专题07磁场及带电粒子在磁场中的运动(名校试题)-高考物理小题精做系列(第01期)(原卷版)
高考物理带电粒子在磁场中的运动技巧和方法完整版及练习题含解析
高考物理带电粒子在磁场中的运动技巧和方法完整版及练习题含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
高考物理带电粒子在磁场中的运动基础练习题及解析
高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析
出电场时通过坐标(0,L)点,不计粒子重力.
(1)求电场强度大小 E; (2)为使粒子进入磁场后途经坐标原点 0 到达坐标(-L,0)点,求匀强磁场的磁感应强度大小 B; (3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.
Q 两点之间的距离为 L ,飞出电场后从 M 点进入圆形区域,不考虑电子所受的重力。 2
(1)求 0≤x≤L 区域内电场强度 E 的大小和电子从 M 点进入圆形区域时的速度 vM; (2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂 直于 x 轴,求所加磁场磁感应强度 B 的大小和电子在圆形区域内运动的时间 t; (3)若在电子从 M 点进入磁场区域时,取 t=0,在圆形区域内加如图乙所示变化的磁场 (以垂直于纸面向外为正方向),最后电子从 N 点飞出,速度方向与进入圆形磁场时方向 相同,请写出磁场变化周期 T 满足的关系表达式。
1 4
T0
T 2
2 m 又 T0 eB0
则 T 的表达式为T mL (n=1,2,3,…)。 2n 2emU
3.如图所示,一匀强磁场磁感应强度为 B;方向向里,其边界是半径为 R 的圆,AB 为圆 的一直径.在 A 点有一粒子源向圆平面内的各个方向发射质量 m、电量-q 的粒子,粒子重力 不计.
R,圆弧对应的圆心角为
2
.则有
x2
2R2 ,此时满足
L 2n 1 x2
联立可得:
R2
2n
L
1
2
由牛顿第二定律,洛伦兹力提供向心力,则有: qvB2
m
v2 R2
得:
(物理)物理带电粒子在磁场中的运动专项习题及答案解析及解析
(物理)物理带电粒子在磁场中的运动专项习题及答案解析及解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (23B E【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()22211r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子21L v t =,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2v =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(-,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a4.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析
O、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为 H= 7 R;整个装置处 2
于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度 ν 和磁场磁感应强度 B;
圆半径方向射出磁场;从
x
轴射出点的横坐标: xC
xA
R tan 53
xC 0.1425m .
由几何关系,过 A 点的粒子经 x 轴后进入磁场由 B 点沿 x 轴正向运动.
综上所述,粒子经过磁场后第二次打在 x 轴上的范围为: x 0.1425m
5.如图,平面直角坐标系中,在,y>0 及 y<- 3 L 区域存在场强大小相同,方向相反均平 2
(1)求第 I 象限内磁场的磁感应强度 B1;
(2)计算说明速率为 5v、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁
场的磁感应强度 B2 的大小和方向.
【答案】(1)
B1
mv qL
(2)故速率为 v
的粒子被吸收,速率为 9v
的粒子不能被吸收
速度偏转角的正切值均为: tan vy 37 v0
cos 37 v0 v
v 1106 m/s
即:所有的粒子射出极板时速度的大小和方向均相同.
qvB m v2 R
R r 0.03m
由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点 B 离开磁场.
由几何关系,恰好经 N 板右边缘的粒子经 x 轴后沿磁场圆半径方向射入磁场,一定沿磁场
(物理) 高考物理带电粒子在磁场中的运动专题训练答案含解析
(物理) 高考物理带电粒子在磁场中的运动专题训练答案含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
2020年高三物理二轮复习强基础专题七:磁场及带电粒子在磁场中的运动(含答案解析)
强基础专题七:磁场及带电粒子在磁场中的运动一、单选题1.图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在x轴上距坐标原点L=0.50m的P处为离子的入射口,在y轴上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P 处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不计其重力.则上述粒子的比荷(C/kg)是()A. 3.5×107 B. 4.9×107 C. 5.3×107 D. 7×107 2.如图所示,一个理想边界为PQ,MN的匀强磁场区域,磁场宽度为d,方向垂直纸面向里.一电子从O点沿纸面垂直PQ以速度v0进入磁场.若电子在磁场中运动的轨道半径为2d.O′在MN上,且OO′与MN垂直.下列判断正确的是()A.电子将向右偏转B.电子打在MN上的点与O′点的距离为dC.电子打在MN上的点与O′点的距离为dD.电子在磁场中运动的时间为3.如图所示,以直角三角形AOC为边界的有界匀强磁场区域,磁感应强度为B,∠A=60°,AO=a。
在O点放置一个粒子源,可以向各个方向发射某种带负电粒子,粒子的电量大小为q,质量为m,发射速度大小都为v0,发射方向由图中的角度θ表示.不计粒子间的相互作用及重力,下列说法正确的是()A.若v0=,则以θ=0°方向射入磁场的粒子在磁场中运动的时间为B.若v0=,则以θ=60°飞入的粒子在磁场中运动时间最短C.若v0=,则以θ<30°飞入的粒子在磁场中运动的时间都相等D.若v0=,则在AC边界上只有一半区域有粒子射出4.如图所示是某粒子速度选择器截面的示意图,在一半径为R=10 cm的圆柱形桶内有B=10-4T的匀强磁场,方向平行于轴线,在圆柱桶某一截面直径的两端开有小孔,作为入射孔和出射孔.粒子束以不同角度入射,最后有不同速度的粒子束射出.现有一粒子源发射比荷为=2×1011C/kg的正粒子,粒子束中速度分布连续.当角θ=45°时,出射粒子速度v的大小是()A.×106m/s B. 2×106m/s C. 2×108m/s D. 4×106m/s 5.“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度B正比于() A. B.T C. D.T26.狄拉克曾经预言,自然界应该存在只有一个磁极的磁单极子,其周围磁感线呈均匀辐射状分布(如图5甲所示),距离它r处的磁感应强度大小为B=(k为常数),其磁场分布与负点电荷Q的电场(如图乙所示)分布相似.现假设磁单极子S和负点电荷Q 均固定,有带电小球分别在S和Q附近做匀速圆周运动.则关于小球做匀速圆周运动的判断不正确的是()A.若小球带正电,其运动轨迹平面可在S的正上方,如图甲所示B.若小球带负电,其运动轨迹平面可在Q的正下方,如图乙所示C.若小球带负电,其运动轨迹平面可在S的正上方,如图甲所示D.若小球带正电,其运动轨迹平面可在Q的正下方,如图乙所示7.如图所示,在半径为R的圆柱形区域内有匀强磁场。
高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)
高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析
高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,一匀强磁场磁感应强度为B;方向向里,其边界是半径为R的圆,AB为圆的一直径.在A点有一粒子源向圆平面内的各个方向发射质量m、电量-q的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.2.如图所示,在长度足够长、宽度d=5cm的区域MNPQ内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T.水平边界MN上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C.现有大量质量m=6.6×10﹣27kg、电荷量q=3.2×10﹣19C的带负电的粒子,同时从边界PQ上的O点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.1,0.1R m m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径3.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).4.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷q m=108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.(1)求粒子的发射速度v的大小;(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;68m m44【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈68m m446.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α=== 由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,平面直角坐标系xoy 的第二、三象限内有方向沿y 轴正向的匀强电场,第一、四象限内有圆形有界磁场,有界磁场的半径为当22L ,磁扬场的方向垂直于坐标平面向里,磁场边界与y 轴相切于O 点,在x 轴上坐标为(-L ,0)的P 点沿与x 轴正向成θ=45°方向射出一个速度大小为v 0的带电粒子,粒子的质量为m ,电荷量为q ,粒子经电场偏转垂直y 轴射出电场,粒子进人磁场后经磁场偏转以沿y 轴负方向的速度射出磁场,不计粒子的重力.求(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到出磁场运动的时间为多少?【答案】(1)(0,12L)(2)22mvEqL=022mvBqL=(3)002(1)L Ltvπ+=【解析】【分析】(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标.(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度.(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间.【详解】(1)粒子在电场中的运动为类平抛运动的逆运动,水平方向:L=v0cosθ•t1,竖直方向:y=12v0sinθ•t1,解得:y=12 L,粒子从y轴上射出电场的位置为:(0,12 L);(2)粒子在电场中的加速度:a=qEm,竖直分位移:y=12a t12,解得:22mvEqL =;粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,由几何知识得:AC 与竖直方向夹角为45°, 2y=22L , 因此AAC 刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L ,粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m 2v r,其中,粒子的速度:v=v 0cosθ,解得:02mv B =; (3)粒子在电场中的运动时间:1002L Lt v cos v θ==, 粒子离开电场进入磁场前做匀速直线运动,位移:2122x L L =-, 粒子做运动直线运动的时间:20(22)2x L t v v ==, 粒子在磁场中做圆周运动的时间:301122442m Lt T qB v ππ==⨯=, 粒子总的运动时间:t=t 1+t 2+t 3=)00212L Lv v π++; 【点睛】本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.9.如图所示,x 轴的上方存在方向与x 轴成45角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量1110m kg -=,电荷量710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成45角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:①带电粒子第一次经过x 轴时的横坐标是多少?②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为32.110.s -⨯【解析】 【分析】(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x 轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E ,三个过程的总时间即为总时间. 【详解】①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2v qvB m R=,半径0.4mvR m Bq==, 根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90, 则第一次经过x 轴时的横坐标为120.420.57x R m m =≈②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O 处,其运动轨迹如图所示.由几何关系可得,第二次进入电场中的位移为22R , 在垂直电场方向的位移11s vt =, 运动时间4112410s R t s v v-===⨯ 在沿电场方向上的位移22112s at =, 又因22s R = 得722212110/s a m s t ==⨯ 根据牛顿第二定律Eq a m= 所以电场强度3110/maE V m q==⨯ 粒子从第一次进入电场到再返回磁场的时间422410vt s a-==⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期42410mT s Bqππ-==⨯ 所以粒子从出发到再回到原点的时间为312 2.110t t t T s -=++≈⨯【点睛】本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.10.如图(a)所示,在空间有一坐标系xoy ,直线OP 与x 轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP 是它们的边界,OP 上方区域Ⅰ中磁场的磁感应强度为B ,一质量为m ,电荷量为+q 的质子(不计重力及质子对磁场的影响)以速度v 从O 点沿与OP 成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直于x 轴进入第四象限,第四象限存在沿-x 轴方向的特殊电场,电场强度E的大小与横坐标x的关系如图(b)所示,试求:(1)区域Ⅱ中磁场的磁感应强度大小;(2)质子再次到达y轴时的速度大小和方向。
高考物理带电粒子在磁场中的运动专项训练及答案含解析
高考物理带电粒子在磁场中的运动专项训练及答案含解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=32mv 02。
两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=72R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;(2)如果某次实验时将磁场O 的圆心往上移了2R,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。
【答案】(1) 02v v =;02mv B eR =(2) 0336l π++≥ 【解析】 【详解】解:(1)对于单个质子进入加速电场后,则有:220011eU mv mv 22=- 又:2003eU mv 2=解得:0v 2v =;根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为轨迹的圆心,如图所示,并可知轨迹半径r=R根据洛伦磁力提供向心力有:2v evB mr=可得磁场磁感应强度:02mv B eR=(2)磁场O 的圆心上移了R2,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心由于磁场上移了R 2,故sin ∠COF=R2R=12,∠COF=π6,∠DOF=∠FKD=π3对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点,下方粒子到达C 后最先到达D 点的粒子所需时间为00(2)(4)2224RR H R R t v v ππ++-+'==而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为()000π1R Rsin 2πR 62π3336t R 2v 2v -+-=+=要使两质子束相碰,其运动时间满足t t t '≤+∆ 联立解得0π336l ++≥2.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R=解得正、负电子离开回旋加速器时的速度为:00eB Rv m=正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:200mv ev B r=电磁铁内匀强磁场的磁感应强度B 大小:02sinB R n B dπ=3.在如图所示的xoy 坐标系中,一对间距为d 的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y 轴重合,桌面与x 轴重合,o 点与桌面右边相距为74d,一根长度也为d 的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d ,装置的总质量为3m .两板外存在垂直纸面向外、磁感应强度为B 的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m 、电量为+q 的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x 正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g .求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q的粒子以速度qBdm从O点沿y轴正方向射入区域Ⅰ.不计粒子重力.(1) 求粒子在区域Ⅰ中运动的轨道半径:(2) 若粒子射入区域Ⅰ时的速度为2qBdvm=,求粒子打在x轴上的位置坐标,并求出此过程中带电粒子运动的时间;(3) 若此粒子射入区域Ⅰ的速度qBdvm>,求该粒子打在x轴上位置坐标的最小值.【答案】(1)R d=(2)()43OP d=-23mtqBπ=(3)min3x d=【解析】【分析】【详解】(1)带电粒子在磁场中运动,洛仑磁力提供向心力:21vqv B mr=把qBdvm=,代入上式,解得:R d=(2) 当粒子射入区域Ⅰ时的速度为02v v=时,如图所示在OA段圆周运动的圆心在O1,半径为12R d=在AB段圆周运动的圆心在O2,半径为R d=在BP段圆周运动的圆心在O3,半径为12R d=可以证明ABPO3为矩形,则图中30θ=,由几何知识可得:132cos303OO d d==所以:323OO d d=所以粒子打在x轴上的位置坐标(133243OP O O OO d=+=粒子在OA 段运动的时间为:13023606m mt qB qBππ==粒子在AB 段运动的时间为2120236023m mt q B qBππ==粒子在BP 段运动的时间为313023606m mt t qB qBππ===在此过程中粒子的运动时间:12223mt t t qBπ=+=(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图可得粒子打在x 轴上位置坐标:()22222x R R d R d =--+-化简得:222340R Rx x d -++=把上式配方:222213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:222213033R x x d ⎛⎫-=-≥ ⎪⎝⎭ 则当23R x =时,位置坐标x 取最小值:min 3x d =6.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲所示.假设a 、b 、c 三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O 点;b 粒子在电、磁场中向上偏转;c 粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a 、b 、c 粒子在原来位置上以各自的原速度水平射入电场,结果a 粒子仍恰好打在荧光屏上的O 点;b 、c 中有一个粒子也能打到荧光屏,且距O 点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B dq m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O点,运动轨迹如图中Ⅰ所示.U q Bqv d=, Bd U v =, L LBd t v U==, 222122a Uq L B qd y t dm mU==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d = (2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得 12=122d y L L x +, 1()2x y d L =+ (3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md= 122221·2y Uq t m y t dv +=, 22158qU y t md=, 124=5y y , 11224==5Uq y W d Uq W y d7.如图所示,在xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度v 0从y 轴上的P 点垂直于y 轴向右飞入电场,经过x 轴上M 点进入磁场区域,又恰能从y 轴上的Q 点垂直于y 轴向左飞出磁场已知P 点坐标为(0,-L),M点的坐标为(233L ,0).求 (1)电子飞出磁场时的速度大小v(2)电子在磁场中运动的时间t【答案】(1)02v v =;(2)2049L t v π=【解析】【详解】 (1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为θ,(1)在电场中x 0123L v t =,y 轴方向12y v L t =:,0tan 3y v v θ==得60θ=,002cos v v v θ== (2)在磁场中,2343L r L == 磁场中的偏转角度为23απ= 202439rL t v v ππ==8.如图所示,平面直角坐标系xoy 的第二、三象限内有方向沿y 轴正向的匀强电场,第一、四象限内有圆形有界磁场,有界磁场的半径为当22L ,磁扬场的方向垂直于坐标平面向里,磁场边界与y轴相切于O点,在x轴上坐标为(-L,0)的P点沿与x轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m,电荷量为q,粒子经电场偏转垂直y轴射出电场,粒子进人磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到出磁场运动的时间为多少?【答案】(1)(0,12L)(2)22mvEqL=02mvB=(3)002(1)2L Ltv vπ+=+【解析】【分析】(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标.(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度.(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间.【详解】(1)粒子在电场中的运动为类平抛运动的逆运动,水平方向:L=v0cosθ•t1,竖直方向:y=12v0sinθ•t1,解得:y=12 L,粒子从y轴上射出电场的位置为:(0,12 L);(2)粒子在电场中的加速度:a=qEm,竖直分位移:y=12a t12,解得:22mvEqL =;粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,由几何知识得:AC 与竖直方向夹角为45°, 2y=22L , 因此AAC 刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L ,粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m 2v r, 其中,粒子的速度:v=v 0cosθ, 解得:02mv B =; (3)粒子在电场中的运动时间:1002L L t v cos v θ==, 粒子离开电场进入磁场前做匀速直线运动,位移:2122x L L =-, 粒子做运动直线运动的时间:20(22)2x L t v v ==, 粒子在磁场中做圆周运动的时间:301122442m L t T qB v ππ==⨯=, 粒子总的运动时间:t=t 1+t 2+t 3=)00212L L v v π++; 【点睛】 本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.9.如图所示,在平面直角坐标系xOy 内,第一、四象限有与y 轴相切于O 点、圆心为O 1、半径一定的有界圆形区域,其内存在垂直于纸面匀强磁场,第二、三象限有平行y 轴的匀强电场.一带电粒子(重力不计)自P(-d ,32d )点以平行于x 轴的初速度v 0开始运动,粒子从O 点离开电场,经磁场偏转后又从y 轴上的Q 点(图中未画出)垂直于y 轴回到电场区域,并恰能返回到P 点.求:(1)粒子经过O 点时的速度;(2)电场强度E 和磁感应强度B 的比值.【答案】(1)2v 0(2)058E v B = 【解析】【详解】试题分析:(1)粒子从P 到O 的过程中做类平抛运动,设时间为t 1,经过O 点时的速度为v ,其在y 轴负方向的分速度为v y ,与y 轴负方向的夹角为θd=v 0t 11322x v d t = v 2=v 02+v y 2tan y θ=v v解得:v=2v 0θ=300(2)设粒子质量为m ,电荷量为q ,粒子在电场中运动的加速度为a :Eq=ma 21312at = 粒子从Q 到P 的过程中,也做类平抛运动,设时间为t 2,Q 点的纵坐标为y Q22312Q y at = d=vt 2解得:538Q y d = 设粒子由S 点离开磁场,粒子从O 到S 过程中做圆周运动,半径为r ,由几何关系有:r+rsinθ=y Q2v qvB m r= 53r d = 058E v B = 考点:带电粒子在电场及磁场中的运动【点睛】【名师点睛】此题是带电粒子在电场及磁场中的运动问题;关键是搞清粒子的运动情况,画出粒子运动的轨迹图,结合平抛运动及匀速圆周运动的规律,并利用几何关系进行求解;此题难度中等,考查学生运用基础知识解决问题的能力.10.如图,直线MN 上方有平行于纸面且与MN 成45。
高考物理带电粒子在磁场中的运动解题技巧及练习题含解析
高考物理带电粒子在磁场中的运动解题技巧及练习题含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在xOy平面内,以O′(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x轴成45°角倾斜放置的挡板PQ,P,Q两点在坐标轴上,且O,P两点间的距离大于2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m,电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进入x轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B的大小;(2)挡板端点P的坐标;(3)挡板上被粒子打中的区域长度.【答案】(1)mvqR(2)(21),0R⎡⎤⎣⎦21042R+-【解析】【分析】【详解】(1)设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图甲所示,过A点做速度的垂线长度为r,C为该轨迹圆的圆心.连接AOˊ、CO,可证得ACOOˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r=R,由2v qvB mr=得:mv BqR =(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =+P 点的坐标为((21)R +,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(122OG R R =⋅=+② 225-22=2FG OF OG R=-③2EG =④ 挡板上被粒子打中的区域长度l =FE =22R +5-222R 2+10-42R ⑤2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
专题04磁场及带电粒子在磁场中的运动(名校试题)-高考物理大题狂做系列(第01期)(解析版)
1.【2014·云南省部分名校(玉溪一中,昆明三中)高三第一次联考】如图甲所示,两块长为L (L 未知)的平行金属板M 、N ,彼此正对,板间距亦为L 。
现将N 板接地,M 上电势随时间变化规律如图乙所示。
两平行金属板左边缘的中线处放置一个粒子源,能沿中线方向连续不断地放出一定速度的带正电粒子。
已知带电粒子的荷质比kg C mq /100.18⨯=,粒子的重力和粒子之间的作用力均可忽略不计。
若某时刻粒子源放出的粒子恰能从平行金属板右边缘离开电场(设在每个粒子通过电场区域的时间内,可以把板间的电场看作是恒定的),同时进入金属板右方磁感强度为3210B -=⨯T ,方向垂直纸面向里的匀强磁场中,一段时间后正粒子垂直打在屏PQ 上,屏PQ 与金属板右边缘的距离为d=0.5m 。
求①粒子在磁场中的速度?②为完成以上运动带电粒子应在哪个时刻进入电场?在磁场中2r d ②2.【2014·北京市石景山区高三第一学期期末考试】(9分)如图14所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m .现有一质量m=4×10-20kg 、电荷量q=+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B=0.2T 、方向垂直纸面向外的圆形磁场区域,且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径;(2)粒子在磁场中运动的时间;(3)圆形磁场区域的最小半径.【答案】(1)0.3m (2)5t 1.010s -=⨯(3)0.15m 【解析】试题分析:(1)带电粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力3.【2014·贵州省六校联盟高三第一次联考】(14分)、传送带和水平面的夹角为37°,完全相同的两轮和皮带的切点A 、B 间的距离为24m ,B 点右侧(B 点在场的边缘)有一上下无限宽左右边距为d 的正交匀强电场和匀强磁场,电场方向竖直向上,匀强磁场垂直于纸面向里,磁感应强度B=103T.传送带在电机带动下,以4m/s速度顺时针匀速运转,现将质量为m=0.1kg,电量q=+10-2C的物体(可视为质点)轻放于传送带的A 点,已知物体和传送带间的摩擦系数为μ=0.8,物体在运动过程中电量不变,重力加速度取g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)物体从A点传送到B点的时间?(2)若物体从B点进入混合场后做匀速圆周运动,则所加的电场强度的大小E应为多少?物体仍然从混合场的左边界出混合场,则场的右边界距B点的水平距离d至少等于多少?4.【2014·山西高三四校联考】如图所示,一对磁偏转线圈形成的匀强磁场分布在R=0.10m的圆形区域内,磁感应强度为0.1T。
高考物理带电粒子在磁场中的运动练习题及解析
高考物理带电粒子在磁场中的运动练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭3.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.4.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
(完整版)磁场及带电粒子在磁场中的运动典型题目(含答案)
第9讲磁场及带电粒子在磁场中的运动一、选择题(本题共8小题,其中1~4题为单选,5~8题为多选) 1.(2018·山东省潍坊市高三下学期一模) 如图所示,导体棒ab用绝缘细线水平悬挂,通有由a到b的电流。
ab正下方放一圆形线圈,线圈通过导线,开关与直流电源连接。
开关闭合瞬间,导体棒ab 将(B )A.向外摆动B.向里摆动C.保持静止,细线上张力变大D.保持静止,细线上张力变小[解析]开关闭合瞬间,圆形线圈的电流顺时针方向,根据右手螺旋定则可知导体棒ab的磁场方向竖直向下,根据左手定则可知导体棒ab将向里摆动,故B正确,ACD错误;故选B。
2 (2018·山东省历城高三下学期模拟)如图所示,用绝缘细线悬挂一个导线框,导线框是由两同心半圆弧导线和在同一条水平直线上的直导线EF、GH连接而成的闭合回路,导线框中通有图示方向的电流,处于静止状态。
在半圆弧导线的圆心处沿垂直于导线框平面的方向放置一根长直导线O。
当O中通以垂直纸面方向向里的电流时(D )A.长直导线O产生的磁场方向沿着电流方向看为逆时针方向B.半圆弧导线ECH受安培力大于半圆弧导线FDG受安培力C.EF所受的安培力方向垂直纸面向外D.从上往下看,导线框将顺时针转动[解析]当直导线O中通以垂直纸面方向向里的电流时,由安培定则可判断出长直导线O产生的磁场方向为顺时针方向,选项A错误;磁感线是以O为圆心的同心圆,半圆弧导线与磁感线平行不受安培力,选项B错误;由左手定则可判断出直导线EF所受的安培力方向垂直纸面向里,选项C错误;GH 所受的安培力方向垂直纸面向外,从上往下看,导线框将顺时针转动,选项D正确;故选D。
3 (2018·河南省郑州市高三下学期模拟)如图所示,在边长为L的正方形ABCD 阴影区域内存在垂直纸面的匀强磁场,一质量为m 、电荷量为q (q <0)的带电粒子以大小为v 0的速度沿纸面垂直AB 边射入正方形,若粒子从AB 边上任意点垂直射入,都只能从C 点射出磁场,不计粒子的重力影响。
高考物理带电粒子在磁场中的运动专项训练及答案含解析
高考物理带电粒子在磁场中的运动专项训练及答案含解析一、带电粒子在磁场中的运动专项训练1.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
已知质子质量为m ,电量为e ;加速极板AB 、A′B′间电压均为U 0,且满足eU 0=32mv 02。
两磁场磁感应强度相同,半径均为R ,圆心O 、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为H=72R ;整个装置处于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度ν和磁场磁感应强度B ;(2)如果某次实验时将磁场O 的圆心往上移了2R,其余条件均不变,质子束能在OO′ 连线的某位置相碰,求质子束原来的长度l 0应该满足的条件。
【答案】(1) 02v v =;02mv B eR =(2) 0336l π++≥ 【解析】 【详解】解:(1)对于单个质子进入加速电场后,则有:220011eU mv mv 22=- 又:2003eU mv 2=解得:0v 2v =;根据对称,两束质子会相遇于OO '的中点P ,粒子束由CO 方向射入,根据几何关系可知必定沿OP 方向射出,出射点为D ,过C 、D 点作速度的垂线相交于K ,则K ,则K 点即为轨迹的圆心,如图所示,并可知轨迹半径r=R根据洛伦磁力提供向心力有:2v evB mr=可得磁场磁感应强度:02mv B eR=(2)磁场O 的圆心上移了R2,则两束质子的轨迹将不再对称,但是粒子在磁场中运达半径认为R ,对于上方粒子,将不是想着圆心射入,而是从F 点射入磁场,如图所示,E 点是原来C 点位置,连OF 、OD ,并作FK 平行且等于OD ,连KD ,由于OD=OF=FK ,故平行四边形ODKF 为菱形,即KD=KF=R ,故粒子束仍然会从D 点射出,但方向并不沿OD 方向,K 为粒子束的圆心由于磁场上移了R 2,故sin ∠COF=R2R=12,∠COF=π6,∠DOF=∠FKD=π3对于下方的粒子,没有任何改变,故两束粒子若相遇,则只可能相遇在D 点,下方粒子到达C 后最先到达D 点的粒子所需时间为00(2)(4)2224RR H R R t v v ππ++-+'==而上方粒子最后一个到达E 点的试卷比下方粒子中第一个达到C 的时间滞后0l Δt t = 上方最后的一个粒子从E 点到达D 点所需时间为()000π1R Rsin 2πR 62π3336t R 2v 2v -+-=+=要使两质子束相碰,其运动时间满足t t t '≤+∆ 联立解得0π336l ++≥2.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
【物理】 高考物理带电粒子在磁场中的运动专题训练答案及解析
【物理】 高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。
高考物理带电粒子在磁场中的运动专题训练答案及解析
高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求:(1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBL v m=;(2)41(1)45m t qB π=+ 【解析】【详解】 (1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQ O Q L == 在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR = 解得:8qBL v m= ; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PC t v= 带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12m T qBπ= 2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m m T q B qBππ== 3212t T = 从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145m t qB π⎛⎫=+ ⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理学习材料
(灿若寒星**整理制作)
1.【2014·辽宁省新民市第一高级中学高三上期期末考试】如图所示,边长为L 的等边三角形ABC 为两有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B ,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B 。
把粒子源放在顶点A 处,它将沿∠A 的角平分线发射质量为m 、电荷量为q 、初速度为v 0的带电粒子(粒子重力不计)。
若从A 射出的粒子
①带负电,
0qBL
v m =
,第一次到达C 点所用时间为t 1 ②带负电,
02qBL v m =
,第一次到达C 点所用时间为t 2 ③带正电,
0qBL v m =
,第一次到达C 点所用时间为t 3 ④带正电,
02qBL
v m =
,第一次到达C 点所用时间为t 4
则下列判断正确的是( )
A .t 1= t 3< t 2= t 4
B .t 1< t 2< t 4 < t 3
C .t 1< t 2< t 3< t 4
D .t 1< t 3< t 2< t 4
2. 【2014·湖南四县一中高三11月联考】如图所示,一个理想边界为PQ 、MN 的匀强磁场区域,磁场宽度为d ,方向垂直纸面向里.一电子从O 点沿纸面垂直PQ 以速度v 0进入磁场.若电子在磁场中运动的轨道半
径为2d .O ′ 在MN 上,且OO ′
与MN 垂直.下列判断正确的是( )
A .电子将向右偏转
B .电子打在MN 上的点与O ′点的距离为d
C .电子打在MN 上的点与O ′点的距离为d 3
D .电子在磁场中运动的时间为
3v d
3.【2014·辽宁省沈阳铁路实验中学高三上期期中考试】一条形磁铁放在水平桌面上,在它的上方靠S 极一侧吊挂一根与它垂直的导体棒,图中只画出此棒的横截面图,并标出此棒中的电流是流向纸内的,在通电的一瞬间可能产生的情况是( )
A .磁铁对桌面的压力减小
B .磁铁对桌面的压力增大
C .磁铁受到向右的摩擦力
D .磁铁受到向左的摩擦力
4. 【2014·辽宁省沈阳市高三教学质量监测(一)】如图所示,圆形区域内有垂直纸面的匀强磁场,两个质量和电荷量都相同的带电粒子a 、 b ,以不同的速率沿着A0方向对准圆心O 射入磁场,其运动轨迹如图。
若带电粒子只受磁场力的作用,则下列说法正确的是
A 、a 粒子速率较大
B .b 粒子速率较大
C .b 粒子在磁场中运动时间较长
D .a 、b 粒子在磁场中运动时间一样长
5.【2014·北京市东城区示范校高三第一学期12月联考试卷】如图是阴极射线管的示意图。
接通电源后,会有电子从阴极K 射向阳极A ,并在荧光屏上看到一条亮线。
要使荧光屏上的亮线向下偏转,下列措施中可行的是
A. 加一方向平行纸面向上的磁场
B. 加一方向垂直纸面向里的磁场
C. 加一方向平行纸面向下的磁场
D. 加一方向垂直纸面向外的磁场
6.【2014·江西稳派名校学术联盟高三调研】如图所示,在正方形区域abcd 内有方向垂直于纸面向里、磁感应强度大小为B 的匀强磁场。
在t =0时刻,位于正方形中心O 的离子源向平面abcd 内各个方向发射出大量带正电的粒子,所有粒子的初速度大小均相同,粒子在磁场中做圆周运动的半径恰好等于正方形的边长,不计粒子的重力以及粒子间的相互作用力。
已知平行于ad 方向向下发射的粒子在t =t 0时刻刚好从磁场边界cd 上某点离开磁场,下列说法正确的是
A. 粒子在该磁场中匀速圆周运动的周期为6t 0
B. 粒子的比荷为
6Bt π
C. 粒子在磁场中运动的轨迹越长,对应圆弧的圆心角越大
D. 初速度方向正对四个顶点的粒子在磁场中运动时间最长
7.【2014·北京市东城区示范校高三第一学期12月联考试卷】为了科学研究的需要,常常将质子(11H )和α粒子(42He )等带电粒子贮存在圆环状空腔中,圆环状空腔置于一个与圆环平面垂直的匀强磁场(偏转磁场)中,磁感应强度为B 。
如果质子和α粒子在空腔中做圆周运动的轨迹相同(如图中虚线所示),偏转磁场也相同。
比较质子和α粒子在圆环状空腔中运动的动能H E 和E α、运动的周期H T 和T α的大小,有
A. ,H H E E T T αα==
B. ,H H E E T T αα=≠
C. ,H H E E T T αα≠=
D. ,H H E E T T αα≠≠
8.【2014·贵州省遵义市第四中学高三上学期第三次月考】如图,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直于磁场方向进人匀强磁场,最后打到屏P 上.不计重力.下列说法正确的有( )
A .a 、b 均带负电
B .a 在磁场中飞行的时间比b 的短
C .a 在磁场中飞行的路程比b 的大
D .a 在P 上的落点与O 点的距离比b 的远
9.【2014·北京市大兴区高三第一学期期末试卷】为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计。
该装置由绝缘材料制成,长、宽、高分别为a 、b 、c ,左右两端开口。
在垂直于上下底面方向加磁感应强度大小为B 的匀强磁场,在前后两个内侧面分别固定有金属板作为电极。
污水充满管口从左向右流经该装置时,接在M 、N 两端间的电压表将显示两个电极间的电压U 。
若用Q 表示污水流量(单位时间内排出的污水体积),下列说法中正确的是
A .N 端的电势比M 端的高
B .若污水中正负离子数相同,则前后表面的电势差为零
C .电压表的示数U 跟a 和b 都成正比,跟c 无关
D.电压表的示数U跟污水的流量Q成正比
10. 【2014·贵州省六校联盟高三第一次联考】下列四图中,A、B两图是质量均为m的小球以相同的水平初速度向右抛出,A图只受重力作用,B图除受重力外还受水平向右的恒定风力作用;C、D两图中有相同的无限宽的电场,场强方向竖直向下,D图中还有垂直于纸面向里无限宽的匀强磁场且和电场正交,在两图中均以相同的初速度向右水平抛出质量为m正电荷,两图中不计重力作用,则下列有关说法正确的是()
A、图A、
B、C三图中的研究对象均做匀变速曲线运动
B、从开始抛出经过相同时间
C、D两图竖直方向速度变化相同,A、B两图竖直方向速度变化相同
C、从开始抛出到沿电场线运动相等距离的过程内C、D两图中的研究对象动能变化相同
D、相同时间内A、B两图竖直方向的动能变化相同
11.【2014·山西曲傲中学高三上学期期中考试】如下图所示,两虚线之间的空间内存在着正交或平行的匀强电场E和匀强磁场B,有一个带正电的小球(电荷量为+q、质量为m)从电磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过的电磁复合场的是()
12. 【2014·辽宁省新民市第一高级中学高三上期期末考试】如图,甲图是回旋加速器的原理示意图。
其核心部分是两个D型金属盒,在加速带电粒子时,两金属盒置于匀强磁场中(磁感应强度大小恒定),并分别与高频电源相连。
加速时某带电粒子的动能E K随时间t变化规律如乙图所示,若忽略带电粒子在电场中的加速时间,则下列判断正确的是( )
A.高频电源的变化周期应该等于t n-t n-2
B.在E K-t图象中t4-t3=t3-t2=t2-t1
C.粒子加速次数越多,粒子获得的最大动能一定越大
D.不同粒子获得的最大动能都相同。