山东省济南市高新区2020-2021学年度第一学期七年级期中考试数学试题 (图片版)(无答案)
山东省济南市济南高新区海川中学2023-2023学年七年级上学期10月月考数学试题
起来.
21.(1)当 a 2 , b = -1时,求代数式 a2 2ab b2 的值.
(2)当 x 1 时, ax3 bx 4 的值为 0;求当 x= 1 时, ax3 bx 4 的值.
22.已知 a , b 互为相反数, c ,d
互为倒数, m 的绝对值是
2,求
ab 2m2 1
4m 3cd
A. 7, 2
B. 8,3
C. 8, 2
D.负数或零 D. 7,3
8.与算式 22+22+22+22 的运算结果相等的是( )
A.24
B.82
C.28
D.216
9.下列说法正确的有( )
1 任何一个有理数的平方都是正数; 2 两个数比较,绝对值大的反而小;
3 a 不一定是负数; 4 符号相反的两个数互为相反数.
山东省济南市济南高新区海川中学 2023-2023 学年七年级上 学期 10 月月考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. 1 的绝对值是( ) 2
A. 1 2
B.
1 2
C. 2
D.2
2.地球绕太阳每小时转动经过的路程约为 110000 米,将 110000 用科学记数法表示为
山东省济南市槐荫区2020-2021学年七年级上学期期中考试数学试题
2020~2021学年度第一学期期中质量检测七 年 级 数 学(2020.11)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分。
本试题共6页,满分为150分。
考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。
考试结束后,将本试卷和答题卡一并交回。
本考试不允许使用计算器。
第I 卷(选择题 共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
一、选择题(本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列几何体中,是棱锥的为( )A .B .C .D .2.2020的相反数是( )A .2020B .﹣2020C .20201D .20201- 3.检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数。
从轻重的角度看,哪个球更接近标准( )A .﹣2.5B .+0.8C .﹣3.2D .﹣0.74.下列式子中,()3--,3--,()20201-,53-,()()51-÷-结果是正数的有( )A .1个B .2个C .3个D .4个5.下面的说法正确的是( )A .正有理数和负有理数统称有理数B .整数和分数统称有理数C .正整数和负整数统称整数D .有理数包括整数、自然数、零、负数和分数6.下列各式正确的是( )A .358=+-B .()623=-C .112-=--D .()422=-10题图7.下列各式中,符合代数式书写规则的是( )A .237xB .41⨯aC .p 612- D .z ÷y 2 8.近年来,在市委、市政府的正确领导下,我市全面实施以“减贫摘帽、精准扶贫”为主线的“第一民生工程”。
山东省济南市市中区2020-2021学年七年级上学期期末考试数学试题(含答案)
2020-2021年七年级市中区上学业水平测试数 学 试 题一.选择题(共12小题,满分48分,每小题4分)1.下列各数中,3的相反数的是( )A .31B .31C .﹣3D .32.如图所示的几何体,其俯视图是( )A .B .C .D .3.2020年6月23日,我国的北斗卫星导航系统(BDS )星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A .2.15×107B .2.15×106C .0.215×108D .21.5×1064.如图,OA 是北偏东30°方向的一条射线,若射线OB 与射线OA 垂直,则OB 的方向角是( )A .北偏西30B .北偏西60°C .东偏北30°D .东偏北60° 5.下列调查中,适合采用全面调查(普查)方式的是( )A .对饮用黄河水水质情况的调查B .了解新冠肺炎确诊病人同机乘客的健康情况C .对超市一批红枣质量情况的调查D .对某种led 灯泡寿命情况的调查6.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .70°B .55°C .35°D .20° 7.下列运算正确的是( )A .3a +2a =5a 2B .3a +3b =3abC .a 5﹣a 2=a 3D .2a 2b ﹣a 2b =a 2b8.关于x 的方程4x ﹣3m =2的解是x =m ,则m 的值是( )A .﹣2B .2C .72D .72 9.在直线l 上取三点A 、B 、C ,使线段AB =8cm ,BC =3cm ,则线段AC 的长为( )A .5cmB .8cmC .10cmD . 11cm10.一件商品按成本价提高30%后标价,又以8折销售,售价为416元,这件商品卖出后获得利润( )元.A .16B .18C .24D .3211.按如图所示的运算程序,能使运算输出结果为﹣5的是( )A .x =1,y =﹣2B .x =1,y =2C .x =﹣1,y =2D .x =﹣1,y =﹣212.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,2,2)二.填空题(共6小题,满分24分,每小题4分)13.若上升15米记作+15米,那么下降2米记作 米.14.一副三角板按如图所示放置,AB ∥DC ,则∠CAE 的度数为 .第14题图 第15题图15.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有 人.16.半径为2且圆心角为90°的扇形面积为 .17.若|m﹣2|+(n﹣1)2=0,则m+2n的值为.18.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上由左至右第1个数是1,第2个数是13,第3个数是41,…,依此规律,第5个数是.三.解答题(共9小题,满分78分)19.计算(本小题满分8分)(1)2+(﹣3)﹣12 ﹣(﹣23)(2)﹣22﹣(﹣2)²×0.25÷20 .解下列各题:(本小题满分8分)(1)化简:﹣5a+(3a﹣2)+(7﹣3a);(2)先化简,再求值:3a2b﹣ab2﹣(﹣ab2+2a2b﹣1)其中a=﹣2,b=3.21.(本小题满分6分)如图,已知∠AOC=80°,∠COE=60°,OB是∠AOC的平分线,OD是∠COE 的平分线,求∠BOD 的度数.22.(本小题满分6分)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.23.(本小题满分8分)解下列方程:(1)8x ﹣3=5x +3; (2)612142-=-+y y ;24.(本小题满分8分)喜迎新年,某社区超市第一次用5000元购进甲、乙两种商品,其中甲商品。
人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含三套题)
密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:150分 时间: 120分钟)一、选择题(本大题共12小题,每小题4分,共48分) 1.(4分)某种速冻水饺的储藏温度是﹣18±2°C,四个冷藏室的温度如下:A 冷藏室,﹣17°C;B 冷藏室,﹣22°C;C 冷藏室,﹣18°C;D 冷藏室,﹣19°C.则不适合储藏此种水饺的是( )A .A 冷藏室B .B 冷藏室C .C 冷藏室D .D 冷藏室 2.(4分)下列各式结果是负数的是( ) A .﹣|﹣3| B .()2 C .﹣(﹣3) D .(﹣3)2 3.(4分)如果m 是一个有理数,那么﹣m 是( ) A .正数 B . 0C .负数D .以上三者情况都有可能4.(4分)下列方程中,是一元一次方程的是( ) A .3x ﹣1= B .x 2﹣4x=3 C .x+2y=1 D .xy ﹣3=55.(4分)大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为( ) A .1.6×105 B .1.6×106 C .1.6×107 D .1.6×108 6.(4分)如图,数轴上的A ,B ,C 三点所表示的数是分别是a 、b 、c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间(靠近点C )或点C 的右边 7.(4分)下列式子:x 2+1, +4,,,﹣5x ,0中,整式的个数是( ) A .6 B .5 C .4 D .38.(4分)关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+19.(4分)如图是某年3月份的日历表,任意圈出一竖列上相题号一 二 三 四 五 总分 得分封线内邻的三个数,运用方程思想来研究,发现这三个数的和不可能是()A.69 B.54 C.40 D.2710.(4分)多项式x3﹣2x2+5x+3与多项式2x2﹣x3+4+9x的和一定是()A.奇数 B.偶数 C.2与7的倍数D.以上都不对11.(4分)观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…根据其中的规律,得出的第10个单项式是()A.﹣29x10 B.29x10 C.﹣29x9 D.29x912.(4分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空题(本大题共6小题,每小题413.(4分)某天的气温从﹣3℃上升14.(4分)﹣17的相反数是.15.(4分)若a,b互为倒数,则a2b﹣(a﹣16.(4分)若x的2倍与3的和是﹣15,17.(4分)如图,边长为(m+3为m隙),若拼成的矩形一边长为318.(4分)有依次排列的3个数:3,9,8个数,都用右边的数减去左边的数,可产生一个新数串:3,6,9,﹣1,89,﹣10,﹣1,9,8三、解答题(本大题共2小题,每小题719.(7分)计算:()2﹣|﹣1÷0.2|+(﹣5)3×(﹣)20.(7分)(1)合并同类项:3a2﹣2a+4a2﹣7a.(2)解方程:﹣2x﹣=x+.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(1)解方程:﹣=1﹣; (2)先化简,再求值:2x 2﹣[3(﹣x 2+xy )﹣2y 2]﹣2(x 2﹣xy+2y 2),其中x=,y=﹣1.22.(10分)已知A=2x 2+3xy ﹣2x ﹣1,B=﹣x 2+xy ﹣1; (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.23.(10分)一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >9且x <26,单位:km )第一次 第二次第三次 第四次 xx ﹣52(9﹣x )(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置. (3)这辆出租车一共行驶了多少路程?24.(10分)李师傅下岗后,做起来小生意,第一次进货,他以每件a 元的价格购进了30件甲种小商品,以每件b 元的价格购进了40件乙种小商品,且a <b .(1)若李师傅将甲种商品提价40%,乙种商品提价30%全部出售,他获利多少元?(用含有a ,b 的式子表示结果)(2)若李师傅将两种商品都以元的价格全部出售,他这次买卖是赚钱还是亏本,请说明理由?五、解答题(本大题共2小题,每小题12分,共24分) 25.(12分)探索规律:观察下面由※组成的图案和算式,并解答问题. 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52(1)试猜想1+3+5+7+9+…+19= ;(2)试猜想1+3+5+7+9+…+(2n ﹣1)+(2n+1)+(2n+3)= ; (3)请用上述规律计算:1001+1003+1005+…+2015+2017(请算出最后数值哦!)26.(12分)家乐福超市开展元旦促销活动出售A 、B 两种商品,活动方案有如下两种: 方案一A B 标价(单位:元)90100答 题每件商品返利 按标价的30% 按标价的15%例:买一件A 商品,只需付款90(1﹣30%)元方案二 若所购商品达到或超过100件(不同商品可累计),则按标价的20%返利.(同一种商品不可同时参与两种活动)(1)某单位购买A 商品30件,B 商品90件,选用何种活动划算?能便宜多少钱?(2)若某单位购买A 商品x 件(x 为正整数),购买B 商品的件数比A 商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分) 1.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃, 温度范围:﹣20℃至﹣16℃,A 、﹣20℃<﹣17℃<﹣16℃,故A 不符合题意;B 、﹣22℃<﹣20℃,故B 符合题意;C 、﹣20℃<﹣18℃<﹣16℃,故C 不符合题意;D 、﹣20℃<﹣19℃<﹣16℃,故D 不符合题意;故选:B . 2.【解答】解:A 、﹣|﹣3|=﹣3,故选项正确; B 、()2=,故选项错误;C 、﹣(﹣3)=3,故选项错误;D 、(﹣3)2=9,故选项错误.故选:A .3.【解答】解:如果m 是一个有理数,那么﹣m 负数,故选:D .4.最高次数为1且两边都为整式的等式.故选:A .5.解:将160万用科学记数法表示为1.6×106.故选:B 6.【解答】解:∵|a|>|b|>|c|,∴点A 到原点的距离最大,点B 其次,点C 最小, 又∵AB=BC ,∴在点B 与点C 之间,且靠近点C 的地方或点C 的右边,D .7.解:整式有x 2+1,,﹣5x ,0,共4个,故选:C .8.解:该多项式四次项是﹣7xy 3,其系数为﹣7,故选:B 9.【解答】解:设中间的数是x ,则上面的数是x ﹣7数是x+7.则这三个数的和是(x ﹣7)+x+(x+7)=3x , 因而这三个数的和一定是3的倍数. 则,这三个数的和不可能是40.故选:C .10.【解答】解:(x 3﹣2x 2+5x+3)+(2x 2﹣x 3+4+9x )=14x+7密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题果是个多项式;又14x+7=7(2x+1),此处x 为任意有理数,而并非只取正整数, ∴结果不确定.故选:D .11.【解答】解:依题意得:(1)n 为奇数,单项式为:﹣2(n﹣1)x n;(2)n 为偶数时,单项式为:2(n ﹣1)x n .综合(1)、(2),本数列的通式为:2n ﹣1•(﹣x )n ,∴第10个单项式为:29x 10.故选:B .12.【解答】解:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C . 二、填空题(本大题共6小题,每小题4分,共24分) 13.【解答】解:由题意,的﹣3℃+2℃ =﹣1℃故答案为:﹣114.【解答】解:﹣17的相反数是17, 故答案为:17.15.【解答】解:∵a ,b 互为倒数, ∴ab=1,∴a 2b ﹣(a ﹣2017) =ab •a ﹣(a ﹣2017) =a ﹣a+2017 =2017.故答案为:2017.16.【解答】解:由题意:2x+3=﹣15, ∴x=﹣9, ∴x 2﹣1=80, 故答案为80.17.【解答】解:依题意得剩余部分为 (m+3)2﹣m 2=m 2+6m+9﹣m 2=6m+9, 而拼成的矩形一边长为3, ∴另一边长是(6m+9)÷3=2m+3. 故答案为:2m+3.18.【解答】解:一个依次排列的n 个数组成一个数串:a 1,a 2,a 3,…,a n ,依题设操作方法可得新增的数为:a 2﹣a 1,a 3﹣a 2,a 4﹣a 3,a n ﹣a n ﹣1,所以,新增数之和为:(a 2﹣a 1)+(a 3﹣a 2)+(a 4﹣a 3)+…+(a n ﹣a n ﹣1)=a n ﹣a 1,原数串为3个数:3,9,8,第1次操作后所得数串为:3,6,9,﹣1,8,根据(*)可知,新增2项之和为:6+(﹣1)=5=8﹣3, 第2次操作后所得数串为:3,3,6,3,9,﹣10,﹣1,9,8,内 答 根据(*)可知,新增2项之和为:3+3+(﹣10)+9=5=8﹣3, 按这个规律下去,第100次操作后所得新数串所有数的和为: (3+9+8)+100×(8﹣3)=520, 故答案为:520.三、解答题(本大题共2小题,每小题7分,共14分) 19.【解答】解:原式=﹣5+75=72. 20.【解答】解:(1)3a 2﹣2a+4a 2﹣7a =3a 2+4a 2﹣7a ﹣2a =7a 2﹣9a .(2)﹣2x ﹣=x+, ﹣12x ﹣9=6x+2, ﹣12x ﹣6x=2+9, ﹣18x=11, x=﹣.四、解答题(本大题共4小题,每小题10分,共40分) 21.【解答】解:(1)去分母,得2(x+2)﹣5(x ﹣1)=10﹣2x ,去括号,得2x+4﹣5x+5=10﹣2x , 移项,合并得﹣x=1, 系数化为1,得x=﹣1;(2)原式=2x 2+x 2﹣2xy+2y 2﹣2x 2+2xy ﹣42y 2, =x 2﹣40y 2,当x=,y=﹣1,原式=﹣40=﹣39.22.【解答】解:(1)原式=3(2x 2+3xy ﹣2x ﹣1)+6(﹣x 2﹣1)=6x 2+9xy ﹣6x ﹣3﹣6x 2+6xy ﹣6 =15xy ﹣6x ﹣9(2)原式=(15y ﹣6)x ﹣9 由题意可知:15y ﹣6=0 y=23.【解答】(1是向东,第四次是向西.(2)解:x+(﹣x )+(x ﹣5)+2(9﹣x )=13﹣x , ∵x >9且x <26, ∴13﹣x >0,∴经过连续4次行驶后,这辆出租车所在的位置是向东(13﹣x )km .(3)解:|x|+|﹣x|+|x ﹣5|+|2(9﹣x )|=x ﹣23, 答:这辆出租车一共行驶了(x ﹣23)km 的路程.24.【解答】解:(1)由题意可得:30×40%a+40×30%b=(密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题元;(2)他这次买卖亏本; 理由:70×﹣(30a+40b )=5(a ﹣b )∵a <b ,∴5(a ﹣b )<0, ∴他这次买卖是亏本.五、解答题(本大题共2小题,每小题12分,共24分) 25.【解答】解:(1)1+3+5+7+9+…+19=()2=100;(2)1+3+5+7+9+…+(2n ﹣1)+(2n+1)+(2n+3) =()2=(n+2)2.故答案为:100;(n+2)2;(3)1001+1003+1005+…+2009+2017 =()2﹣()2=10092﹣5002 =1018081﹣250000 =768081.26.【解答】解:(1)选择方案一所需费用为:30×90×(1﹣30%)+90×100×(1﹣15%)=9540(元),选择方案二所需费用为:(30×90+90×100)×(1﹣20%)=9360(元),∵9540>9360,9540﹣9360=180(元), ∴选择方案二划算,答:选用方案二划算,能便宜180元钱;(2)当0≤x ≤99时,选择方案一,当x ≥100时,选择方案二,理由:由题意可得,选择方案一所需费用为:90×(1﹣30%)x+100×(1﹣15%)×(2x+1)=233x+85,选择方案二所需费用为:当0≤x ≤99时,90x+100(2x+1)=290x+100,当x ≥100时,[90x+100(2x+1)]×(1﹣20%)=232x+80, 由题意可得,当0≤x ≤99时,选择方案一, 当x ≥100时,233x+85<232x+80,得x <﹣5, 233x+85=232x+80,得x=﹣5, 233x+85>232x+80,得x >﹣5, 则当x ≥100选择方案二,由上可得,当0≤x ≤99时,选择方案一,当x ≥100时,选择方案二.人教版2020—2021学年度上学期七年级密封线内得答题数学(上)期中测试卷及答案(满分:100分时间:100分钟)一、精心选择,相信自己判断力!(共10小题,每小题2分,满分20分)1.(2分)计算:﹣2+5的结果是()A.﹣7B.﹣3C.3D.72.(2分)有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A.a<b B.a>b C.a=b D.无法确定3.(2分)在﹣(﹣3)、﹣|﹣3|、(﹣3)2、(﹣3)3四个数中,负数有()个.A.1B.2 C.3D.74.(2分)下列对整式说法不正确的是()A.单项式﹣5xy的系数为﹣5B.单项式﹣5xy的次数为2C.多项式x2﹣x﹣1的次数为3D.多项式x2﹣x﹣1的常数项为﹣15.(2分)下列说法正确的是()A.0的倒数是0B.若a为有理数,则a2>0C.有理数可分为整数,0,分数D.当a≤0时,则|a|=6.(2分)下列计算正确的是()A.2a+3b=5ab B.﹣2(a﹣b)=﹣2a+bC.﹣3a+2a=﹣a D.a3﹣a2=a7.(2分)x与y差的平方,正确列式是()A.x﹣y2B.(x﹣y)2C.x2﹣y D.x2﹣y28.(2分)计算=()A.B.C.D.9.(2分)如图所示:两个圆的面积分别为19、11部分的面积分别为a、b(a>b),则a﹣b的值为()A.5B.6C.7D.810.(2表示1的点与表示﹣3的点重合,若数轴上A、B距离为2017(A在B的左侧),且A、B合,则A点表示的数为()A.﹣1007.5B.﹣1008.5C.﹣1009.5D.﹣2010.5密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、耐心填空,试试自己的身手!(共6小题,每小题3分,满分18分)11.(3分)我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么﹣1场表示: .12.(3分)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为55 000 000千米,这个数据用科学记数法可表示为 .13.(3分)计算:3÷(﹣)×(﹣2)= . 14.(3分)观察下面的一列单项式:2x 2,﹣4x 3,8x 4,﹣16x 5,…根据其中的规律,得出第5个单项式是: .15.(3分)已知四部互不相等的整数,a 、b 、c 、d ,且满足abcd=4.则a +b +c +d= .16.(3分)若a <b ,ab <0:则﹣a +b= (用含|a |和|b |的式子表示)三、用心解答,相信自己能行!(本大题共9题,满分62分) 17.(12分)计算:(1)﹣4+13﹣(﹣6)﹣(﹣7) (2)16÷(﹣8)﹣(﹣)×(﹣4) (3)﹣14﹣(﹣4)2﹣|3﹣7|÷(﹣) 18.(8分)计算: (1)3a ﹣2+(4a ﹣5)(2)x 2﹣2(x 2﹣y )﹣(x 2﹣y ) 19.(5分)阅读下面的解题过程并回答问题 计算:8a 2﹣[3a +2(a ﹣4a )2]解:原式=8a 2﹣3a ﹣2a ﹣8a 2=(8﹣8)a 2+(﹣2﹣3)a=﹣5a① ② ③回答问题:(1)上面解题过程中错误的步骤是: (填上面序号)(2)上面由第①步到第②步的计算过程中,所用到的运算律是(3)请给出正确的计算过程.20.(5分)先化简,再求值:﹣4y +6x 2+3(y ﹣x 2),其中x=,y=﹣1.21.(5分)若a 、b 互为相反数,c 、d 互为倒数,|x |=3,求式子: 3a +b ﹣(x ﹣b )﹣(cd )2017的值.22.(6分)出租车司机小刘某天下午的营运全是在东西走向的大道上.如果规定向东为正,向西为负.他这天下行车情况如下(单位:千米)+5,﹣3,﹣8,﹣6,+10,﹣6,+11,﹣9(1)将最后一名乘客送到目的地时,小刘在下午出车地点A 的东面还是西面?离点A 的距离是多少千米?(2)在下午营运开始前出租车油箱内有(58a ﹣a 2﹣1)升汽油,汽车耗油量a升/千米,问:小刘这个下午从营运开始到送完最后一位乘客,途中是否需要加油?23.(7分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减运算与整式的加、减运算类似.复数的乘方意义与有理数的乘方的意义类似,例如:(1)i3=i•i•i=i2•i=﹣i(2)(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i根据以上信息,完成下列问题:(1)填空:(﹣1+i)(1﹣i)=;i﹣4=.(2)化简:i+i2+i3+i4+ (i2017)24.(6分)如图①所示是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于.(2)请用两种不同的方法表示图②中阴影部分的面积.方法①;方法②.(3)观察图②,请写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:.(4)若a+b=6,ab=5,则求a﹣b的值.25.(8分)在一条不完整的数轴上从左到右有点A,B,其中点A到点B的距离为3,点C到点B的距离为7,示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为求m的值.(3)动点P从A点出发,以每秒2C移动,动点Q同时从B点出发,以每秒1点C移动,当几秒后,P、Q两点间的距离为2答案.参考答案一、选择题1.C.2.B.3.B.4.C.5.D.6.C.7.B.8.B.9.D.10.C二、填空题密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题11.中国队输1场.12.5.5×107. 13.12. 14.32x 615.0 16.|a |+|b |.三、解答题17.解:(1)原式=﹣4+13+6+7 =﹣4+26 =22;(2)原式=﹣2﹣ =﹣2;(3)原式=﹣1﹣16﹣4÷(﹣) =﹣17+6 =﹣11.18.(1)解:原式=(3a +4a )+(﹣2﹣5) =7a ﹣7;(2)原式=x 2﹣2x 2+y ﹣x 2+y =(x 2﹣2x 2﹣x 2)+(y +y ) =﹣2x 2+y .19.解:(1)①.(2)加法交换律、加法结合律、乘法分配律; (3)原式=8a 2﹣[3a +2(﹣3a )2] =8a 2﹣3a ﹣2(9a 2) =8a 2﹣3a ﹣18a 2 =(8﹣18)a 2﹣3a =﹣15a 2﹣3a .20.解:﹣4y +6x 2+3(y ﹣x 2) =﹣4y +6x 2+3y ﹣2x 2 =4x 2﹣y ,当x=,y=﹣1时,原式=4×()2﹣(﹣1)=2.21.解:由题意得:a +b=0,cd=1,x=±3;当x=3时,原式=3×0﹣3﹣(﹣1)2017=0﹣3+1=﹣2; 当x=﹣3时,原式=3×0+3﹣(﹣1)2017=0+3+1=4.22.解:(1)5﹣3﹣8﹣6+10﹣6+11﹣9=﹣6(千米) 所以小刘在出发点的A 西面,离A 的距离是6 千米. (2)|5|+|﹣3|+|﹣8|+|﹣6|+|+10|+|﹣6|+|+11|+|﹣9|=58(千米)(58a﹣a2﹣1)﹣58a=﹣a2﹣1<0,所以需要加油.23.解:(1)原式=﹣(1﹣i)2=﹣1+2i+1=2i;原式==1;故答案为:2i;1;(2)原式=(i﹣1﹣i+1)×504+i=i.24.解:(1)图②中的阴影部分的小正方形的边长=m﹣n;(2)方法①(m+n)2﹣4mn;方法②(m﹣n)2;(3)这三个代数式之间的等量关系是:(m﹣n)2=(m+n)2﹣4mn;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=5,∴(a﹣b)2=36﹣20=16,∴a﹣b=±4.故答案为m﹣n;(m+n)2﹣4mn (m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.25.解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C分别为﹣6、﹣3、4,则m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,Q对应的数是﹣(7﹣t),P对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分时间:100分钟)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( )A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.题号一 二 三 四 五 六 总分 得分不12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1)③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数;C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;B 、2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2d ,故本选项不符合题意;C 、3x 2﹣3(x+6)=3x 2﹣3x ﹣18,故本选项符合题意;封线内不得答D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,∴或,∴a+b=6或2,故答案为:6或2.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46. 故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.23.【解答】解:∵由图可知,a <﹣1<0<b <1,∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b密 封 =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0,∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。
2019-2020学年山东省济南市高新区七年级下学期期末考试数学试题(无答案)
济南市高新区2019-2020学年第二学期七年级期末考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一个不透明的袋中,装有1个白球、2个红球、2个黄球、3个黑球,它们除颜色外都相同,从袋中任意摸出一个球,可能性最大的是( )A .白球B .红球C .黄球D .黑球2.汉字书法博大精深,下列汉字“行“的不同书写字体中,是轴对称图形的是( )A .B .C .D .3.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A .太阳光强弱B .水的温度C .所晒时间D .热水器的容积4.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .5.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .6.下列计算正确的是( )A .5a ﹣2a =3B .a 2+4a 2=5a 4C .(x 2)3=x 6D .x 6÷x 3=x 27.下列各组数据不是勾股数的是( )A .2,3,4B .3,4,5C .5,12,13D .6,8,108.如图,将一张矩形纸片折叠,若∠1=78°,则∠2的度数是( )A .51°B .56°C .61°D .78°9.小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数y (元)与购买彩笔的支数x (支)之间的关系式为( )A .y =23xB .y =32xC .y =12xD .y =18x10.如图是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知图案的面积为25,小正方形的面积为9,若用x ,y 长示小长方形的两边长(x >y ),请观察图案,以下关系式中不正确的是( )A .4xy +9=25B .x +y =5C .x ﹣y =3D .x 2+y 2=16第10题图 第11题图11.如图,圆柱的底面半径是4,高是5,一只在A 点的蚂蚁想吃到B 点的食物,需要爬行的最短路径是(π取3)( )A .9B .13C .14D .2512.如图,在等腰△ABC 中,AB =AC ,AB >BC ,点D 在边BC 上,且41 BC BD ,点E 、F 在线段AD 上,满足∠BED =∠CFD =∠BAC ,若S △ABC =20,则S △ABE +S CDF 是多少?( )A .9B .12C .15D .18二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:(m ﹣n )(m +n )= .14.袋中装有6个黑球和若干个白球,每个球除颜色外都相同.现进行摸球试验,每次随机摸出一个球记下颜色后放回.经过大量的试验,发现摸到黑球的频率稳定在附近,则袋中白球约有 个.15.如图,是一个测量工件内槽宽的工具,点O 既是AA '的中点,也是BB '的中点,若测得AB =5cm ,则该内槽A 'B '的宽为 cm .第15题图 第16题图16.如图所示正五角星是轴对称图形,它有 条对称轴.17.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行使过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0123y(升)100928476由表格中y与t的关系可知,当汽车行驶小时,油箱的余油量为40升.18.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,已知S1+S2+S3=10,则S2的值是.三、解答题:(本大题共12个小题,共102分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(x+3)(x﹣4)20.(本题4分)运算:(x+2)221.(本题4分)已知:如图,直线AB,CD被直线GH所截,∠1=112°,∠2=68°,求证:AB∥CD.完成下面的证明.证明:∵AB被直线GH所截,∠1=112°,∴∠1=∠=112°∵∠2=68°,∴∠2+∠3=,∴AB∥()(填推理的依据)22.(本题5分)某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s (米)与时间t(分)之间的关系.(1)学校离他家米,从出发到学校,王老师共用了分钟;王老师吃早餐用了分钟?(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?23.(本题5分)如图所示,在边长为1的小正方形组成的网格中,△ABC的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.(1)作△A1B1C1,使得△A1B1C1与△ABC关于直线l对称;(2)△A1B1C1的面积是.24.(本题6分)先化简,再求值:(x﹣1)2﹣x(x﹣3),其中x=2.25.(本题6分)把下面的说理过程补充完整:已知:如图,BC∥EF,BC=EF,AF=DC线段AB和线段DE平行吗?请说明理由.答:AB∥DE理由:∵AF=DC(已知)∴AF+FC=DC+∴AC=DF()(填推理的依据)∵BC∥EF(已知)∴∠BCA=∠(两直线平行,内错角相等)又∵BC=EF(已知)∴△ABC≌△DEF()(填推理的依据)∴∠A=∠(全等三角形的对应角相等)∴AB∥(内错角相等,两直线平行)26.(本题6分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,AD=16,求AB的长.27.(本题8分)如图,现有一块长为(3a+b)米,宽为(a+2b)米的长方形地块,规划将阴影部分进行绿化,中间预留部分是边长为a米的正方形.(1)求绿化的面积(用含a,b的代数式表示);(2)若a=3,b=1,绿化成本为50元/平方米,则完成绿化共需要多少元?28.(本题8分)如图,小明将升旗的绳子拉到旗杆底端点B处,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米的点C处,发现此时绳子底端距离打结处约3米,请算出旗杆AB的高度.29.(本题10分)甲口袋中放有3个红球和5个白球,乙口袋中放有7个红球和9个白球,所有球除颜色外都相同.充分搅匀两个口袋,分别从两个口袋中任意摸出一个球,设从甲中摸出红球的概率是P甲(红),从乙中摸出红球的概率是P乙(红)(1)求P甲(红)与P乙(红)的值,并比较它们的大小.(2)将甲、乙两个口袋的球都倒入丙口袋,充分搅匀后,设从丙中任意摸出一球是红球的概率为P丙(红).小明认为:P丙(红)=P甲(红)+P乙(红).他的想法正确吗?请说明理由.30.(本题12分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.。
人教版数学七年级上学期《期中考试试卷》(含答案解析)
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格
元
元
元
家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;
2020—2021学年度第一学期七年级数学月考试卷(含解析)
2020—2021学年度第一学期月考试卷七年级数学2020.12一、选择题(本题共20分,每小题2分)1.若代数式x+4的值是2,则x等于()A.2B.﹣2C.6D.﹣62.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A.0.3369×107B.3.369×106C.3.369×105D.3369×1033.在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2x+3)=6B.3(x﹣1)﹣2(2x+3)=1C.2(x﹣1)﹣2(2x+3)=6D.3(x﹣1)﹣2(2x+3)=34.如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.直线比线段长5.下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由x=﹣1,可得x=﹣D.由,可得2(x﹣1)=x﹣36.已知3a2﹣a=1,则代数式6a2﹣2a﹣5的值为()A.﹣3B.﹣4C.﹣5D.﹣77.有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab >0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④8.下列说法中正确的是()A.如果|x|=7,那么x一定是7B.﹣a表示的数一定是负数C.射线AB和射线BA是同一条射线D.一个锐角的补角比这个角的余角大90°9.下列图形中,可能是右面正方体的展开图的是()A.B.C.D.10.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如图所示:根据上图提供的信息,下列推断中不合理的是()A.2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二.填空题(共8小题)11.如图所示的网格是正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)12.用四舍五入法将0.0586精确到千分位,所得到的近似数为.13.已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a=,b=.14.若(x+1)2+|y﹣2020|=0,则x y=.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.我们把称为二阶行列式,且=ad﹣bc如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;(2)若=6,则m的值为.17.已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=BC,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为.18.一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a,则商品包装盒的长为,图2中阴影部分的周长与图3中阴影部分的周长的差为(都用含a的式子表示).三、计算题(本题共12分,每小题3分)19.(1) 5-15x+=x;(2)13(x-1)=17(2x-3);(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.四、解答题20.(本题6分)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2?21.(本题8分)小明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?22.(本题8分)已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补23.(本题6分)某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形变式数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为a ij(其中i,j=1,2,3,4),如图1中第2行第1列的数字a ij=0;对第i行使用公式A i=8a i1+4a i2+2a i3+a i4进行计算,所得结果A1表示所在年级,A2表示所在班级,A3表示学号的十位数字,A4表示学号的个位数字.如图1中,第二行A2=8×0+4×1+2×0+1=5,说明这个学生在5班.(1)图1代表的学生所在年级是年级,他的学号是;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案24.(本题6分)学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.25.(本题8分)点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM的长为4.5,则线段AC的长为;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).26.(本题6分)对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA 与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON 内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.参考答案与试题解析一.选择题1.【分析】根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.【解答】解:依题意,得x+4=2移项,得x=﹣2故选:B.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3369000用科学记数法表示为3.369×106,故选:B.3.【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【解答】解:方程左右两边同时乘以6得:3(x﹣1)﹣2(2x+3)=6.故选:A.4.【分析】依据线段的性质,即可得出结论.【解答】解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.5.【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.6.【分析】原式变形后,把已知等式代入计算即可求出值.【解答】解:∵3a2﹣a=1,∴原式=2(3a2﹣a)﹣5=2﹣5=﹣3,故选:A.7.【分析】根据图示,可得:﹣3<a<﹣2,﹣2<b<﹣1,3<c<4,据此逐项判断即可.【解答】解:∵﹣3<a<﹣2,∴|a|<3,∴选项①不符合题意;∵a<0,b<0,∴ab>0,∴选项②符合题意;∵﹣2<b<﹣1,3<c<4,∴b+c>0,∴选项③不符合题意;∵b>a,∴b﹣a>0,∴选项④符合题意,∴正确结论有2个:②④.故选:C.8.【分析】根据绝对值,负数,射线,余角和补角的定义一一判断即可.【解答】解:A、∵|x|=7,∴x=±7,故本选项不符合题意.B、﹣a不是的数不一定是负数,本选项不符合题意.C、射线AB和射线BA不是同一条射线,本选项不符合题意.D、一个锐角的补角比这个角的余角大90°,正确,本选项符合题意,故选:D.9.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符合,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.10.【分析】根据统计图中的数据可以判断各个选项中的说法是否合理,从而可以解答本题.【解答】解:由统计图可知,2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变,故选项A合理;2018年11月与2018年10月相比,全国居民消费价格降低0.3%,故选项B合理;2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%,故选项C合理;2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率先增大,后减小,再增大,故选项D不合理;故选:D.二.填空题11.【分析】依据图形即可得到∠ABC=45°,∠DEF<45°,进而得出两个角的大小关系.【解答】解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.12.【分析】把万分位上的数字6进行四舍五入即可.【解答】解:0.0586≈0.059(精确到千分位).故答案为0.059.13.【分析】把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,依此写出一组满足条件的a,b的值.【解答】解:把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,则一组满足条件的a,b的值:a=1,b=﹣3.故答案为:1,﹣3(答案不唯一).14.【分析】直接利用绝对值和偶次方的性质得出x,y的值,进而得出答案.【解答】解:∵(x+1)2+|y﹣2020|=0,∴x+1=0,y﹣2020=0,解得:x=﹣1,y=2020,所以x y=(﹣1)2020=1.故答案为:1.15.【分析】设有x个人,根据金的价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.16.【分析】(1)根据:=ad﹣bc,求出的值是多少即可.(2)根据:=6,可得:﹣4m﹣2×7=6,据此求出m的值为多少即可.【解答】解:(1)=2×5﹣(﹣3)×6=10﹣(﹣18)=28(2)∵=6,∴﹣4m﹣2×7=6,∴﹣4m﹣14=6,∴m=﹣5.故答案为:28、﹣5.17.【分析】(1)根据题意画出图形;(2)由图,根据线段中点的意义,根据线段的和与差进一步解决问题.【解答】解:(1)如图所示;(2)∵AB=30,BC=AB,∴BC=AB=30,∵AD=BC=10,∴BD=AD+AB=10+30=40,∵点E是线段CD的中点,∴DE=CD=(10+30+30)=35,∴BE=BD﹣DE=5,故答案为:5.18.【分析】根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,用含有a的代数式表示出长方体纸箱的长和宽,再表示出图2和图3的周长,最后求差即可.【解答】解:根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,大纸箱的长为4a,宽为3a,图2中阴影部分的周长为:3a×2+2a×2+2a=12a,图3中阴影部分的周长为:4a×2+2a=10a,图2与图3周长的差为12a﹣10a=2a,故答案为:2a,2a.三.解答题19.(1) x=4 (2) 2x=-(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.20.【分析】分别解两个方程求得方程的解,然后根据x的方程5m+3x=1+x的解比关于x 的方程2x+m=3m的解大2,即可列方程求得m的值.【解答】解:解方程5m+3x=1+x得:x=,解2x+m=3m得:x=m,根据题意得:﹣2=m,解得:m=﹣.21.【分析】根据关键语句“到学校共用时15分钟,骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程,解方程即可求解.【解答】解:设他推车步行了x分钟,依题意得:80x+250(15﹣x)=2900,解得x=5.答:他推车步行了5分钟.22.【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD,再根据等式性质可得∠BOE=∠COE,进而得证.【解答】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质.23.【分析】(1)根据所给公式分别求出A1=8×0+4×1+2×1+1=7,A3=8×0+4×0+2×1+0=2,A4=8×1+4×0+2×0+0=8,即可求解;(2)由所给信息画出图形即可.【解答】解:(1)A1=8×0+4×1+2×1+1=7,A3=8×0+4×0+2×1+0=2,A4=8×1+4×0+2×0+0=8,故答案为7,28;(2)如图:24.【分析】(1)设篮球的单价为x元,足球的单价为y元,根据“若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设学校购买篮球m个,足球n个,根据总价=单价×数量,即可得出关于m,n的二元一次方程,再结合m,n均为非负整数,即可得出结论.【解答】解:(1)设篮球的单价为x元,足球的单价为y元,依题意,得:,解得:.答:篮球的单价为80元,足球的单价为75元.(2)设学校购买篮球m个,足球n个,依题意,得:0.8(80m+75n)=1760,∴m=.∵m,n均为非负整数,∴或.答:学校购买篮球20个、足球8个或者篮球5个、足球24个.25.【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B 表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长;(3)根据数轴,结合(2)的过程即可用含x的式子表示BM的长.【解答】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5×=×6∵OA=5,∴OB=AB﹣OA=1,∴点B表示的数为﹣1.故答案为﹣1;(2)∵BM=4.5,∴OM=4.5﹣1=3.5(点M在原点右侧)或OM=|﹣1﹣4.5|=5.5(点M在原点左侧)∵M为线段OC的中点∴OC=2OM=7或11∴AC=7﹣5=2(点C在原点右侧)或AC=11+5=16(点C在原点左侧)∴线段AC的长为2或16.故答案为2或16;(3)当AC=x,点C在点A右侧,OC=5+x∴OM=OC=(5+x)∴BM=OB+OM=1+(5+x)=x+点C在线段OA上,OC=OA﹣AC=5﹣x∴OM=OC=(5﹣x)∴BM=OM﹣OB=(5﹣x)+1=﹣x+.当点C在线段OB上时,OC=x﹣5,OM=(x﹣5),BM=1﹣(x﹣5)=﹣x,当点C在点B的左侧时,OC=x﹣5,OM=(x﹣5),BM=|1﹣(x﹣5)|=﹣x 或x﹣,答:线段BM的长为:x+或x﹣或﹣x.26.【分析】(1)由∠MON内含对称的定义可求解;(2)由∠MON内含对称的定义可得10°≤(x+10)°≤30°,可求解;(3)分两种情况讨论,利用∠MON内含对称的定义列出不等式,即可求解.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.。
2020-2021学年度第一学期第二次质量调研七年级数学试卷 附参考答案
2020-2021学年度第一学期第二次质量调研七 年 级 数 学 试 卷(试卷总分:150分 考试时间:120分钟)一.选择题(共8小题,每小题3分,共24分) 1.﹣2020的相反数是( ) A .﹣2020B .2020C .- 12020D .120202.下列各数中,是无理数的是( ) A .0B .3.14C .13D .π3.在下列单项式中,与5xy 2是同类项的是( )A .5ab 2B .5xyC .5x 2yD .﹣7y 2x4.代数式a 2+b 2的意义是( ) A .a 、b 两数的平方和 B .a+b 的平方 C .a 、b 两数和的平方 D .以上全不对5.由6个相同的小正方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .6.下列图形中,∠1与∠2是对顶角的是( )A .B .C .D .7.按照如图所示的计算程序,若输入x ,经过第二轮程序计算之后,输出的值为- 116 ,则输入的x 值为( )A .±12B .- 12C .±14D .- 148.某一电子昆虫落在数轴上的某点K 0,从K 0点开始跳动,第1次向左跳1个单位长度到K 1,第2次由K 1向右跳2个单位长度到K 2,第3次由K 2向左跳3个单位长度到K 3,第4次由K 3向右跳4个单位长度到K 4……依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K 100表示的数恰好是2015,则电子昆虫的初始位置K 0所表示的数是( ) A .2065 B .﹣1965 C .1965 D .﹣2065 二.填空题(共8小题,每小题3分,共24分)9.如果温度上升4℃,记作+4℃,那么温度下降7℃记作 ℃. 10.若|x|=﹣(﹣8),则x = . 11.单项式- 5x 2y 3的系数是 .12.已知一个角为45°,那么这个角的补角是 度.13.如图,是一个正方体的表面展开图,则原正方体中“人”字所在的面相对的面上标的字是 .(第13题图) (第14题图)14.如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么∠AOB 的大小为 °.15.矩形长和宽分别为8cm 、6cm ,以其中一边所在直线为轴旋转一周,得到的几何体的底面积是 .16.如下表,从左向右依次在每个小格子中都填入一个有理数,使得其中任意四个相邻小格子中所填数之和都等于15.已知第3个数为7,第5个数为m ﹣1,第16个数为2,第78个数为3﹣2m ,则第2021个数为 .7m ﹣1三.解答题(共11小题,共102分) 17.(10分)计算:(1)(- 56)×(47 - 38 + 114 ). (2)(- 18)÷ 94 +(- 2)3 ×(- 12 )- (-32).18.(10分)化简、求值: (1)化简:﹣3x 2+5x ﹣12x 2+x .(2)先化简、再求值:2(x 2y ﹣xy )+3(xy ﹣x 2y )﹣4x 2y ,其中x =1,y =﹣2. 19.(10分)解方程:(1)2(2x +1)=1-5(x -2). (2)2x 0.3 -1.6x -30.6 =31x +83.20.(6分)操作:如图,已知三点A ﹑B ﹑C. (1)画线段AB ; (2)画射线AC ; (3)画直线BC.21.(6分)已知:如图,线段AB=8cm ,C 是AB 的中点,点D 在CB 上,DB=2.5cm.求线段CD 的长.22.(6分)已知:如图,直线AB 、CD 相交于点O ,∠BOD 与∠BOE 互为余角,若∠AOC=68°,求∠BOE 的度数.23.(8分)在参加植树活动中,甲班有27人,乙班有19人,现在增派20人去支援,使得甲班的人数是乙班人数的2倍,则应调往甲、乙两班各多少人? 24.(8分)学校图书馆向某班数学兴趣小组赠送图书.如果每名学生5本,那么多3本;如果每名学生7本,那么少5本.问数学兴趣小组共有学生多少名?有图书多少本? 25.(12分)李老师准备购买若干个某种笔记本奖励学生,甲、乙两家商店都有足够数量的这种笔记本,其标价都是每个6元,甲商店的促销方案是:购买这种笔记本数量不超过5个时,原价销售;超过5个时,超过部分按原价的7折销售.乙商店的销售方案是:一律按标价的8折销售. (1)(4分)若李老师要购买x (x >5)个这种笔记本,请用含x 的式子分别表示李老师到甲商店和乙商店购买全部这种笔记本所需的费用.(要求:分别列式后,再化简) (2)(4分)李老师购买多少个这种笔记本时,到甲、乙两家商店购买所需费用相同? (3)(4分)若李老师需要20个这种笔记本,则到甲、乙哪家商店购买更优惠?OCD A B E26.(12分)如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =60°,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OB 上,另一边OM 在直线AB 的上方.(1)(3分)在图①中,∠COM = 度; (2)(5分)将图①中的三角板绕点O 按逆时针方向旋转,使得ON 在∠BOC 的内部,如图②,若∠NOC =16∠MOA ,求∠BON 的度数;(3)(4分)将图①中的三角板绕点O 以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,当直线ON 恰好平分锐角∠BOC 时,旋转的时间是 秒.(直接写出结果)27.(14分)我们规定,若关于x 的一元一次方程ax =b 的解为x =b ﹣a ,则称该方程为“奇异方程”.例如:2x =4的解为x =2=4﹣2,则该方程2x =4是“奇异方程”.请根据上述规定解答下列问题: (1)(3分)判断方程5x =﹣8 (回答“是”或“不是”)“奇异方程”; (2)(3分)若a =3,有符合要求的“奇异方程”吗?若有,求b 的值;若没有,请说明理由; (3)(4分)已知关于x 的一元一次方程-3x =mn+n 是“奇异方程”,并且它的解为x =n ,求m 、n 的值; (4)(4分)若关于x 的一元一次方程2x =mn+m 和﹣2x =mn+n 都是“奇异方程”,求代数式﹣2(m+11)+4n+3[(mn+m )2﹣m]﹣12 [(mn+n )2﹣2n]的值.2020-2021学年度第一学期七年级数学第二次月考试卷(总分:150分 时间150分钟)参考答案 仅供参考一.选择题(共8小题,每小题3分,共24分)B D D ACD A C二.填空题(共8小题,每小题3分,共24分)9.- 7 10.±8 11.- 53 12.13513.中 14.140 15.36πcm 2或64πcm 216.- 5三.解答题(共12小题) 17.(10分)(1)原式=-15 (2)原式=5 18.(10分)(1)原式=- 72x 2+6x(2)原式=xy-5x 2y ,当x =1,y =-2时,原式=8. 19.(10分) (1)x =1 (2)x =71920.(6分)操作:略; 21.(6分)CD =1.5cm ; 22.(6分)∠BOE =22°; 23.(8分)应调往甲17人,乙班3人; 24.(8分)有学生4名,有图书23本; 25.(12分)(1)李老师到甲商店购买全部这种笔记本应付费:6×5+0.7×6(x-5)=4.2x+9(元); 李老师到乙商店购买全部这种笔记本应付费:0.8×6x =4.8x (元).(4分) (2)设李老师要购买x (由题可知x >5)个这种笔记本时,到甲、乙两家商店购买所需费用相同.由题意,得4.2x+9=4.8x .解得x =15.答:李老师购买15个这种笔记本时,到甲、乙两家商店购买所需费用相同.(4分) (3)李老师购买20个这种笔记本到甲商店应付费:4.2×20+9=93(元); 李老师购买20个这种笔记本到乙商店应付费:4.8×20=96(元). 因为93元<96元,所以李老师到甲商店购买更优惠.(4分) 26.(12分) (1)30 (3分) (2)∠BON =54°(5分) (3)(3)3或21(4分) 27.(14分)(1)∵5x =-8,∴x =- 85,∵﹣8-5=-13,- 85 ≠ - 13,∴5x =﹣8不是奇异方程;故答案为:不是;(2分)(2)∵一元一次方程4x =m 是“奇异方程”,∴x =m-4把x =m-4代入一元一次方程4x =m 中,得:4(m-4)=m ,解得:m = 163 ;故答案为:m = 163;(2分)(3)∵一元一次方程-3x =mn+n 是“奇异方程”,∴x =mn+n+3, 又x =n ,∴mn+n+3=n ,∴mn =-3,把x =n ,mn =-3代入一元一次方程-3x =mn+n 中,得:-3n =-3+n ,解得:n =34 ,将n =34 代入mn =-3中,得:m =-4.故答案为:m =-4,n =34 ;(3分)(4)∵一元一次方程ax =b 的解为x =b3又∵x =b ﹣a ,a =3 ∴x =b-3,∴b-3=b 3 ,解得:b =92,即b =92 时,有符合要求的“奇异方程”; (3分)(5)由题可知: mn+m =4①, mn+n =- 43②,①式减②式,得:m-n =163,∴ - 2(m+11)+4n+3[(mn+m )2-m] - 12 [(mn+n )2- 2n]=- 2m - 22 + 4n + 3(mn+m )2-3m - 12 (mn+n )2+ n=- 5(m ﹣n )﹣22+3(mn+m )2 - 12 (mn+n )2,=- 5 × 163 - 22 + 3 × 42 - 12 × (- 43 )2=- 23 - 89=- 149 .(4分)。
2020-2021学年山东省济南市历下区七年级(上)期中数学试卷(附答案详解)
2020-2021学年山东省济南市历下区七年级(上)期中数学试卷1.−2020的绝对值是()A. −2020B. 2020C. −12020D. 120202.在−4,227,0,3.14159,−5.2,2中正有理数的个数有()A. 1个B. 2个C. 3个D. 4个3.用一个平面去截下列几何体,截得的平面图形不可能是三角形的是()A. B. C. D.4.2020年国庆档电影《我和我的家乡》通过讲述中国东西南北中五大地域的家乡故事,抒发人们的家国情怀,展示脱贫攻坚成果.该电影上映第一天票房为10500万元,则数字10500用科学记数法可表示为()A. 10.5×103B. 1.05×104C. 1.05×105D. 105×1025.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A. B. C. D.6.下列算式中,运算结果为负数的是()A. −(−1)B. |−1|C. −12D. (−1)27.2020年是不寻常的一年,病毒无情人有情,很多最美逆行者奔赴疫情的前线,不顾自己的安危令我们感动.宜传委员小明在一个正方体的每个面上分别写上一个汉字,组成“共同抗击疫情”.如图是该正方体的一种展开图,那么在原正方体中,与汉字“抗”相对的面上的汉字是()A. 共B. 同C. 疫D. 情8.下列各式,运算正确的是()A. 5a−3a=2B. 2a+3b=5abC. 7a+a=7a2D. 10ab2−5b2a=5ab29.下列说法中,正确的是()A. 单项式12xy2的系数是12xB. 单项式−5x2的次数为−5C. 多项式x2+2x+18是二次三项式D. 多项式x2+y2−1的常数项是110.已知有理数a,b,c在数轴上的位置如图所示,下列结论正确的是()A. c<a<bB. |a|<|b|C. a+b>0D. |c−b|=c−b11.某校在疫情复学后建立了一个身份识别系统,利用如图①的二维码可以进行身份识别.图②是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行小正方形表示的数字从左到右依次记为a,b,c,d.那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图②第一行小正方形表示的数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20= 5,表示该生为5班学生,表示6班学生的识别图案是()A. B. C. D.12.已知有理数a≠1,我们把11−a 称为a的差倒数,如:2的差倒数是11−2=−1,−1的差倒数是11−(−1)=12,如果a1=−3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1−a2+a3−a4+⋯+a2017−a2018+a2019−a2020的值是()A. −3B. −114C. 114D. 131213.我市某天的最高气温是4℃,最低气温是−1℃,则这天的日温差是______℃.14.单项式2x m y3与−3xy3n是同类项,则m+n=______.15.比较大小:−54______−43(填“>”或“<”)16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是______(结果保留π).17.按照如图所示的计算程序,若x=2,则输出的结果是______.18.如图是用棋子摆成的“T”字图案,从图案中可以看出,第1个“T”字图案需要4枚棋子,第2个“T”字图案需要7枚棋子,第3个“T”字图案需要10枚棋子.照此规律,摆成第n个“T”字图案要2020枚棋子,则n的值为______ .19.计算:(1)(−7)−(+5)+(−4)−(−10);(2)16÷(−43)×(−89)20.先化简,再求值:3a2−b−a2+2b+b−a2,其中a=−2,b=−12.21.如图是一些棱长为1cm的小立方块组成的几何体.请你画出从正面、从左面、从上面看到的这个几何体的形状图.22.(1)(−34−56+712)×(−24);(2)16÷(−2)3−(−18)×4.23.有三个有理数a,b,c,已知a=2(−1)n(n为正整数),且a与b互为相反数,b与c 互为倒数.(1)当n=2020时,a=______ ;b=______ ;c=______ .(2)当n=2021时,a=______ ;b=______ ;c=______ .−bc+d=______ .(3)若d是最大的负整数,则a+b202024.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?25.如图,一个大长方形中剪下两个大小相同的小长方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分).(1)用含x,y的代数式表示阴影部分的周长;(2)用含x,y的代数式表示阴影部分的面积;(3)当x=2,y=2.5时,计算阴影部分的面积.26.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的下3次方”,一般地,把n个a(a≠0)相除记作a n,读作“a的下n次方”.【初步探究】(1)直接写出计算结果:23=______,(−12)5=______.(2)关于除方,下列说法正确的选项有______(只需填入正确的序号);①任何非零数的下2次方都等于1;②对于任何正整数n,1n=1;③34=43;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:24=2÷2÷2÷2=2×12×12×12=(12)2(幂的形式)(1)试一试:将下列除方运算直接写成幂的形式.56=______;(−12)10=______;(2)算一算:(−14)4÷23+(−8)×23.27.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+2|+(c−8)2=0,b=1.(1)a=______,c=______;(2)若将数轴折叠,使得A点与B点重合,则点C与数______表示的点重合.(3)在(1)(2)的条件下,若点P为数轴上一动点,其对应的数为x,当代数式|x−a|+|x−b|+|x−c|取得最小值时,此时x=______,最小值为______.(4)在(1)(2)的条件下,若在点B处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点C处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),请表示出甲、乙两小球之间的距离d(用t的代数式表示).答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:|−2020|=2020, 故选:B .根据绝对值的定义直接解答.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:在−4,227,0,3.14159,−5.2,2中,正有理数是:227,3.14159,2, 即在−4,227,0,3.14159,−5.2,2中,正有理数有3个, 故选:C .根据正有理数的定义解答即可.本题考查有理数,解题的关键是明确什么数是正有理数.3.【答案】C【解析】解:如果截面是三角形,那么这个几何体不可能是圆柱. 故选:C .此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.4.【答案】B【解析】解:数字10500用科学记数法可表示为1.05×104, 故选:B .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】D【解析】解:∵|−1.2|=1.2,|−2.3|=2.3,|+0.9|=0.9,|−0.8|=0.8,又∵0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件;故选:D.分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.6.【答案】C【解析】解:A、−(−1)=1,选项不符合题意;B、|−1|=1,选项不符合题意;C、−12=−1,选项符合题意;D、(−1)2=1,选项不符合题意;故选:C.本题涉及绝对值、乘方等知识点.在计算时,需要针对每个知识点分别进行计算.此题主要考查了绝对值、有理数的乘方运算,解题的关键是熟练掌握相关的定义和法则即可求解.7.【答案】D【解析】解:根据正方体展开图的特征,“相间、Z端是对面”可得,“抗”的对面是“情”,故选:D.根据“相间、Z端是对面”可得到“抗”的对面为“情”.本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.8.【答案】D【解析】解:∵5a−3a=2a,∴选项A不符合题意;∵2a+3b≠5ab,∴选项B不符合题意;∵7a+a=8a,∴选项C不符合题意;∵10ab2−5b2a=5ab2,∴选项D符合题意.故选:D.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐项判定即可.此题主要考查了合并同类项的方法,要熟练掌握,解答此题的关键是要明确合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.9.【答案】C【解析】解:A、单项式12xy2的系数是12,原说法错误,故此选项不符合题意;B、单项式−5x2的次数为2,原说法错误,故此选项不符合题意;C、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意;D、多项式x2+y2−1的常数项是−1,原说法错误,故此选项不符合题意,故选:C.利用多项式的项数与次数的定义,单项式的次数与系数的定义判断即可.此题考查了多项式,单项式,熟练掌握多项式和单项式的有关定义是解本题的关键.10.【答案】A【解析】解:依题意有c<a<0<b,|c|>|a|>|b|,则a+b<0,c−b<0,则|c−b|=−c+b,故只有选项A正确.故选:A.根据数轴表示数的方法得到c<a<0<b,|c|>|a|>|b|,可对A、B进行判断;根据有理数的加法和减法,可对C、D进行判断.本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴的认识.11.【答案】B【解析】解:依题意,得:8a +4b +2c +d =6,∵a ,b ,c ,d 均为1或0,∴a =0,b =c =1,d =0.故选:B .由该生为6班学生,可得出关于a ,b ,c ,d 的方程,结合a ,b ,c ,d 均为1或0,即可求出a ,b ,c ,d 的值,再由黑色小正方形表示1,白色小正方形表示0,即可得出结论.本题考查了规律型:图形的变化类以及解多元一次方程,读懂题意,正确找出关于于a ,b ,c ,d 的方程是解题的关键.12.【答案】D【解析】解:由题意可得,当a 1=−3时,a 2=11−(−3)=14,a 3=11−14=43, a 4=11−43=−3, …,∴这列数是以−3,14,43为一个循环,循环出现的,∵2020÷6=336…4,∴a 1−a 2+a 3−a 4+⋯+a 2017−a 2018+a 2019−a 2020=(a 1−a 2+a 3)−(a 4−a 5+a 6)+⋯+(a 2017−a 2018+a 2019)−a 2020=0+0+⋯+0+(−3−14+43)−(−3) =−3−14+43+3 =−14+43=−312+1612=1312,故选:D.根据题意,可以计算出a2、a3、a4的值,从而可以发现数字的变化特点,然后即可求得所求式子的值.本题考查数字的变化类、倒数,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.13.【答案】5【解析】解:4−(−1)=4+1=5.故答案为:5.先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.14.【答案】2【解析】【试题解析】解:由单项式2x m y3与−3xy3n是同类项,得m=1,3n=3,解得m=1,n=1,∴m+n=1+1=2,故答案为2.根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.15.【答案】>【解析】解:|−54|=54,|−43|=43,∵54<43,∴−54>−43.故答案为:>.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.【答案】24π【解析】解:由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π,∴这个圆柱的侧面积是4π×6=24π.故答案为:24π.根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.本题考查由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【答案】−26【解析】解:把x=2代入程序中得:10−22=10−4=6>0,把x=6代入程序中得:10−62=10−36=−26<0,∴最后输出的结果是−26.故答案为:−26.把x=2代入程序中计算,然后按程序一直计算至当其值小于0时将所得结果输出即可.本题借助程序框图考查了有理数的混合运算,读懂程序框图是解题的关键.18.【答案】673【解析】解:因为第1个“T ”字图案需要4=3+1枚棋子,第2个“T ”字图案需要7=3×2+1枚棋子,第3个“T ”字图案需要10=3×3+1枚棋子,…所以摆成第n 个图案需要(3n +1)枚棋子,所以3n +1=2020,解得n =673.故答案为:673.通过观察已知图形可得:每个图形都比其前一个图形多3枚棋子,进而得出规律为摆成第n 个图案需要(3n +1)枚棋子,然后列出方程即可求解.此题主要考查了规律型:图形的变化类,注意由特殊到一般的分析方法,得出数字变化规律是解题关键.19.【答案】解:(1)原式=−7−5−4+10=−6;(2)原式=16×(−43)×(−89)=323.【解析】(1)直接去括号利用有理数的加减运算法则计算得出答案;(2)直接去括号利用有理数的乘除运算法则计算得出答案.此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.20.【答案】解:3a 2−b −a 2+2b +b −a 2=a 2+2b .当a =−2,b =−12时,原式=(−2)2+2×(−12)=4−1=3.【解析】先合并同类项,再代入求值.本题考查了整式的加减和有理数的混合运算,掌握合并同类项法则是解决本题的关键.21.【答案】解:三视图如图所示:【解析】根据三视图的定义画出图形即可.本题考查作图−三视图,解题的关键是理解三视图的定义,属于中考常考题型.22.【答案】解:(1)原式=−34×(−24)−56×(−24)+712×(−24) =18+20−14=24;(2)原式=16÷(−8)+12=−2+1 2=−32.【解析】(1)先利用乘法分配律展开,再计算乘法,最后计算加减即可;(2)先计算乘方和乘法,再计算除法,最后计算加法即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.23.【答案】2 −2−12−2 2 12−2【解析】解:∵a与b互为相反数,b与c互为倒数,∴a+b=0,bc=1,(1)当n =2020时,a =2(−1)n (n 为正整数)=2,则b =−2,c =−12;(2)当n =2021时,a =2(−1)n (n 为正整数)=−2,则b =2,c =12;(3)∵d 是最大的负整数,∴d =−1,则a+b 2020−bc +d =0−1−1=−2.故答案为:2,−2,−12;−2,2,12;−2.(1)直接利用相反数、倒数的定义分别分析得出答案;(2)直接利用相反数、倒数的定义分别分析得出答案;(3)直接利用最大负整数、相反数、倒数的定义分别分析得出答案.此题主要考查了有理数的混合运算,正确掌握相关定义是解题关键.24.【答案】解:(1)(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)5000×7+(100−200+400−100−100+350+150)=35600(个), 0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.【解析】(1)把前三天的记录相加,再加上每天计划生产量,计算即可得解;(2)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.【答案】解:(1)根据题意得:2(y +3y +2.5x)=5x +8y ;(2)根据题意得:y ⋅2.5x +3y ⋅0.5x =4xy ;(3)当x =2,y =2.5时,S =4×2×2.5=20.【解析】(1)根据题意表示出阴影部分周长即可;(2)根据题意表示出阴影部分面积即可;(3)把x 与y 的值代入计算确定出阴影部分面积即可.此题考查了代数式求值以及整式的加减,熟练掌握运算法则是解本题的关键.26.【答案】12 −8 ①②④ (15)4 (−2)8 【解析】解:【初步探究】(1)23=2÷2÷2=2×12×12=12,(−12)5=(−12)÷(−12)÷(−12)÷(−12)÷(−12)=(−12)×(−2)×(−2)×(−2)×(−2)=−8,故答案为:12,−8;(2)∵n 2=n ÷n =1(n ≠0),故①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,故②正确;∵34=3÷3÷3÷3=3×13×13×13=19,43=4÷4÷4=14,∴34≠43,故③错误;负数的下奇数次方结果是负数,负数的下偶数次方结果是正数,故④正确; 故答案为:①②④;【深入思考】56=(15)4,(−12)10=(−2)8, 故答案为:(15)4,(−2)8;(2)(−14)4÷23+(−8)×23 =(−4)2÷8+(−8)×12=16×18+(−4)=2+(−4)=−2.【初步探究】(1)根据题意,可以写出所求式子的结果;(2)根据题意和题目中的式子可以判断出各个小题中的式子是否正确;【深入思考】(1)根据题目中的例子,可以计算出所求式子的结果;(2)根据题目中的例子可以计算出所求式子的结果.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.【答案】解:(1)−2,8;(2)−9;(3)1,10;(4)t秒后,甲的位置是−2−t,当t不超过3.5秒,乙的位置是8−2t,则d=10−t;当t超过3.5秒,乙的位置是2t−6,则d=3t−4.【解析】【分析】此题考查是列代数式,数轴上两点之间的距离,掌握两点之间的距离求法是解决问题的关键.(1)根据非负数的性质求得a=−2,c=8;(2)先求得A、B的中点,进一步得到点C的对应点;(3)当P与点B重合时,即当x=b时,|x−a|+|x−b|+|x−c|取得最小值;(4)分当0<t≤3.5时,当t>3.5时,表示出甲、乙两小球之间的距离d即可.【解答】解:(1)∵|a+2|+(c−8)2=0,∴a+2=0,c−8=0,解得a=−2,c=8;故答案为:−2,8.(2)A、B的中点表示的数为(−2+1)÷2=−0.5,则点C与数−0.5−(8+0.5)=−9表示的点重合.故答案为:−9.(3)当x=b=1时,|x−a|+|x−b|+|x−c|=|x−(−2)|+|x−1|+|x−8|=10为最小值;故答案为:1,10.(4)见答案.。
山东省济南市济南高新区东城逸家初级中学2023-2024学年七年级上学期12月月考数学试题
山东省济南市济南高新区东城逸家初级中学2023-2024学年七年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....A.两点确定一条直线B.两直线相交只有一个交点C.垂线段最短D.两点之间,线段最短5.某校准备修建一个面积为300平方米的矩形活动场地,它的长比宽多A .126B .127C .128D .129二、填空题三、解答题19.解方程:364(2)x x +=-.20.如图,已知三点A 、B 、C ,按要求画图:21.如图,已知解:∵O 是直线∴AOB ∠=.∵50AOC ∠=︒∴BOC AOB ∠=∠∵OD 平分BOC ∠解:OB 是AOC ∠的角平分线,______40BOC ∴∠==︒,OD 是COE ∠的角平分线,COE ∠∴1____________2COD ∠===BOD COD ∴∠=∠+_____=______28.阅读下面材料:数学课上,老师给出了如下问题:如图1,80AOB ∠=︒,OC 平分∠29.我们规定:若关于x 的一元一次方程ax b =的解为x b a =-,则该方程为“差解方程例如:24=x 的解为2x =,且242=-,则方程24=x 是差解方程.(1)判断方程3 4.5x =是否是差解方程;(2)若关于x 的一元一次方程51x m -=是差解方程,求m 的值.30.在数学综合实践活动课上,小亮同学借助于两根小木棒m 、n 研究数学问题:②在平移过程中,当木棒m 、n 重叠部分的长为2个单位长度时,求t 的值.31.如图1,已知∠AOB =60°,OM 平分∠AOB .(1)∠BOM =________;(2)若在图1中画射线OC ,使得∠BOC =20°,ON 平分∠BOC ,求∠MON 的大小;(3)如图2,若线段OA 与OB 分别为同一钟表上某一时刻的时针与分针,∠AOB =60°,在时针与分针转动过程中,OM 始终平分∠AOB ,则经过多少分钟后,∠BOM 的度数第一次等于50°.32.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD =.(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.①求两点第一次相遇时,与点B 的距离;②设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值)。
2020-2021学年山东省济南市高新区七年级第一学期期中数学试卷参考答案及评分标准
第1页(共5页)绝密★启用前2020至2021学年第一学期期中学业水平测试高新初中数学七年级试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2020−的相反数为( )A .12020− B .2020 C .2020− D .120202.下列几何体中,是圆锥的为( )A .B .C .D .3.多项式x 3+y 2﹣3的次数是( ) A .2 B .3 C .5 D .64.病毒无情,人间有爱,近段时间,中国新型冠状病毒肺炎疫情,很快就收到了来自世界各国的支持.同时中国也在密切关注伊朗、韩国等国国内疫情情况,并且分享抗疫信息和经验,并根据他们的需要,提供力所能及的支持和帮助.中国联合部分在伊中业于2月25日紧急向伊朗捐赠了5000份新冠病毒核酸检测试剂盒以及250000只口罩.数据250000用科学记数法表示为( ) A .2.5×105 B .2.5×106 C .0.25×106 D .25×104 5.用一个平面去截正方体,截面图形不可能是( )A .B .C .D .6.下列各式中,是5x 2y 的同类项的是( ) A .x 2y B .﹣3x 2yz C .3a 2b D .5x 3 7.已知|a +1|+(b ﹣2)2=0,则ab 的值为( ) A .2 B .1 C .﹣2D .﹣1第2页(共5页)8.下列变形正确的是( ) A .(2)2a a −+=− B .1(21)212a a −−=−+C .1(1)a a −+=−−D .1(1)a a −=−+9.如图,数轴上点C 对应的数为c ,则数轴上与数﹣2c 对应的点可能是( )A .点AB .点BC .点D D .点E10.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( ) A .2a 2﹣πb 2 B .2a 2−π2b 2C .2ab ﹣πb 2D .2ab −π2b 211.已知:x ﹣2y =3,那么代数式x ﹣2y ﹣2(y ﹣x )﹣(x ﹣3)的值为( ) A .3 B .﹣3 C .6 D .912.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“2”相对的面上的数字是( ) A .1 B .3 C .4 D .5第Ⅱ卷(非选择题 共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.用“>”或“<”符号填空:﹣7 ﹣9. 14.计算:﹣2﹣2= .15.图1和图2中所有的正方形都一样大,将图1的正方形放在图2中的①、②、③、④某一位置,所组成的图形不能围成正方体的位置是 .第3页(共5页)16.单项式2x m y 3与﹣3xy 3n 是同类项,则m +n = .17.如图,长方形纸片上画有两个完全相同的阴影长方形,那么剩余的非阴影长方形的周长为 (用含a ,b 的代数式表示).第17题图 第18题图18.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是 . 三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题4分)计算:9﹣(﹣1)+(﹣10)20.(本题4分)计算:1325(5)()54÷−⨯÷−.21.(本题4分)合并同类项:5m +2n ﹣m ﹣3n22.(本题5分)计算:4318(2)(3)−−+−⨯−.23.(本题5分)化简:222(32)4(2)x y x x y +−−−.24.(本题6分)5个棱长为1的正方体组成如图所示的几何体,画出该几何体的主视图和左视图.25.(本题6分)若规定a ※b =(a +b )+(a ﹣b ),求13※5的值.26.(本题6分)先化简下式,再求值:12(2)(36)23x y x y x −−−+,其中4x =−,3y =.第4页(共5页)27.(本题8分)小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?28.(本题8分)先计算,再阅读材料,解决问题: (1)计算:111()12362−+⨯.(2)解决问题:计算12112()3031065÷−+−)时利用通分计算211231065−+−的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:21121()3106530−+−÷2112()3031065=−+−⨯ 21123030303031065=⨯−⨯+⨯−⨯ 20351210=−+−=.故原式110=请你根据对所提供材料的理解,选择合适的方法计算:13512()()52426213−÷−+−.29.(本题10分)已知如图,在数轴上有A ,B 两点,所表示的数分别为﹣10,﹣4,点A 以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向右运动,如果设运动时间为t 秒,解答下列问题:(1)运动前线段AB 的长为 ; 运动1秒后线段AB 的长为 ; (2)运动t 秒后,点A ,点B 运动的距离分别为 和 ; (3)t = 时,点A 与点B 恰好重合;(4)在上述运动的过程中,是否存在某一时刻t ,使得线段AB 的长为5,若存在,求t 的值; 若不存在,请说明理由.第5页(共5页)30.(本题12分)阅读:将n m ⨯个数排成n 行m 列的矩形阵列被称为一个n m ⨯矩阵,通常用括号将矩阵括起来.如2312⎛⎫ ⎪−⎝⎭就是一个22⨯矩阵,19世纪中叶,英国数学家凯莱,系統地建立了矩阵理论,规定了短阵的运算法则.(1)短阵的加法法则是:两个短阵有相同的行数和列数,它们的和就是对应位置元素相加所得到的矩阵,例知⎪⎪⎭⎫⎝⎛++++=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛f d e c n b m a f e n md c b a ,请你计算:⎪⎪⎭⎫⎝⎛−+⎪⎪⎭⎫ ⎝⎛−−49632351= ; (2)矩阵的乘法法则是:两个矩阵相乘,要求的一个矩阵的列数和后一个矩阵的行数相等,其积为在第i 行,第j 列的元素等于第一个矩阵的第i 行和第二个短阵的第j 列对应位置的元素相乘再求和所得的数,例如⎪⎪⎭⎫⎝⎛++++=⎪⎪⎭⎫⎝⎛⨯⎪⎪⎭⎫ ⎝⎛df cn de cm bf an be am f en md c b a ,请你计算:⎪⎪⎭⎫⎝⎛⨯⎪⎪⎭⎫ ⎝⎛−1221-2123= ; (3)短阵的乘法看上去很奇怪,但在生活中却有现实意义,如某连锁企业两个门店的销第1页(共2页)2020至2021学年第一学期期中学业水平测试 高新初中数学七年级参考答案及评分标准13.> 14.﹣4 15.① 16.2 17.4b ﹣2a 18.556三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)解:原式=9+1﹣10·····················································································3分=0·····························································································4分 20.(本题4分)解:原式=25×(−15)×15×(−43) ·································································2分=43.···························································································4分21.(本题4分)解:原式=(5﹣1)m +(2﹣3)n ··································································2分=4m ﹣n ······················································································4分22.(本题5分)解:﹣14﹣8+(﹣2)3×(﹣3)=﹣1﹣8+(﹣8)×(﹣3)········································································2分 =-1-8+24································································································3分 =15······································································································5分23.(本题5分)解:原式=x +6y 2﹣4x ﹣8x +4y 2·······································································4分=10y 2﹣11x ···································································································5分24.(本题6分)解:所画图形如下所示:························································································6分25.(本题6分)解:∵a ※b =(a +b )+(a ﹣b ), ∴13※5=(13+5)+(13﹣5)···································································································4分 =26···························································································································6分 26.(本题6分)解:原式=2x ﹣4y ﹣x +2y +2x=3x ﹣2y ····················································································4分当x =﹣4,y =3时,原式=﹣12﹣6=﹣18········································································6分 27.(本题8分)解:(1)(+65+68+50+66+50+75+74)+(﹣60﹣64﹣63﹣58﹣60﹣64﹣65)········2分=14(元)·····················································································3分答:到这个周末,小李有14元的节余.············································································4分 (2)17(|﹣60|+|﹣64|+|﹣63|+|﹣58|+|﹣60|+|﹣64|+|﹣65|)······················································5分=62(元)···············································································································6分 62×30=1860(元)·······································································································7分 答:小李一个月(按30天计算)至少要有1860元的收入才能维持正常开支.···························8分第2页(共2页)28.(本题8分)解:(1)原式=13×12−16×12+12×12 =4﹣2+6················································································3分 =8························································································4分(2)原式的倒数是:(34−526+12−213)×(﹣52)····························································6分=﹣39+10﹣26+8=﹣47·····························································································7分故原式=−147.···········································································································8分 29.(本题10分)解:(1)答案为6,4···············································································2分 (2)答案为5t ,3t .·····································································································4分 (3)t =3.················································································································6分 (4)由题意:6+3t ﹣5t =5或5t ﹣(6+3t )=5···································································8分 解得t =12或112,∴t 的值为12或112秒时,线段AB 的长为5···········································································10分30.(本题12分)解:(1)答案为(2−1122)·········································································3分 (2)答案为(18−50);··································································································6分 (3··························································10分 (8025120453085)×(20510020154)=(80×20+25×100+120×1580×5+25×20+120×445×20+30×100+85×1545×5+30×20+85×4)=(5900138051731165) ·······································································································12分。
山东省济南市高新区2023-2024学年上学期七年级期中检测数学试题
山东省济南市高新区2023-2024学年上学期七年级期中检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....2023年歌曲《罗刹海市》席卷全球,据统计截止八月中旬,播放量突破惊人的358亿,35800000000用科学记数法表示为(835810⨯.93.5810⨯103.5810⨯935.810⨯.下列用字母表示数的式子中,符合书写要求的有(),(2a ⨯+,2ab -,1个.2个3个4个.下列运算正确的是()21--=-.411-=(133⎛⎫-⨯- ⎪⎝⎭152⎛⎫÷-=- ⎪⎝⎭.在下列各数-2、213⎛⎫- ⎪⎝⎭、20231)、3--中,负数有()2个.3个4个5个某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是(一三四最高气温10℃11℃9℃最低气温3℃-2℃-3℃.星期一.星期二.星期三.星期四.如图,是一个正方体的表面展开图,原正方体中与“学”字所在的面相对的面上标的A .心9.下列说法正确的是(A .223xy -的次数是C .223a abc -10.有理数,,a b c ②0ab >;③b c +A .①②B .②③C .②④11.一个几何体的主视图和俯视图如图所示,若这个几何体最多有最少有b 个小正方体组成,则a+b 等于()17.当代数式235x x ++的值为7时,代数式2392x x +-的值是18.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)(限乘八人)每船租金(元/小时)90100130某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最三、解答题(1)请在方格纸中分别画出从左面和上面看到的形状图;(画出的图需涂上阴影)(2)几何体共有______个小正方体.24.把下列各数填入它所属的集合内:()()2235.,,.2,0,,,423,0.030030003274π+-----27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(2)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.。
山东省济南市历城区2022-2023学年七年级上学期期中考试数学试题
山东省济南市历城区2022-2023学年七年级上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....二、填空题11.单项式324a b 的次数是__________.12.如图,在正方体表面展开图的每个面内都写有1个汉字,则该正方体中与“胜”相对的字是_____.13.一本笔记本原价a 元,降价后比原来便宜了b 元,小玲买了3本这样的笔记本,比原来便宜了________元.14.若|2|x -与|26|y +互为相反数,则x y +=_____.15.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,则第8次输出的结果为_______.16.有依次排列的3个数:2,6,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,4,6,1,7,这称为第一次-,1,6,7,若操作;做第二次同样的操作后也产生一个新数串:2,2,4,2,6,5相继依次操作,则从数串:2,6,7开始操作第100次时所产生的那个新数串的所有数之和是_____.三、解答题22(1)从正面看该几何体,看到的形状图如图所示,请在下面方格纸中分别画出从左面看和从上面看该几何体看到的形状图;(画出的图需涂上阴影或斜线)(2)如果在这个几何体上再添加一些小正方体,并保持从左面看和从上面看观察到的形状(1)用含m,n的式子表示广场(阴影部分)的周长(1)如图①,一个边长为1的正方形,依次取正方形面积的1111,,2482n,根据图示我们可以知道:11111248162n+++++L=.(用含有n的式子表示)(2)如图②,一个边长为1的正方形,第一次取正方形面积的23,然后依次取剩余部分的23,根据图示:计算:222239273n++++L=.(用含有n的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:1 12482 3927813nn-+++++L=.(用含有n的式子表示)25.如图,点A、B、C在数轴上,它们对应的数分别是a、b、c,已知a的相反数是8个点从数轴上的原点向右移动4个单位到达B点,从B点再向右移动5个单位到达点.(1)写出a=;b=;c=.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速。
山东省济南市高新区2023-2024学年七年级下学期期中数学试题
山东省济南市高新区2023-2024学年七年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中1∠和2∠是对顶角的是( )A .B .C .D .2.中芯国际集成电路制造有限公司,是世界领先的集成电路晶圆代工企业之一,也是中国内地技术最先进、配套最完善、规模最大、跨国经营的集成电路制造企业集团,中芯国际第二代7纳米FinFET 技术取得了突破性进展,代表了中国大陆自主研发集成电路的最先进水平,1纳米0.000000001=米,则7纳米用科学记数法表示为( )A .80.710-⨯米B .8710-⨯米C .9710-⨯米D .10710-⨯米 3.下列运算中,正确的是( )A .3412m m m ⋅=B .()4312m m =C .45m m m +=D .()()22m n m n m n ++=-4.如图,直线m n ∥,点A C 、在直线m 上,点B 在直线n 上,BC 平分ABD ∠,若122BAC ∠=︒,则ACB ∠的度数为( )A .58︒B .61︒C .30︒D .29︒5.若()2x m 2x 16+-+是一个完全平方式,则m 的值是()A .10B .—10C .-6或10D .10或—10 6.如图,点B 、C 、D 在同一直线上,若ABC V CDE ≌△,4DE =,13BD =,则AB 等于( )A .7B .8C .9D .107.下列说法中,不正确的是( )A .平行于同一条直线的两条直线平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .三角形的高都在三角形内D .连接直线外一点与直线上各点的所有线段中,垂线段最短8.如图,在ABC V 中,10AB =,8AC =,AD 为中线,则ABD △与ACD V 的周长之差为( )A .1B .2C .3D .49.研究表明,当潮水高度不低于260cm 时,货轮能够安全进出该港口,海洋研究所通过实时监测获得6月份某天记录的港口湖水高度()cm y 和时间()h x 的部分数据,绘制出函数图像如图:小颖观察图象得到了以下结论:①当18x =时,260y =;②当04x <<时,y 随x 的增大而增大;③当14x =时,y 有最小值为80;④当天只有在510x ≤≤时间段时,货轮适合进出此港口.以上结论正确的个数为( )A .1个B .2个C .3个D .4个10.如图,从边长为()4a cm +的大正方形纸片中剪去一个边长为()1a cm +的小正方形()0a >,剩余部分沿虚线剪开,拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .()225a a cm +B .()2325a cm + C .()2321a cm + D .()221a a cm + 11.定义:如果2m n =(m ,n 为正数),那么我们把m 叫做n 的D 数,记作()m D n =.例如:因为122=,所以()21D =;因为4216=,所以()164D =,D 数有如下运算性质:()()()()()q D s t D s D t D D q D p p ⎛⎫=+=- ⎪⎝⎭g ,,其中q p >.下列说法错误的是( ) A .()83D =B .()()()325,1522D D a b D a b ==+=+若,C .()()313?D a D a ==若,则 D .()()532523D a b D a b D a b ⎛⎫=-=+=-+ ⎪⎝⎭若,,则 12.小冬和小天沿同一条笔直的公路相向而行,小冬从甲地前往乙地,小天从乙地前往甲地,两人同时发出,当行驶5分钟时小冬发现重要物品忘带,立刻掉头提速返回甲地,用时4分钟,拿到物品后以提速后的速度继续前往乙地(掉头和拿物品的时间忽略不计),小天始终以一个速度保持行驶,二人相距的路程y (米)与小冬出发时间x (分钟)之间的关系如图所示,则下列说法中错误的是( )A .小冬返回甲地的速度与小天行驶速度相同;B .小冬和小天出发时的速度分别为160米/分钟和200米/分钟;C .小天出发14.5分钟两人相遇;D .小冬最终达到乙地的时间是20分钟.二、填空题13.若103a =,102b =,则10a b -= .14.如图,请填写一个条件 ,使a b P .15.已知a ,b ,c 是ABC V 的三边长,满足()2720a b -+-=,c 为奇数,则c = . 16.已知2220x x --=,代数式()212021x -+= .17.如图,长方形纸片ABCD ,M 为AD 边的中点,将纸片沿BM CM 、折叠,使A 点落在1A 处,D 点落在1D 处,若110BMC ∠=︒,则1∠的度数为 .18.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于 度.三、解答题19.计算:()()22023011 3.142π-⎛⎫--+- ⎪⎝⎭. 20.计算:()32126+33a a a a -÷. 21.计算:()()4235243a a a a -⋅++. 22.先化简,再求值:()()()2232x y x y x y y +----,其中31x y ,==-.23.已知:如图,AB CD ∥,1B ∠=∠.求证:CD 是BCE ∠的平分线.证明:Q AB CD ∥ (已知);2∴∠= ( );又1B ∠=∠,(已知);∴ = ( );即CD 是BCE ∠的平分线.24.如图,在ABC V 中,BD 平分ABC ∠,AE BC ⊥于点E ,交BD 于点F .若48ABC ∠=︒,求AFB ∠的度数.25.如图,ABC V 中,点E 在边BA 上,AD BC ⊥,EF BC ⊥,垂足分别是D 、F ,12∠=∠.(1)DG 与BA 平行吗?为什么?(2)若51B ∠=︒,54C ∠=︒,求CGD ∠的度数.26.如图,某中学校园内有一块长为()2x y +米,宽为()2x y +米的长方形地块,学校计划在中间留下一个“T ”型的图形(阴影部分)修建一个文化广场.(1)用含x ,y 的式子表示“T ”型图形的面积并化简;(2)当2x =,3y =时,求文化广场的面积.27.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止(车速不超过140km/h ),对这种型号的汽车进行了测试,测得的数据如下表:(1)自变量是 ,因变量是 .(2)当刹车时车速为40km/h 时,刹车距离是 m .(3)该种型号汽车的刹车距离用(m)y 表示,刹车时车速用(km/h)x ,根据上表反映的规律写出y 与x 之间的关系式.(4)你能否估计一下,该种车型的汽车在车速为110km/h 的行驶过程中,前面有一汽车遇紧急情况急刹并停在距该车31m 的地方,该汽车会不会和前车追尾?请你说明理由. 28.已知图形ABCDEF 的相邻两边垂直,8cm AB =.当动点M 以2cm/s 的速度沿图①的边框按B C D E F A →→→→→的路径运动时,ABM V 的面积S 随时间t 的变化如图②所示.回答下列问题:(1)=a ,b = ;(2)EF = cm ;(3)当点M 运动到DE 上时,请用含t 的代数式表示出DM 的长度,并直接写出S 与t 的关系式..29.【知识生成】如图①,在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,把余下的部分剪开拼成一个长方形(如图②),图①中阴影部分面积可表示为22a b -,图②中阴影部分面积可表示为()()a b a b +-,因为两个图中的阴影部分面积是相同的,所以可得到等式:()()22a b a b a b -=+-.【拓展探究】图③是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开平均分成四个小长方形,然后按图④的形状拼成一个正方形,(1)用两种不同的方法表示图④中阴影部分的面积:方法1:__________,方法2:__________,可得到的等量关系式是__________;(2)若5a b -=,3ab =,求()2a b +的值;【知识迁移】(3)如图⑤,正方形ABCD 和正方形EFGH 的边长分别为a 、()b a b >,若8a b +=,5ab =,E 是AB 的中点,求图中阴影部分的面积和.30.【动手操作】小明将一副三角板中的两个直角顶点 C 按如图1方式叠放在一起,其中 60,DAC D ∠=︒∠= 30,45E B ︒∠=∠=︒.三角板ACD 固定不动,将三角板BCE 绕点 C 顺时针旋转.【发现问题】小明发现,在旋转三角板BCE 的过程中,有些角之间的存在着特殊的数量关系;某两条边在某个瞬间,有特殊的位置关系.【解决问题】(1)当三角板BCE 旋转至如图2所示的位置时.①求证: 13∠=∠②求证: 2180.ACB ∠+∠=︒(2)小明将三角板BCE 从图1所示的位置开始绕点C 以每秒3︒的速度按顺时针方向旋转,设旋转时间为t 秒,当CE 旋转到AC 延长线上时,小明停止旋转.①如图3.当 AD CE P 时,求t 的值;②当三角板BCE 中的边BE 与三角板ACD 中的某条边平行时,求t 的值.。
2020-2021学年山东省济南市高新区七年级(上)期中英语试卷(附答案详解)
2020-2021学年山东省济南市高新区七年级(上)期中英语试卷一、字母(本大题共1小题,共5.0分)1.写出五个元音字母的大小写形式.______.二、单选题(本大题共25小题,共25.0分)2.Do you have a /pen/?()A. planeB. penC. parentD. pencil3.Tom is a /gud/boy.()A. cookB. coldC. goodD. cool4.Can you /spel/it?()A. sameB. spellC. seeD. seven5.Please clean your /ru:m/now.()A. roomB. ringC. rulerD. radio6.Here are two nice photos of my /ˈfæməli/.()A. firstB. fatherC. familyD. find7.—Good morning,Miss Zhang!—______________!()A. Good morningB. Good afternoonC. Good eveningD. Good night8.-Hi Helen!How are you?- ()A. Good afternoon.B. That's all right.C. I'm fine.Thank you.D. How are you?9.-Hello!Nice to meet you.- ()A. Thank you.B. Good evening.C. My name's Gina.D. Nice to meet you,too!10.- ?—It's black.()A. What's thisB. What color is itC. How are youD. What's your name11.—Gina,do you like playing_______guitar?—Yes,I do.()A. aB. anC. theD. /12.-What's this in English?- a ruler.()A. This isB. That isC. It'sD. Its13.-Excuse me,are you Grace?- .I am Gina.()A. Yes,she isB. Yes,I amC. No,she isn'tD. No,I'm not14.- ?-He is my brother.()A. Who is heB. What's his nameC. What color is itD. How are you15.—Do you know the girl in red?—Yes. is my new classmate.()A. SheB. ItC. HeD. This16.- Are those your brothers?- __________.They are my cousins.()A. Yes, it isB. Yes, they areC. No, it isn'tD. No, they aren't17.-Here two books,but they are not mine.-Let me see.()A. amB. isC. areD. be18.—This is ID card.Is it yours?―No,it isn't.()A. aB. anC. theD. /19.He is David Brown. His last name is ________.()A. DavidB. BrownC. David BrownD. Brown David20.—Mary,is this your dictionary?—Yes,it's .()A. IB. meC. myD. mine21.—________do you spell it?—W-A-T-C-H.()A. WhoB. WhatC. WhereD. How22.- Is Miss Smith your English teacher?-Yes, is.()A. heB. sheC. himD. her23.―What color are quilts?—They are blue and white.()A. theyB. theirC. themD. theirs24.-Hi,Tom!Who is the man in the picture?-He is my_______,my father's brother.()A. uncleB. cousinC. auntD. brother25.一Look!These are some photos my family.—Who is the woman the first photo?()A. in;ofB. on;forC. of;inD. for;on26.—My mother is in Beijing now.I miss her very much.—You can her at 63527280@.()A. callB. seeC. meetD. e-mail三、完形填空(本大题共15小题,共15.0分)I'm Wang Bin.My English teacher(27)Linda Black.She is from the USA.(28)has two kids.Her(29)is Ben.He is a good boy. (30)daughter is Maria.Her husband is PaulBlack.Mr.Black is a(31),too.He and Ben are(32)the USA now.Mrs.Black and Maria are in China.Maria and I are classmates,and we are good(33).27. A. am B. are C. is D. be28. A. His B. She C. Her D. He29. A. son B. daughter C. brother D. sister30. A. Her B. His C. My D. Your31. A. student B. driver C. worker D. teacher32. A. in B. on C. at D. from33. A. boys B. sisters C. friends D. familyLucy,look(34)the picture.It's a(35)of our classroom.(36)the picture,you can see some desks and chairs.On the blackboard,you can see a flag.A map is(37)the wall.It's amap of China.A soccer ball is under the desk.It is(38).The boy in a hat is my good(39)Jim.He is(40)American boy.He likes playing soccer and(41)sports programs on TV.34. A. on B. at C. to D. in35. A. room B. picture C. door D. map36. A. On B. Behind C. Under D. In37. A. behind B. in C. of D. on38. A. I B. me C. my D. mine39. A. teacher B. friend C. student D. parent40. A. a B. an C. the D. /41. A. watching B. meeting C. looking D. listening四、补全对话(本大题共1小题,共10.0分)42.Lily:Hi,Nick.Good morning.Nick:Good morning. (1)Lily:I'm fine,thanks.Here is a yellow schoolbag.Is this yours?Nick:(2) My school bag is blue.Lily:OK.Nick:(3)Lily:A pencil box,a ruler and an English book.Nick:(4)Lily:It's green..And it's a big one.Nick:Oh,I know it! (5) She has a big and green pencil box.Lily:That's great!A.Who are you?B.What's your name?C.How are you?D.Nice to meet you.A.Yes,it isB.No,it isn't.C.Yes,I am.D.No,I'm notA.What's this in English?B.What's in the schoolbag?C.What color is the schoolbag?D.Where is the school bag?A.Where is the ruler?B.Where is the English book?C.What's in the pencil box?D What color is the pencil box?A.It's Mary's.B.I'm Mary.C.It's Mary.D.This is Mary.五、阅读理解(本大题共10小题,共20.0分)AHi,Tommy,I really need your help.I left something at home this morning.Can you bring(带着)them to school for me?I need my English book,basketball ,notebook,CDs and iPad.The English book is on the table.The basketball is under the bed.The notebook is next to the basketball under the bed.The CDs are on the table.The iPad is behind the computer.Thanks!Mike43.Is the English book on the bed?______A. Yes,it is.B. No,it isn't.C. Yes,they are.D. No,they aren't.44.Is the basketball under the bed?______A. Yes,it is.B. No,it isn't.C. Yes,they are.D. No,they aren't.45.Where's the notebook?______A. It's on the table.B. It's behind the computer.C. It's on the chair.D. It's next to the basketball under the bed.46.What's on the table?______A. The English book and the basketball.B. The basketball and the notebook.C. The CDs and the notebook.D. The English book and the CDs.47.Who needs these things?______A. Tommy.B. Jack.C. Mike.D. Jim.BHello,my name is Peter.I am 13.I'm a schoolboy in a middle school.I study Chinese(学习汉语)in China now.I like Chinese very much.I have a big family.My grandmother is very well,and she is 75.She has two sons and my father is her first son.My mother is very nice and my father is very cool(酷的) .My parents are teachers and they are in China.My sister Helen,is three now.Alan is my uncle,and Jenny is my aunt.They have a son His name is Tom.They are in America now.I love my family.48.Peter is ______ years old.A. 12B. 13C. 14D. 1549.Helen is Peter's ______ .A. motherB. grandmotherC. auntD. sister50.Peter's ______ is cool.A. motherB. auntC. fatherD. grandmother51.Who is Tom?______A. Peter's cousin.B. Peter's brother. D.Peter's father.C. Peter's uncle.52.Which of the following is TRUE(下面哪一项是正确的)?______A. Helen is 13 years old.B. Tom's parents are teachers.C. Peter and his parents are in China now.D. Peter's uncle is his grandmother's first son.六、阅读判断(本大题共5小题,共10.0分)My name is Han Li.I have a good friend in my school.Her name is Mary.She is an American girl.She is twelve years old.She is in Class Nine,Grade One.She is a good girl.I am a Chinesegirl.I am thirteen.I am in Class Nine,Grade One,too.Mr.Smith is our English teacher.His name is John Smith.He is a good teacher.Our Chinese teacher is Miss Liu.She's very nice.根据短文内容判断正误,正确的涂A,错误的涂B。