际问题,掌握配套问题和工程问题的解决方法。
本节课通过具体的案例,引导学生理解并掌握配套问题的解法——成套配套和成组配套,以及工程问题的解法——工作效率和合作效率。
二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程组的解法,具备了一定的数学思维能力。
但对于实际问题的解决,尤其是涉及到配套和工程问题,还缺乏一定的理解和应用能力。
因此,在教学过程中,需要教师通过具体的案例,引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.知识与技能目标:让学生掌握配套问题和工程问题的解决方法,能够运用成套配套和成组配套解决实际问题。
2.过程与方法目标:通过解决实际问题,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,让学生感受数学与生活的紧密联系。
四. 教学重难点1.教学重点:配套问题和工程问题的解决方法。
2.教学难点:如何将理论知识与实际问题相结合,提高解决问题的能力。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过具体的案例,引导学生理解并掌握配套问题和工程问题的解决方法,同时运用小组合作的方式,培养学生的团队协作能力。
六. 教学准备1.教师准备:准备相关的案例和教学素材,制作PPT。
2.学生准备:预习教材,了解配套问题和工程问题的基本概念。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何解决配套问题。
例如:某商店购进了一批相同的商品,其中有电视、冰箱和洗衣机。
如果每台电视需要一个遥控器,每台冰箱需要一个冰箱贴,每台洗衣机需要一个进水管,那么如何将这些配套产品合理地分配给顾客?2.呈现(10分钟)教师通过PPT呈现配套问题的具体案例,引导学生分析并解决问题。
人教版七年级数学上册3.4《实际问题与一元一次方程(1)—— 配套问题和工程问题》教案
第三章一元一次方程3.4实际问题与一元一次方程第课时1一、教学目标1.会通过列方程解决“配套问题”和“工程问题”.2.培养学生数学建模能力、分析能力、解决问题的能力.二、教学重点及难点重点:将实际问题抽象为方程,列方程解应用题.难点:将实际问题抽象为方程的过程中,如何找等量关系.三、教学用具电脑、多媒体、课件.四、相关资源五、教学过程(一)温故知新解一元一次方程的一般步骤是什么呢?师生活动:学生思考,回答问题,教师边聆听边板书.小结:解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.设计意图:复习旧知识的目的是检验上一节课的学习效果,为本节课进一步学习起到一个基石的作用.(二)例题分析例1 某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?师生活动:教师提示学生思考以下问题:(1)“1 个螺钉配2 个螺母”这句话是什么意思,包含着什么等量关系?(2)本问题有哪些等量问题?1学生讨论后,独立尝试列方程.在本问题中“1 个螺钉配 2 个螺母”中包含的等量关系较 隐蔽,是本问题的难点,要让学生真正理解其中的含义.教师巡视检查学生完成的情况.然 后让学生打开教材,把自己的解法和教材上的相比较,看一看过程中有什么不足之处,修改 以后思考下面问题.你的解法与教材上是否相同?如果相同,你是否能换一种设未知数的方法解决这个问 题?如果不同,请与其他同学交流讨论比较两种方法间的异同点.解:设应安排 x 名工人生产螺钉,(22-x )名工人生产螺母.依题意得:2 000(22-x )=2×1 200x .解方程,得:5(22-x )=6x ,110-5x =6x ,x =10.22-x =12.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.另解:设应安排 x 名工人生产螺母,(22-x )名工人生产螺钉.依题意得:2×1 200(22-x )=2 000x .解方程,得:x =12.22-x =10.答:应安排 10 名工人生产螺钉,12 名工人生产螺母.例 2 整理一批图书,由一个人做要 40 h 完成.现计划由一部分人先做 4 h ,然后增加 2 人与他们一起做 8 h ,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工 作?师生活动:学生先自主探究讨论,教师可以点拨以下问题:(1)人均效率为________.(指一个人 1 小时的工作量).(2)若设先由 x 人做 4 小时,完成的工作量是________.再增加 2 人和前一部分人一起 做 8 小时,两段完成的工作量之和是________.师生共同完成本题的解答过程,教师要书写出规范完整的答案.教师点评:工作量=人均效率×人数×工作时间,这是在此类问题中常用的数量关系. 解:设安排 x 人先做 4 h . 8 x +2 4x 依题意得: + 40=1. 40 2解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4解方程,得:4x +8(x +2)=40,4x +8x +16=40,12x =24,x =2.答:应安排 2 人先做 4 h .问题:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?师生活动:小组交流、讨论,学生代表汇总、汇报,教师巡查,关注学生是否认真交流, 最后师生一起归纳总结.归纳:用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:结合学生的学习经历,建立实际问题的方程模型,运用一元一次方程分析和 解决实际问题.(三)练习巩固1.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 m钢材可以做 40 个 A 部件或 240 3 个 部件.现要用 6 m钢材制作这种仪器,应用多少钢材做 部件,多少钢材做 部件,恰 B 3 A B 好配成这种仪器多少套?解:设应用 m 钢材做 部件,(6- )m钢材做 部件. x 3 A x 3 B 依题意得:3×40 x =240 (6-x ).解方程,得: =4. x 答:应用 4 m钢材做 部件,2 m 钢材做 部件,配成这种仪器 160 套. 3 A 3 B 2.一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要 24 天.如果 由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 天可以铺好这条管线. xx x 依题意得: + = , 1 12 243解方程,得:x=.8答:两个工程队从两端同时施工,要天可以铺好这条管线.8设计意图:巩固所学的知识,进一步培养学生分析解决问题的能力,感受数学与生活的联系.六、课堂小结用一元一次方程解决实际问题的基本步骤:①审:审题,分析题目中的数量关系;②设:设适当的未知数,并表示未知量;③列:根据题目中的数量关系列方程;④解:解这个方程;⑤检验:检验所得的未知数的值是否为所列方程的解,是否符合题意;⑥答:根据题意写出答案.设计意图:通过小结,使学生把所学的知识进一步系统化,使学生逐步形成一个知识体系,加深对列方程解应用题的方法的理解.七、板书设计.实际问题与一元一次方程34配套问题中常用到的等量关系:工程问题中常用到的等量关系:用一元一次方程解决实际问题的基本步骤:4。
3.4配套问题与工程问题(教案)-2023-2024学年七年级上册数学(人教版)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了配套问题和工程问题的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这些问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在教学过程中,教师应当针对这些难点和重点,采用不同的教学策略和方法,如使用图表、实物操作、小组讨论等,以确保学生能够透彻理解和掌握本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配套问题与工程问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或搭配资源的情况?”比如,你们如何决定用多少钱买多少文具?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何用数学解决配套和工程问题。
二、核心素养目标
1.培养学生的逻辑推理能力,使其能够通过分析问题,发现数量关系,建立方程或比例关系,解决实际问题。
2.提升学生的数学建模素养,学会将实生活中的问题抽象为数学模型,并用数学方法进行求解。
3.增强学生的数据分析能力,通过解决配套问题和工程问题,培养学生对数据的敏感性和处理能力。
4.培养学生的应用意识,使学生能够将所学知识应用于解决实际生活中的数学问题,体会数学在生活中的重要性。
-例题:一辆汽车以60km/h的速度行驶,行驶了3小时,计算行驶的距离。
-习题:设计有关速度、浓度等比例问题的练习,巩固所学知识。
4.学会分析问题,找出数量关系,建立方程或比例关系解决问题。
3.4实际问题与一元一次方程教案人教数学七年级上册
第三章 一元一次方程3.4 实际问题与一元一次方程第1课时 产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配 套,商家应制作椅子的数量是桌子数量的 ___ 倍. 方桌与椅子的数量之比是 .2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x 名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮、黑皮各多少块?(提示:一块白皮(六边形)中,有三边与黑皮(五边形)相连,因此白皮边数是黑皮边数的2倍)针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若2.一套仪器由一个A 部件和三个B 部件构成. 用1立方米钢材可做40个A 部件或240个B 部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,才能恰好配成这种仪器?共配成多少套?探究点2:工程问题填一填一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是 ,乙的工作效率是 .(2)甲做x 天完成的工作量是 ,乙做x 天完成的工作量是 ,甲乙合做x 天完成的工作量是 .议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:_____________________________________________________________________________. 例2 加工某种工件,甲单独作要20天完成,乙只要10天就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量 = 工作效率×工作时间;合作的工作效率 =工作效率之和.2. 相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作“1”.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题 实际问题的答案 1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成 一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 .设未知数,列方程 检验2.一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做x天完成,那么所列方程为.3.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4.一项工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?参考答案课堂探究一、要点探究有6(32x)条.依题意,得2×5x=6(32x),解得x=12,则32x=20.答:白皮20块,黑皮12块.【针对训练】1. 12x×3=18×(30−x)2.解:设应用 x 立方米钢材做 A 部件,则应用(6-x)立方米做 B 部件.根据题意,列方程:3×40x = (6-x)×240.解得x = 4.则6-x = 2.共配成仪器:4×40=160 (套). 答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件,共配成仪器 160 套.填一填(1议一议(1)工作效率、工作时间(2)工作量=工作效率×工作时间解:解:设乙需工作x天后甲再继续加工才可正好按期完成任务,则甲做了(12x)天.依题意,得11(12) 1.2010x x-+=解得x=8. 答:乙需工作8天后甲再继续加工才可正好按期完成任务.想一想:解:设甲加工y 天,两人如期完成任务,则在甲加入之前,乙先工作了(8y )天. 依题意,得18 1.2010y +=解得y =4. 答:乙需加工4天后,甲加入合作加工才可正好按期完任务.【针对训练】解:设要 x 天可以铺好这条管线,由题意得:11 1.1224x x +=解方程,得x = 8. 答:要8天可以铺好这条管线.当堂检测根据题意,得 4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌为50×6=300(张). 答:用6立方米的木材做桌面,4立方米的木材做桌腿,才能使桌面、桌腿刚好配套,可做)+ 1.12x x = 13+(3+) 1.24x =解得x = 13. 答:乙队还需13天才能完成. 第三章 一元一次方程3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路.一、要点探究探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格.标价 商店销售商品时所赚的钱.售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价.填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元.想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价;●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ; ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率).议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小.(1)盈利:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”“<”或“=”);(2)亏损:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”“<”或“=”);(3)不盈不亏:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”、 “<”或“=”).例1 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价 > 总成本时,盈利;总售价 < 总成本时,亏损;总售价 = 总成本时,不盈不亏.针对训练1. 某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%. 这次琴行是盈利还是亏损,或是不盈不亏?2. 某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%. 请通过计算说明这次交易中的盈亏情况.例2 某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题的关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数 ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)1.某种商品的进价为每件a 元,零售价为每件90元,若商品按八五折出售,仍可获利10%,则下列方程正确的是( ) A .85%a=10%×90 B .90×85%×10%=aC .85%(90a)=10%D .(1+10%)a=90×85%2.两件商品都卖120元,其中一件赢利25%,另一件亏本20%,则两件商品卖出后( )A .赢利16元B .亏本16元C .赢利6元D .亏本6元3.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价? 参考答案课堂探究一、要点探究连一连:进价也称成交价,是商店销售商品时的销售价格.标价商店销售商品时所赚的钱.售价商店购进商品时的价格.利润商店销售商品时标出的价格,也称定价.填一填:1.1802. 30 20%3.0.9a4.1.25a5.16议一议:(1)>>(2)<<(3)= =解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得x=48,类似地,设另一件亏损衣服的进价为y元,它的商品利润是25%y元,列方程y+(25%y)=60,解得y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元,120128=8元,所以这两件衣服亏损8元.【针对训练】1.解:设盈利20%的钢琴的成本为x元,x(1+20%)=960,解得x=800.设亏本20%的钢琴的成本为y元,y(120%)=960,解得y=1200.所以960×2(800+1200)=80,所以亏损80元.这次琴行亏本80元.2.解:根据题意得:6464÷(1+60%)+6464÷(120%)=6440+6480=8(元).所以这次交易盈利8元.设盈利60%的计算器的成本为x元,x(1+60%)=64,解得x=40.设亏本20%的计算器的成本为y元,y(120%)=64,解得y=80.所以64×2(40+80)=8(元),所以这次交易盈利8元.解:设该商品的进价为每件x 元,依题意,得900×0.9-40=10% x +x,解得x=700.答:该商品的进价为700元.【针对训练】1.2722.5 2.10039a 当堂检测 1. D 2.D 3.C4.解:设商店最多可以打x 折出售此商品,根据题意,得15001000(15).10x ⨯=+% 解得x = 7. 答:商店最多可以打7折出售此商品.5. 解:答:应在360元~480元内还价.。
人教版数学七上3.4第1课时《产品配套问题和工程问题》精品说课稿2
人教版数学七上3.4 第1课时《产品配套问题和工程问题》精品说课稿2一. 教材分析教材是数学七年级上册的第三章第四节,本节主要介绍产品配套问题和工程问题。
产品配套问题主要涉及成套产品的配套关系,如家电、文具等;而工程问题主要涉及工作效率、工作总量、工作时间的关系。
这部分内容是学生在学习了简单方程和不等式的基础上,进一步解决实际问题,培养学生的解决问题的能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和解决实际问题的能力。
他们在学习过程中,需要将已学的知识与实际问题相结合,通过解决实际问题,提高自己的数学素养。
但是,学生在解决复杂实际问题时,可能会遇到理解不深、解决问题的方法不够多样等问题。
三. 说教学目标1.知识与技能:理解产品配套问题和工程问题的概念,掌握解决这类问题的基本方法。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:理解产品配套问题和工程问题的概念,掌握解决这类问题的基本方法。
2.教学难点:如何引导学生将实际问题转化为数学模型,并运用恰当的数学方法解决问题。
五. 说教学方法与手段本节课采用情境教学法、案例教学法和小组合作学习法。
通过情境和案例的引入,激发学生的学习兴趣,引导学生主动参与课堂。
同时,利用小组合作学习,培养学生的团队合作意识,提高学生的解决问题的能力。
六. 说教学过程1.导入:通过展示一些实际问题,如家电套餐、工程队施工等,引导学生思考如何解决这些问题。
2.产品配套问题的讲解:通过分析实际问题,引导学生理解产品配套问题的概念,并讲解解决产品配套问题的基本方法。
3.工程问题的讲解:同样通过分析实际问题,引导学生理解工程问题的概念,并讲解解决工程问题的基本方法。
4.实践环节:让学生分组讨论,选取一些实际问题进行解决,巩固所学知识。
5.总结:对本节课的内容进行总结,强调解决实际问题的关键步骤。
七年级数学第三章一元一次方程3.4实际问题与一元一次方程第1课时配套问题与工程问题教案
3.4实际问题与一元一次方程第1课时配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法。
【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力。
【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。
【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题。
一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮。
②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮。
③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______。
【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考。
教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、②依次填:(85-x)、16x、10(85-x)。
依次我们可列得方程为3×16x=2×\[10×(85—x)\].问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母。
人教版七年级上册数学3.4第1课时产品配套问题和工程问题优质教案
人教版七年级上册数学3.4第1课时产品配套问题和工程问题优质教案第一篇:人教版七年级上册数学 3.4 第1课时产品配套问题和工程问题优质教案3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题教学目标:1.掌握产品配套问题、工程问题中常见的数量关系.2.掌握用一元一次方程解决实际问题的基本过程.教学重点:弄清题意,用列方程解决实际问题.教学难点:寻找实际问题中的等量关系,建立数学模型.教学过程:一、复习巩固解下列方程(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);(2)3(2-3x)-3[3(2x-3)+3]=5;(3)(x+1)+(x+2)-3=-(x+3).二、提出问题,探究新知问题1(课本P100例1):某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该安排多少名工人生产螺钉,多少名工人生产螺母?练习1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?问题2:要用20张白卡纸做包装盒,每张白卡纸可以做盒身两个或者做盒底盖3个.如果一个盒身和两个盒底盖可以做成一个包装盒,那么能否把这白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请设计一种分法.(想一想:如果一张白卡纸可以适当的剪裁出一个盒身和一个盒底盖,那么,怎样分这些白卡纸,才能既使做出的盒身和盒底盖配套,又能充分地利用白卡纸?)练习2:(1)用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?(2)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数? 教学过程: 问题3:课本P100例2:整理一批图书:由一个人做要40 h完成.现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?1.逐句阅读题目,熟悉题中已知条件,回答问题:(1)由一个人要做40小时完成,这句话的作用?(2)根据题意,整项工作分成几部分?(3)借助线段图进一步理解题意.2.根据线段图,题目反映的相等关系是什么?3.设未知数,列方程解答.4.例题变式练习:(1)整理一批图书,由一个人做要40 h完成,现计划由一部分人先做4 h,然后增加2人与他们一起做6 h,完成这项工作的,假设这些人的工作效率相同,具体应先安排多少人工作?(2)整理一批图书,由一个人做要40 h完成,现计划由2人先做4 h,然后增加若干人与他们一起又做4 h完成了这项工作,问增加了多少人?三、归纳总结1.归纳:用一元一次方程解决实际问题的基本过程.2.学生独立练习:(有困难的个别指导)(1)课本P101练习第2题(2)货车早上6:40从A城出发,15:40到达B城,一辆客车上午8:00从A城出发,14:00到达B城.求客车追上货车是什么时刻?提示:①由已知条件如何表示出货车与客车的速度?②当客车在途中追上货车时,两车的行驶时间有什么关系?行驶路程有什么关系? ③以什么量为未知数,什么量为相等关系列方程,求出方程的解后又如何求解题目问题.强调:弄清货车与客车出发时间的先后,与到达时间的先后,以理解题意.四、课时小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?五、课堂作业课本P101练习第1题,P106习题3.4第2、3题.课本P106第4、5题.第二篇:苏科版数学七年级上册3.4合并同类项(第2课时)教案课题:3.4 合并同类项(第2课时)教学目标:1.了解同类项的概念,能识别同类项.2.会合并同类项,并将数值代入求值.3.知道合并同类项所依据的运算律.教学重点:会合并同类项,并将数值代入求值.教学难点:知道合并同类项所依据的运算律.教学过程:一、创设情境1.所含字母相同,并且相同字母的指数相同,向这样的项是同类项.2.把同类项合并成一项叫做合并同类项.3.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.二、探索新课: 1.例2 合并同类项5m3-3m2n-m3+2nm2-7+2m3中的同类项.解:5m3-3m2n-m3+2nm2-7+2m3=(5m3-m3+2m3)+(-3m2n+2m2n)-7=(5-1+2)m3+(-3+2)m2n-7=6m3-m2n-7 2.做一做:求代数式2x3-5x2+x3+9x2-3x3-2的值,其中x=1.与同学交流你的做法.解:2x3-5x2+x3+9x2-3x3-2=2x3+x3-3x3-5x2+9x2-2=(2+1-3)x3+(-5+9)x2-2=4x2-2 当x=1时原式=4×12-2=4-2=2 3.总结:求代数式的值时,如果代数式中含有同类项,通常先合并同类项再代入数值进行计算.4.练一练: P97 练一练1、2 P98 1.合并同类项:(1)a2-3a+5+a2+2a-1(2)-2x3+5x2-0.5x3-4x2-x3(3)5a2-2ab+3b2+ab-3b2-5a2(4)5x3-4x2y+2xy2-3x2y-7xy2-5x3 2.求下列各式的值:(1)6y2-9y+5-y2+4y-5y2,其中y=-3 51 2(2)3a2+2ab-5a2+b2-2ab+3b2,其中a=-1,b=三、小结本节课你学到了哪些知识?四、布置作业 P98 习题3.4 3、5五、教后反思第三篇:五年级上册数学第3课时植树问题第7单元数学广角——植树问题第2课时植树问题(3)教学目标:1.运用转化的方法,使学生理解在一条首尾封闭的曲线上植树所需棵数与间隔数“一一对应”的数学模型。
七年级数学上册(人教版)3.4实际问题与一元一次方程(第1课时)产品问题和工程问题优秀教学案例
3.创设竞争机制,激发小组之间的合作竞争力,促进学生的积极参与。
4.引导学生总结小组合作成果,培养学生的表达能力和团队意识。
(四)反思与评价
1.让学生在解决问题的过程中,不断进行自我反思,发现自己的优点和不足。
2.鼓励学生相互评价,培养学生的批判性思维和自我改进能力。
(二)讲授新知
1.介绍一元一次方程的概念,解释一元一次方程在解决实际问题中的应用。
2.通过示例,讲解一元一次方程的解法,包括步骤和技巧。
3.引导学生理解实际问题中的数量关系,并将其转化为一元一次方程。
4.利用数学软件或板书,展示解一元一次方程的过程,让学生跟随步骤进行运算。
(三)学生小组讨论
1.将学生分成小组,每个小组分配一个实际问题,要求学生运用一元一次方程进行解决。
4.通过对实际问题的分析,培养学生运用方程解决问题的方法,提高学生的数学思维能力。
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体会数学的价值和魅力,培养学生的数学兴趣。
2.培养学生积极思考、勇于探索的精神,使学生树立自信心,相信自己能够解决实际问题。
3.通过对实际问题的解决,培养学生珍惜劳动成果、诚实守信的价值观。
3.通过归纳总结,帮助学生建立完整的知识体系,提高学生的数学思维能力。
(五)作业小结
1.布置相关的作业题目,要求学生独立完成,巩固所学知识。
2.提醒学生在作业中注意解题步骤的规范性和运算的准确性。
3.鼓励学生在完成作业后进行自我检查,培养学生的自我反思能力。
4.教师及时批改作业,给予学生反馈和指导,帮助学生提高解题能力。
五、案例亮点
人教版数学七年级上册3.4第1课时产品配套问题和工程问题1-课件
解决上述工程问题的思路:
1.三个基本量:
工程问题中的三个基本量:工作量、工作效率、工作时间,它
们之间的关系是:工作量=工作效率×工作时间.
若把工作量看作1,则工作效率= 2.相等关系:
工
1 作时
间
.
(1)按工作时间,各时间段的工作量之和=完成的工作量.(2)按
工作者,若一项工作有甲、乙两人参与,则甲的工作量+乙的
首页
二、合作探究
探究点一 用一元一次方程解决配套问题
用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,1个 盒身与2个盒底配成1个罐头盒.现有36张白铁皮,用多少张制盒身, 多少张制盒底可以使盒身与盒底正好配套? 【解题探究】 1.设x张铁皮制盒身,则_3__6_-_x张铁皮制盒底. 2.用x怎样表示所制盒身、盒底的个数? 提示:由题意可知制盒身25x个,盒底40(36-x)个.
们之间的关系是:工作量=工作效率×工作时间.
若把工作量看作1,则工作效率=
1. 工作时间
2.相等关系:
(1)按工作时间,各时间段的工作量之和=完成的工作量.(2)按
工作者,若一项工作有甲、乙两人参与,则甲的工作量+乙的
工作量=完成的工作量.
首页
典例精析
例 1.加工1 500个零件,甲单独做需要12小时,乙单独做需要
(2)一件工作,某人5小时单独完成,其工作效率为 1 . ( √ ) 5
(3)一项工程,甲单独做4小时能完成,乙单独做3小时能完
成,则两人合作1小时完成全部工作的 1 .( × ) 7
首页
巩固训练
见《学练优》第72页第5、6、7题
首页
三、课堂小结
配套问题的两个未知量及两个等量关系 1.两个未知量: 这类问题有两个未知数,设其中哪个为x都可以,另一个用含x的代 数式表示,两种设法所列方程没有繁简或难易的区别. 2.两个等量关系: 根据两个等量关系可以列出方程解决问题
人教版七年级数学上册3.4产品配套问题和工程问题学案
精品基础教育教学资料,请参考使用,祝你取得好成绩!第三章一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1.理解配套问题、工程问题的背景.2.分清有关数量关系,能正确找出作为列方程依据的主要等量关系.(重点)3.掌握用一元一次方程解决实际问题的基本过程.(重点)学习重点:1.配套问题:某车间工人生产螺钉和螺母,一个螺钉要配两个螺母,要使生产的产品刚好配套,则应生产的螺母数量恰好是螺钉数量的2倍2.工程问题:(1)工作时间、工作效率、工作量之间的关系:①工作量=工作时间×工作效率.②工作时间=工作量÷工作效率.③工作效率=工作量÷工作时间.(2)通常设完成全部工作的总工作量为1,如果一项工作分几个阶段完成,那么各阶段工作量的和=总工作量,这是工程问题列方程的依据..(3)一项工作,甲用a小时完成,若总工作量可看成1,则甲的工作效率是1/a .若这项工作乙用b小时完成,则乙的工作效率是1/b .(4)人均工作效率:人均工作效率表示平均每人单位时间完成的工作量.例如,一项工作由m个人用n小时完成,那么人均工作效率为1/mn ,a个人b小时完成的工作量=人均工作效率×a×b.一、自主学习判断(打“√”或“×”)(1)用纸板折无盖的纸盒,则一个盒身与两个盒底配套.( )(2)一件工作,某人5小时单独完成,其工作效率为( )(3)一项工程,甲单独做4小时能完成,乙单独做3小时能完成,则两人合作1小时完成全部工作的( )二、合作探究知识点1 用一元一次方程解决配套问题【例1】用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,1个盒身与2个盒底配成1个罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?【解题探究】1.设x张铁皮制盒身,则36-x张铁皮制盒底.2.用x怎样表示所制盒身、盒底的个数?提示:由题意可知制盒身25x个,盒底40(36-x)个.3.制成的盒身与盒底有什么数量关系?提示:盒身个数的2倍=盒底的个数.4.所以可列方程:2×25x=40(36-x)5.解方程,得:x=166.用16张制盒身,20张制盒底.配套问题的两个未知量及两个等量关系1.两个未知量:这类问题有两个未知数,设其中哪个为x 都可以,另一个用含x 的代数式表示,两种设法所列方程没有繁简或难易的区别.2.两个等量关系:例如本题,一个是“制盒身的铁皮张数+制盒底的铁皮张数=36”,此关系用来设未知数.另一个是制成的盒身数与盒底数的倍数关系,这是用来列方程的等量关系.知识点 2 用一元一次方程解决工程问题【例2】一本稿件,甲打字员单独打20天可以完成,甲、乙两打字员合打,12天可以完成,现由两人合打7天后,余下部分由乙打,还需多少天完成?【思路点拨】先求出甲一天的工作效率,甲、乙合作一天的工作效率及甲乙合打7天的工作量,再求出乙一天的工作效率,设乙还需x 天完成,用含x 的代数式表示乙x 天的工作量,根据“两人合打7天的工作量+乙x 天的工作量=1”,列出方程,求解并作答.【自主解答】设乙还需x 天完成,根据题意,得解这个方程,得x=12.5.答:乙还需12.5天完成.【总结提升】解决工程问题的思路1.三个基本量:工程问题中的三个基本量:工作量、工作效率、工作时间,它们之间的关系是:工作量=工作效率×工作时间.若把工作量看作1,则工作效率= 2.相等关系:(1)按工作时间,各时间段的工作量之和=完成的工作量.(2)按工作者,若一项工作有甲、乙两人参与,则甲的工作量+乙的工作量=完成的工作量.711()x 1.121220+-=1.工作时间。
人教版数学七年级上册3.4.1 配套问题与工程问题教案
3.4 实际问题与一元一次方程第1课时 配套问题与工程问题●情景导入 前面我们学习了一元一次方程的解法,本节课,我们将讨论一元一次方程的应用.生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉和螺母、电扇叶片和电机等,大家还能举出一些生活中配套问题的例子吗?【教学与建议】教学:通过这一情景的导入,让学生认识到配套问题无处不在.建议:让学生例举日常生活中配套问题.●悬念激趣 展示近年来全国各地的城市面貌变化的图片,让学生感受到我国经济正突飞猛进的发展,我们的家乡发生了日新月异的变化,同时工人叔叔们在盖房子、修建公路的工程建设中,经常会遇到一些数学问题.某市内要修一条公路,公路大约长120 km.有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢?【教学与建议】教学:展示工程问题,明确本课学习的列一元一次方程解应用题的方法技巧,调动学生的学习热情.建议:小组内讨论说出自己的见解. *命题角度1 产品配套问题此类问题中的配套的物品之间具有一定的数量关系,可作为列方程的依据.【例1】某车间有28名工人,每人每天能生产桌子12张或椅子18把.设有x 名工人生产桌子,其他工人生产椅子,每天生产的桌子和椅子按1∶2配套,则所列方程正确的是(D)A .12x =18(28-x )B .18x =12(28-x )C .2×18x =12(28-x )D .2×12x =18(28-x )【例2】用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒.现在150张白铁皮,用多少张白铁皮制盒身,多少张白铁皮制盒底可以正好制成整套罐头盒而无余料?若设用x 张白铁皮制盒身,则所列的方程应该是__2×16x =43(150-x )__.*命题角度2 工程问题工作总量、工作时间、工作效率,它们的关系是:工作总量=工作时间×工作效率.【例3】一项工程,甲队单独完成需要20天,乙队单独完成需要30天.若先由甲队单独做5天,剩下的部分由甲、乙两队合作完成,则还需要的天数是(A)A .9B .10C .12D .15【例4】整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人做1 h ,随后又增加6人和他们一起做了2 h ,恰好完成这项工作.假设每个人的工作效率相同,那么应先安排多少人工作?解:设应先安排x 人工作.根据题意,得x 30 +x +630 ×2=1,解得x =6.答:应先安排6人工作.*命题角度3 人员调配问题解决人员调配问题,理清调配前后的等量关系,恰当设出未知数,正确列出方程.【例5】某班同学参加平整土地劳动,运土人数比挖土人数的一半多2人.若从挖土人员中抽出7人去运土,则两者人数相等.求原来运土和挖土的各有多少人.解:设原来挖土的有x 人,则原来运土的有⎝⎛⎭⎫12x +2 人. 根据题意,得x -7=12 x +2+7,解得x =32.则12 x +2=18.答:原来运土的有18人,挖土的有32人.高效课堂 教学设计1.熟练掌握利用一元一次方程解决产品配套问题和工程问题的方法,抓住解决这两类问题的关犍.2.熟练掌握列方程解决实际问题的一般思路.▲重点列方程解决实际问题.▲难点根据题意找等量关系.◆活动1 新课导入48位大学生暑假到水利工地做义工,若每人每天平均挖土5 m 3或运土3 m 3,他们如何配合,才能使挖出的土及时运走?若设其中x 人挖土,则运土的人数为__(48-x )__人,根据题意,可列方程__5x =3(48-x )__.◆活动2 探究新知1.教材P 100 例1.提出问题:(1)“1个螺钉配2个螺母”隐含着什么等量关系?(2)本题中有哪些等量关系?(3)如果设x 名工人生产螺母,怎样列方程?学生完成并交流展示.2.教材P 100 例2.提出问题:(1)题目中把什么看作1?(2)题目中的已知量和未知量分别是什么?(3)题目中的等量关系是什么?(4)列出的方程是什么?(5)由此你能归纳出用一元一次方程解决实际问题的基本步骤吗?学生完成并交流展示.◆活动3 知识归纳1.配套问题:关键是明确题目中的数量关系,根据数量关系列出方程.2.工程问题:常把总工作量看作1,再利用“工作量=人均效率×人数×时间”的关系列出方程.3.用一元一次方程解决实际问题的基本步骤包括:(1)审清题意,找__等量关系__;(2)设__未知数__,一般设所求的量为未知数;(3)列方程;(4)解方程;(5)检验、作答.◆活动4 例题与练习例1 某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个,该如何分配工人生产镜片和镜架,才能使每天生产的产品配套?解:设安排x 名工人生产镜片,则有(60-x )名工人生产镜架.由题意,得200x 2 =50(60-x ),解得x =20,则60-x =40.答:安排20名工人生产镜片,40名工人生产镜架,才能使每天生产的产品配套.例2 整理一批数据,由一人做需80 h 完成,现在计划先由一些人做2 h ,再增加5人做8 h ,完成这项工作的34 ,应该怎样安排参与整理数据的具体人数?解:设开始安排x 人做.依题意,得2×180 x +8×180 (x +5)=34 ,解得x =2.答:应该先安排2人做2 h 后,再增加5人做8 h .例3 一个三位数,十位上的数字比个位上的数字大3,且比百位上的数字小1,三个数字之和的50倍比这个三位数小2,求这个三位数.解:设十位数字为x ,则个位数字为x -3,百位数字为x +1,这个三位数为100(x +1)+10x +x -3. 根据题意,得50(x +x -3+x +1)=100(x +1)+10x +x -3-2,解得x =5.则这个三位数为100×(5+1)+10×5+5-3=652.练习1.教材P 101 练习第1,2题.2.教室里有40套桌椅(一把椅子配一张桌子),总价值2 800元,每把椅子20元,则每张桌子多少元?设每张桌子x元,可列方程为(B)A.40x+20=2 800 B.40x+40×20=2 800C.40(x-20)=2 800 D.40x+20(40-x)=2 8003.一项工作中,甲单独做需要10 h完成,乙单独做需要15 h完成,那么甲每小时完成总工作量的__110__,乙每小时完成总工作量的__115__.若设甲、乙合作需要x h完成,则可列方程为__x10+x15=1__,解得x=__6__.4.某配件厂原计划每天生产60件产品,改进技术后,工作效率提高了20%,这样不仅提前5天完成了生产任务,并且比原计划多生产了48件产品,求原计划要生产多少件产品.解:设原计划要生产x件产品.根据题意,得x60-x+4860×(1+20%)=5,解得x=2 040.答:原计划要生产2 040件产品.◆活动5课堂小结1.利用一元一次方程解决产品配套问题.2.利用一元一次方程解决工程问题.1.作业布置(1)教材P106习题3.4第2,3,4题;(2)对应课时练习.2.教学反思。
人教版精编七年级数学上册第3章教案3.4 第1课时 产品配套问题和工程问题1
3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.以“探究”的形式讨论如何用一元一次方程解决实际问题;(重点,难点)2.体会一元一次方程与实际生活的密切联系,加强数学建模思想的应用意识;(重点) 3.培养运用一元一次方程分析和解决实际问题的能力.(重点)一、情境导入近来我们市要修一条公路,公路大约长120千米,今天一早,有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢?二、合作探究探究点一:产品配套问题某车间有工人660名,生产一种由一个螺栓和两个螺母组成的配套产品,每人每天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?解析:本题找出等量关系为:生产的螺栓数×2=生产的螺母数,把相关的代数式代入即可列方程.解:设分配x人生产螺栓,(660-x)人生产螺母,依题意得14x×2=(660-x)×20,解得x=275,∴660-x=385.答:应分配385人生产螺母,275人生产螺栓.方法总结:此题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解决本题的关键.探究点二:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得1 9×3+124(3+x)=1,解得x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计1.配套问题:找出等量关系2.工程问题:(1)工程总量=效率×时间.(2)各部分的工程和=工作总量=1.本节课以生活中常见的一个问题展开,提高学生的兴趣,让学生们认识到数学知识与我们的实际生活息息相关.然后通过例题教学,为学生提供了探索空间,通过猜测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的积极性.让学生在实践中获得解决问题的方法,得到学习的乐趣.。
七年级上册数学教案设计3.4第1课时产品配套问题和工程问题1
3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.以“探究”的形式讨论如何用一元一次方程解决实际问题;(重点,难点)2.体会一元一次方程与实际生活的密切联系,加强数学建模思想的应用意识;(重点)3.培养运用一元一次方程分析和解决实际问题的能力.(重点)一、情境导入近来我们市要修一条公路,公路大约长120千米,今天一早,有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢?二、合作探究探究点一:产品配套问题某车间有工人660名,生产一种由一个螺栓和两个螺母组成的配套产品,每人每天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?解析:本题找出等量关系为:生产的螺栓数×2=生产的螺母数,把相关的代数式代入即可列方程.解:设分配x人生产螺栓,(660-x)人生产螺母,依题意得14x×2=(660-x)×20,解得x=275,∴660-x=385.答:应分配385人生产螺母,275人生产螺栓.方法总结:此题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解决本题的关键.探究点二:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得1 9×3+124(3+x)=1,解得x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计1.配套问题:找出等量关系2.工程问题:(1)工程总量=效率×时间.(2)各部分的工程和=工作总量=1.本节课以生活中常见的一个问题展开,提高学生的兴趣,让学生们认识到数学知识与我们的实际生活息息相关.然后通过例题教学,为学生提供了探索空间,通过猜测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的积极性.让学生在实践中获得解决问题的方法,得到学习的乐趣.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,∠1=15°,∠AOC=90°,点B ,O ,D 在同一直线上,则∠2的度数为( )A.75°B.105°C.15°D.165°2.甲乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°.乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN=45°.对于两人的做法,下列判断正确的是()A .甲乙都对B .甲对乙错C .甲错乙对D .甲乙都错 3.如图,直线与相交于点,平分,且,则的度数为( )A. B. C. D.4.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。
最新人教版初中七年级上册数学《配套问题与工程问题》教案
3.4实际问题与一元一次方程第1课时配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法.【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力.【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣.【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题.一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮.②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮.③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______.【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考.教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、②依次填:(85-x)、16x、10(85-x).依次我们可列得方程为3×16x=2×\[10×(85-x)\].问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母.所以这类题可看作是与去分母解方程有关的实际问题.解决这类问题需要知道“工作量=人均效率×人数×时间”这一基本数量关系式,该题中第①问是不对的,第②问依次应填120,112,x20,x12,教师教学时可让学生稍作思考后作答.二、思考探究,获取新知探究1教材第100页例1.【分析】(1)每人每天平均生产螺钉1200个或螺母2000个表示什么意思?(2)刚好配套,说明螺钉和螺母个数一样多吗?(3)为了使每天的产品刚好配套,应使生产的螺母数量恰好为螺钉数量的_______.解:设分配x名工人生产螺钉,则有人生产螺母,一天共生产螺钉个,螺母_______个.问题:你能列出方程吗?【教学说明】众所周知,理解题意是学好数学的前提,本例通过分析使学生深入理解题意,便于学生找出相等关系.通过多媒体或实物演示,有效分解教学难点,从而更有效地突破教学难点.此外,前面栏目中的问题也有利于解答本题.教师组织并引导学生通过具体的生活实例或实物演示使学生深入理解螺钉的数量是螺母数量的二分之一,螺母数量是螺钉数量的二倍,引导学生找出相等关系列方程.教师重点关注学生能否理解“刚好配套”,关注学生能否理解在配套的情况下相等关系应为:螺钉的数量×2=螺母的数量;而不是:螺母的数量×2=螺钉的数量.试一试教材第101页练习第1题.探究2 教材第100~101页例2.【分析】这里可以把总工作量看作1.请填空:人均效率(一个人1h完成的工作量)为.由x人先做4h,完成的工作量为.再增加2人和前一部分人一起做8h,完成的工作量为_____.这项工作分两段完成,两段完成的工作量之和为.【教学说明】前面问题1 和问题2为本题作了铺垫,所以学生比较好理解.教学时,教师引导学生完成“分析”中的空,上面的空依次应填:1/40,4x/40,8(x+2)/40,4x/40+8(x+2)/40,填完空后,教师让学生上台板演此题.随后师生一起运用一元一次方程解决问题的基本思路,具体可参见教材第101页的相关表述.试一试教材第101页练习第2题.三、典例精析,掌握新知例1 用白铁皮做罐头盒,每张白铁皮可制盒身16个或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?【分析】这是一个“配套”问题,我们可以运用上一栏目中的“配套”问题的解题思路来分析.本题需要找出等量关系:做盒身的白铁皮张数+做盒底的白铁皮张数=100;用白铁皮做盒身的总个数×2=用白铁皮做盒底的总个数.解:设用x张制盒身,则用(100-x)张制盒底.根据题意列方程,得2×16x=48×(100-x).去括号,得32x=4800-48x.移项及合并同类项,得80x=4800.系数化为1,得x=60.制盒底的铁皮数:100-60=40.答:用60张制盒身,40张制盒底.例2 整理一批图书,如果由一个人单独做要花60小时,现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?【分析】本题中含有一些基本等量关系:工作总量=工作时间×工作效率.一般把工作总量看作总体“1”.解:设先安排整理的人员为x人,根据题意得解此方程,得x=10.答:先安排整理的人员有10人.例3一项工程,由甲单独做需30天,由乙单独做需50天,现由甲、乙共同完成这项工程且施工期间乙要休息14天,那么完成这项工程需要几天?【分析】把全部工作量看成1,则甲的效率为1/30,乙的效率为1/50.若设这项工程需要x天完成,则甲的工作量为1/30x,乙的工作量为1/50(x-14),由此列出方程.解:设这项工程需要x天完成.由题意,得1/30x+1/50(x-14)=1.去分母,得5x+3(x-14)=150.去括号,得5x+3x-42=150.移项、合并同类项,得8x=192.系数化为1,得x=24.答:完成这项工程需要24天.四、运用新知,深化理解1.某车间90名工人生产凳子面和凳子腿,每人每天平均生产凳子面10个或凳子腿50个,一个凳子面要配四个凳子腿.为了使每天的产品刚好配套,应该分配多少名工人生产凳子面,多少名工人生产凳子腿?2.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?3.有甲、乙、丙三个水管,单独开放甲管5h可注满一池水;甲、乙两管齐放,2h 可注满一池水;甲、丙两管齐开放,3h可注满一池水.现把三管一齐开放,过了一段时间后甲管因故障停开,停开后2h水池注满,问三管齐开放了多少小时水?【教学说明】上面前两道题分别是与本课时所学应用题相对应的,第1题为配套问题,可设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿,由题意分析可知其中的相等关系为:x名工人一天生产凳子面的4倍=(90-x)名工人生产凳子腿的数量,教师应让学生通过思考找出这个等量关系.第2题为工作量问题,教师应注意让学生找到本题关键点:由乙单独完成需要几小时.在对这两题进行分析后,教师可让学生上台板演.第3题综合性强,题较难,教师应给予充分的提示,此题是一个工程问题,基本关系是:工作量=工作效率×工作时间.各个工作量之和=总工作量.将注满一池水的工作量设为1,设三管齐开放了xh,可列表如下:如若教师在进行上面的提示之后,学生仍无法动手,教师可与学生进行互动,不必要求学生上台板演.【答案】1.解:设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿.依题意可列方程,得:4×10x=(90-x)×50去括号,得40x=4500-50x移项,得40x+50x=4500合并同类项,得90x=4500系数化为1,得x=50所以90-x=40答:应分配50名工人生产凳子面,40名工人生产凳子腿.2.解:设还需x小时完成,依题意列方程得:去分母,得35+2x=60移项及合并同类项,得2x=25系数化为1,得x=12.5答:还需12.5小时完成.3.设三管齐开放注水xh,根据题意得去分母,得6x+9x+18+4x+8=30.移项,得6x+9x+4x=30-8-18.合并同类项,得19x=4.系数化为1,得x=4/19.答:三管齐开放了4/19h水.五、师生互动,课堂小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决应用问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?1.布置作业::从教材习题3.4中选取.2.完成练习册中本课时的练习.本课时的内容主要是结合前面所学内容解决实际问题,所以教学时教师应给予学生充分的独立思考空间,注重与学生进行互动.引导学生应注意找出等量关系,因为这是列方程解应用题的关键所在.此外,考虑到这是第1课时,所以教学时应注意让学生总结解决实际问题的步骤,让学生养成规范化解题和答题的习惯.作者留言:非常感谢!您浏览到此文档。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4实际问题与一元一次方程
第1课时产品配套问题和工程问题
1.以“探究”的形式讨论如何用一元一次方程解决实际问题;(重点,难点)
2.体会一元一次方程与实际生活的密切联系,加强数学建模思想的应用意识;(重点) 3.培养运用一元一次方程分析和解决实际问题的能力.(重点)
一、情境导入
近来我们市要修一条公路,公路大约长120千米,今天一早,有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢?
二、合作探究
探究点一:产品配套问题
某车间有工人660名,生产一种由一个螺栓和两个螺母组成的配套产品,每人每
天平均生产螺栓14个或螺母20个.如果你是这个车间的车间主任,你应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?
解析:本题找出等量关系为:生产的螺栓数×2=生产的螺母数,把相关的代数式代入即可列方程.
解:设分配x人生产螺栓,(660-x)人生产螺母,
依题意得14x×2=(660-x)×20,
解得x=275,
∴660-x=385.
答:应分配385人生产螺母,275人生产螺栓.
方法总结:此题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解决本题的关键.
探究点二:工程问题
一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共
同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?
解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.
解:设乙队还需x天才能完成,由题意得
1 9×3+
1
24
(3+x)=1,
解得x=13.
答:乙队还需13天才能完成.
方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.
三、板书设计
1.配套问题:找出等量关系
2.工程问题:
(1)工程总量=效率×时间.
(2)各部分的工程和=工作总量=1.
本节课以生活中常见的一个问题展开,提高学生的兴趣,让学生们认识到数学知识与我们的实际生活息息相关.然后通过例题教学,为学生提供了探索空间,通过猜测、验证、质疑、讨论、解疑等一系列活动,充分调动学生学习的积极性.让学生在实践中获得解决问题的方法,得到学习的乐趣.。