SHFD低速风洞全机测力实验报告报告

合集下载

无人机飞行原理探究风洞实验报告

无人机飞行原理探究风洞实验报告

无人机飞行原理探究风洞实验报告
实验目的
1.熟悉风洞的功用和典型构造。

2.通过烟风洞实验观察模型的气流流动情况。

3.通过低速风洞的吹风实验了解升力与迎角、相对速度之间的关系。

4.通过对不同的飞机模型进行吹风实验掌握飞机的稳定性和操纵性。

实验内容
1.观察翼型模型或飞机模型在烟风洞中的气流流动情况。

2.观察飞机模型的迎角大小和相对速度对升力的影响规律。

3.观察飞机模型在受到扰动失衡之后如何自动恢复到平衡状态。

4.观察飞机模型通过操纵设备来改变飞机的哪些飞行状态。

实验设备
实验设备主要包括:直流式低速风洞、烟风洞、以及各种不同类型的飞机吹风模型教具。

烟风洞也是一种低速风洞,主要用于形象地显示出环绕实验模型的气流流动的情况,使观察者可以清晰地看出模型的流线谱,或拍摄出流线谱的照片。

风洞实验的理论依据是流动相似原理。

由于风洞尺寸、结构、材料、模型、实验气体等方面的限制,风洞实验要作到与真实条件完全相似是不可能的。

通常的风洞实验,只是一种部分相似的模拟实验。

因此,在实验前应根据实际内容确定模拟参数和实验方案,并选用合适的风洞和模型。

低速风洞设计说明书

低速风洞设计说明书

流体力学实验技术课程设计学院:航空宇航学院学生姓名:杨馨学号:011210833二〇一六年十二月低速风洞设计课程设计报告1、实验段设计该风洞设计最大风速为100米每秒,预设功能为做全机模型低速气动特性测量试验,一般的迎角在负20度到正30度之间,采用回流式。

○1实验段截面形状选择实验段截面形状有圆形、方形、八角形、椭圆形及矩形等。

选择剖面形状的原则是在满足实验要求下最有效地利用全部气流切面积,因而可以减少风洞的驱动功率。

综合考虑气流均匀度和洞壁干扰等因素,选取矩形截面。

○2实验段截面尺寸选择为使雷诺数达到2.5*10^6,根据风速100米每秒,再取平均展弦比为6,并且要求模型展长不超过风洞宽度的0.7倍,估算得实验段宽度约为3.7米,取实际宽度为4米;由于迎角不太大,对于实验段高度要求不大,取为3米。

○3实验段开口式、闭口式的选择为保证实验段气流均匀度以及减少可能的能量损失,采用闭口式实验段。

○4实验段长度确定模型应置于实验段的均匀流场中。

模型头部至实验段入口应保持一定距离,以l1表示,假设实验段相当直径为D0,则L1大致为0.25~0.50 D0;模型的长度以l2表示,大约为0.75~1.25 D0,各种类型飞机的模型是不相同的;模型尾部至扩压段进口也应保持一定距离,以l3表示,一方面保证模型的尾流不过多影响扩压段效率,另一方面也不使扩压段的流动影响模型尾部,这个距离大约为0.75~1.25 D0。

因此,实验段长度应保持在1.75~3.0 D0的范围内。

经计算,D0约等于3.9米,取实验段长度为8米。

2、收缩段设计○1收缩段作用加速气流,使其达到实验所需要的速度。

收缩段应满足以下要求:(1)气流沿收缩段流动时,洞壁上不出现分离;(2)收缩段出口的气流要求均匀、平直而且稳定;(3)收缩段不宜过长。

○2收缩段长度L2收缩比取为10,收缩段出口尺寸根据试验段尺寸取R2为2米,根据收缩比计算得进口尺寸R1约为6.32米,收缩段长度一般采用进口直径的0.5~1.0倍,取L为8米。

SHFD低速风洞旋转体机身测压实验报告

SHFD低速风洞旋转体机身测压实验报告

SHFD低速风洞旋成体机身模型测压试验数据处理报告院系:专业:飞行器设计与工程班级:学号:姓名:风洞试验任务书姓名:班级:学号:2 指导教师:完成日期:2015年9月20日实验小组:第二组组长:(学号:)小组成员:摘要本次的试验就是测量旋成体机身表面的压强分布,绘制压力曲线,采用SHFD低速风洞对旋转体机身进行吹风试验。

分别完成其纵向实验和横向实验,通过压力扫描系统可以在计算机中得到旋转体机身表面各截面上测压口的压力。

通过计算可以得到其压力系数,最后通过tecplot软件即可画出各个截面的压力分布情况以及上下子午线的压力分布情况。

关键词旋成体机身风洞试验纵向试验横向实验tecplot目录第一章实验名称及要求 (1)第二章实验设备 (2)2.1 风洞主要几何参数 (2)2.2 风洞动力系统 (2)2.3 控制和数据采集系统 (2)2.4 压力扫描系统 (3)2.5风洞流场的主要技术指标 (4)2.6 试验模型 (4)第三章实验原理 (8)3.1风洞实验原理 (8)3.1.1 相对性原理和相似准则 (8)3.1.2 主要测量过程 (8)3.2测压实验原理 (9)第四章实验方法及步骤 (11)4.1 实验准备 (11)4.2计算雷偌数 (11)4.3分配任务 (12)4.4 实验过程 (12)第五章实验数据处理 (13)5.1 实验数据修正计算 (13)5.2 纵向和横向实验曲线图及分析 (14)结论 (21)参考文献 (22)附录 (23)第一章实验名称及要求1.1 实验名称旋成体机身测压试验1.2 实验要求通过试验深化对空气动力学的理论的理解,初步掌握空气动力低速风洞试验技术:常规测力实验设备的使用,了解使用工业控制机对风洞风速和模型姿态角控制和信号采集及处理的基本方法。

熟悉低速风洞标模试验的气动力变化规律,初步掌握风洞试验数据的修正、处理和分析的方法,掌握科学计算、试验曲线绘图软件的应用。

第二章 实验设备本次试验采用沈阳航空工业学院SHFD 低速闭口回流风洞(如图2.1)2.1 风洞主要几何参数风洞试验段:闭口宽×高×长 = 1.2m ×1.0m ×3m ,四角切角。

全机测力风洞试验指导书

全机测力风洞试验指导书

一、试验名称:低速风洞全机模型气动力和力矩测量试验二、试验目的及要求通过试验,深化对空气动力学理论的理解,初步掌握空气动力低速风洞试验技术:常规测力试验设备的使用,了解使用工业控制机对风洞风速和模型姿态角控制和信号采集及处理的基本方法。

了解风洞试验数据的修正和处理方法,初步掌握低速风洞测力的空气动力特性的规律和分析方法,试验数据曲线的绘制软件的应用。

三、试验设备本次试验采用沈阳航空工业学院SHDF低速闭口回流风洞(见图1):1、风洞主要几何参数风洞试验段:闭口宽×高×长= 1.2m×1.0m×3m,四角切角。

风洞收缩段:收缩比n = 8,长1m。

风洞稳定段:圆形,截面尺寸直径4m,总长2m。

蜂窝器为正六角形孔,对边距20mm,深300mm。

阻尼网共6层,20目。

图1 SHDF低速风洞平面图2、风洞动力系统变频器驱动三项异步交流电机带动螺旋桨工作。

变频器功率75kW;电机为四极,功率75kW。

桨叶翼型为RAF-D, -E,共6叶。

3、控制和数据采集系统风洞的控制系统是由计工业控制计算机(研华610H)、风速传感器(DCXL-10D)和变频器(SPF-75)组成,用VB语言开发的控制程序,对风速进行闭环控制,风速的控制精度为±0.2m/s。

模型姿态控制由计算机、步进电机驱动器(BQH-300Y)和步进电机(110BF003)分别带动模型支撑系统(尾撑和腹撑)做垂直面内转动(称为迎角α)。

迎角α转动范围为-15°~+25°,侧滑角由转盘涡轮蜗杆手动控制,β转动范围为-180°~+180°。

由旋转编码器实施测量转动角度。

数据采集系统是通过数据采集处理程序驱动,将杆式应变天平受力(或力矩)变形感应到的电压变化信号和压力传感器输出的电压信号,通过信号调理器(XL 2102E)及高精度稳压电源(XL 2101)对信号进行滤波、放大后,送入12位数据采集卡(PCL-818L)变为数字量,进入计算机中央处理器处理。

风洞实验报告

风洞实验报告

风洞实验报告引言:风洞实验作为现代科技研究的重要手段之一,广泛应用于航空航天、汽车工程、建筑结构等领域。

本报告将围绕风洞实验的原理、应用以及相关技术展开探讨,旨在加深对风洞实验的理解和应用。

一、风洞实验的原理风洞实验是通过利用风洞设备产生流速、温度和压力等环境条件,对模型进行真实环境仿真试验的一种方法。

其基本原理是利用气体流动力学的规律,使得实验模型暴露在所需风速的气流中,从而通过测量模型上的各种力和参数来分析其气动性能。

二、风洞实验的应用领域1.航空航天领域风洞实验在航空航天领域有着广泛的应用。

通过风洞实验,可以模拟不同飞行状态下的风载荷,评估飞机、火箭等载体的稳定性和安全性,在设计和改进新型飞行器时提供可靠的数据支撑。

2.汽车工程领域风洞实验在汽车工程领域同样具有重要意义。

通过对汽车模型在高速风场中的测试,可以优化车身外形设计,降低气动阻力,提高燃油效率。

此外,风洞实验还可用于汽车内部气流研究,如车内空调流场、风挡玻璃除雾等。

3.建筑工程领域在建筑工程领域,风洞实验可以帮助研究风荷载对建筑物结构产生的影响,以提高建筑物的抗风性能。

通过模拟真实的气流环境,可以评估建筑物在不同风速下的应力、应变分布情况,为工程设计和结构优化提供依据。

三、风洞实验技术1.气流控制技术气流控制技术是风洞实验中必备的关键技术之一。

通过对风洞内流场进行合理设计和调整,可以实现不同速度、湍流强度和均匀度的气流条件,以保证实验的准确性和可重复性。

2.试验模型制作技术试验模型制作技术对于风洞实验的结果具有重要影响。

模型的准确度和还原程度直接关系到实验数据的可靠性。

现如今,各类先进材料和加工技术的应用,使得模型制作更加精准和高效。

3.数据采集和分析技术风洞实验所得数据的采集和分析是判断实验成果的关键环节。

当前,数字化技术的快速发展为数据采集和分析提供了强有力的支持。

传感器、图像处理等先进技术的应用,使得实验数据获取更为精确和全面。

风洞实验报告

风洞实验报告

风洞实验报告
实验目的:
本次实验的主要目的是探究风洞内气流与实际情况的关系,通过对比不同种类的物体在风洞中所受到的气流影响,分析气流力与物体形状、风速等参数的关系,进一步探究气动力学知识。

实验仪器:
本次实验采用的是风洞设备,主要包括:风机、热线安放器、压力传感器、激光测量仪及流场可视化实验装置。

实验流程:
1. 首先将实验物体放入风洞内,开启风机,控制风速,并调整风洞内气流状态。

2. 利用热线安放器对实验物体表面局部速度的测量。

3. 利用压力传感器对实验物体表面气压及气液动力的测量。

4. 通过激光测量仪及流场可视化实验装置对实验物体周围气流情况进行记录并进行分析。

实验结果:
本次实验中,我们选取了不同的实验物体,进行了相应的实验操作。

其中,以典型机翼作为实验目标,分别在不同风速及不同攻角下进行实验测量。

根据实验结果,我们发现在相同的风速条件下,攻角越大,物体所受到的气流力越大。

同时,不同物体的形状、尺寸也对其所受到的气流力产生一定的影响。

此外,通过流场可视化实验装置的实验结果,我们也可以清晰地看到实验物体周围气流的流动情况,这一结果进一步验证了实验数据的准确性。

结论:
通过本次实验,我们深入了解了风洞实验的意义以及其在气动力学领域中的应用。

同时,我们也对气流力、攻角和物体形状等
参数的关系进行了深入探究,展示了其重要性和实用性。

基于本次实验的实验结果,我们也可以为工程设计、气动力学等领域提供一定的理论基础支持。

风洞实验报告

风洞实验报告

风洞实验报告风洞实验报告一、引言风洞实验是一种重要的工程实验方法,可以模拟大气中的空气流动情况,用于测试和研究各种物体在气流中的性能和特性。

本文将介绍一次针对某飞行器模型的风洞实验,包括实验目的、实验过程、实验结果和结论。

二、实验目的本次实验的目的是通过风洞实验,对某飞行器模型在不同风速下的气动特性进行测试和分析,为飞行器的设计和改进提供参考依据。

具体目标如下:1. 测试飞行器在不同风速下的升力和阻力变化情况,了解其气动性能;2. 研究飞行器在不同风速下的稳定性和操纵性,评估其适航性;3. 分析飞行器在不同风速下的气动力分布,寻找潜在的改进方向。

三、实验过程1. 实验设备准备:在实验室中搭建风洞装置,包括风洞本体、风速控制系统、数据采集系统等。

确保设备正常运行和准确测量。

2. 实验样本制备:根据飞行器模型的设计要求,制作样本并进行必要的校正和调整,确保样本符合实验要求。

3. 实验参数设置:根据实验目的,确定实验参数,包括风速范围、采样频率、测量点位置等。

4. 实验数据采集:将样本放置在风洞中,通过数据采集系统记录风速、升力、阻力、气动力矩等数据,并实时监测飞行器的姿态。

5. 数据处理与分析:对采集到的数据进行处理和分析,得出实验结果,并与理论计算结果进行对比。

四、实验结果1. 升力和阻力变化曲线:通过实验数据的分析,得到了飞行器在不同风速下的升力和阻力变化曲线。

结果显示,在低速风洞实验中,飞行器的升力随着风速的增加而线性增加,而阻力则呈指数增加。

在高速风洞实验中,升力和阻力的增长趋势逐渐趋于平缓。

2. 稳定性和操纵性评估:通过实时监测飞行器的姿态,得到了飞行器在不同风速下的稳定性和操纵性评估结果。

结果显示,在较低风速下,飞行器的稳定性较好,操纵性较强;而在较高风速下,飞行器的稳定性和操纵性受到较大的挑战。

3. 气动力分布分析:通过实验数据的处理,得到了飞行器在不同风速下的气动力分布情况。

结果显示,在低速风洞实验中,飞行器的气动力主要集中在机翼和尾翼上,而在高速风洞实验中,气动力分布更加均匀。

风洞实验实习报告

风洞实验实习报告

一、实习目的本次风洞实验实习旨在通过实际操作,加深对流体力学基本原理的理解,掌握风洞实验的基本流程和方法,学会使用风洞实验设备,并通过对实验数据的分析,提高解决实际工程问题的能力。

二、实习时间2023年X月X日至2023年X月X日三、实习地点XX大学风洞实验室四、实习内容1. 风洞设备介绍与操作在实习开始阶段,我们首先学习了风洞的基本结构、工作原理以及各类设备的操作方法。

包括风速计、测力天平、压力传感器、热线风速仪等。

通过实际操作,我们熟悉了风洞的基本使用流程。

2. 实验设计与实施我们选择了XX模型进行风洞实验。

实验前,我们根据实验目的和模型特点,设计了实验方案,包括实验参数、实验步骤、数据采集等。

在实验过程中,我们严格按照实验方案进行操作,确保实验数据的准确性。

3. 数据采集与分析实验过程中,我们使用各类传感器采集了风速、压力、升力等数据。

实验结束后,我们对数据进行整理和分析,得到了模型在不同风速、攻角下的气动特性曲线。

4. 实验报告撰写根据实验数据,我们撰写了实验报告,内容包括实验目的、实验方法、实验结果、分析讨论等。

在撰写报告过程中,我们进一步巩固了所学知识,提高了写作能力。

五、实习收获1. 理论联系实际通过本次实习,我们将所学流体力学理论知识与实际风洞实验相结合,加深了对流体力学基本原理的理解。

2. 实验技能提升在实习过程中,我们熟练掌握了风洞实验设备的使用方法,提高了实验操作技能。

3. 团队合作能力实验过程中,我们分工合作,共同完成了实验任务,提高了团队合作能力。

4. 问题解决能力在实验过程中,我们遇到了一些问题,通过查阅资料、讨论交流,最终解决了问题,提高了问题解决能力。

六、实习总结本次风洞实验实习是一次宝贵的实践机会,使我们受益匪浅。

在今后的学习和工作中,我们将继续努力,将所学知识运用到实际中,为我国流体力学事业贡献力量。

汽车风洞测力实验报告(3篇)

汽车风洞测力实验报告(3篇)

第1篇一、实验目的本次实验旨在通过汽车风洞测力系统,对汽车在不同速度和角度下的空气动力学性能进行测试,包括风阻系数、升力系数、侧向力系数等参数的测量。

通过实验,分析汽车在不同工况下的空气动力学特性,为汽车设计和改进提供科学依据。

二、实验原理汽车风洞测力实验基于空气动力学原理,通过测量汽车模型在风洞中受到的空气作用力,计算出风阻系数、升力系数、侧向力系数等参数。

实验过程中,利用风洞产生的均匀气流,对汽车模型进行不同速度和角度的测试。

三、实验设备1. 汽车风洞:用于产生均匀气流,模拟汽车行驶环境。

2. 汽车模型:与实际汽车尺寸相似,用于测试空气动力学性能。

3. 测力系统:包括力传感器、力矩传感器、数据采集系统等,用于测量汽车模型受到的空气作用力。

4. 计时器:用于测量汽车模型通过风洞的时间,从而计算速度。

四、实验步骤1. 准备实验设备,确保其正常运行。

2. 将汽车模型放置在风洞中,调整角度和高度,确保模型稳定。

3. 开启风洞,调整风速,使气流均匀。

4. 记录风速、角度等参数。

5. 测量汽车模型受到的空气作用力,包括水平力和垂直力。

6. 利用数据采集系统,实时记录实验数据。

7. 改变汽车模型角度和高度,重复实验步骤。

8. 分析实验数据,计算风阻系数、升力系数、侧向力系数等参数。

五、实验结果与分析1. 风阻系数(Cd):实验结果显示,汽车模型在不同速度和角度下的风阻系数有所差异。

在高速行驶时,风阻系数较大,随着速度降低,风阻系数逐渐减小。

在特定角度下,风阻系数达到最小值,说明汽车模型在该角度下空气动力学性能最佳。

2. 升力系数(Cl):实验结果显示,汽车模型在不同速度和角度下的升力系数有所变化。

在特定角度下,升力系数达到最大值,说明汽车模型在该角度下具有良好的操控性能。

3. 侧向力系数(Cη):实验结果显示,汽车模型在不同速度和角度下的侧向力系数有所差异。

在高速行驶时,侧向力系数较大,随着速度降低,侧向力系数逐渐减小。

风洞实验报告 (1)

风洞实验报告 (1)
8
上截面
7
CP(上)
11
下截面
2
CP(下)
0
1
10
上截面
CP(上)
下截面
CP(下)
12
上截面
4
CP(上)
下截面
CP(下)
14
上截面
CP(上)
下截面
CP(下)
16
上截面
CP(上)
下截面
CP(下)
20
上截面
CP(上)
下截面
CP(下)
迎角
截面
9
10
11
12
13
14
15
16
-4
上截面
2
CP(上)
0
0
1
下截面
4.多管压力计:压力计斜角θ=30o,系数K=。压力计右端第一测压管接试验段壁面测压孔,测量实验段气流静压 ,其液柱长度记为LI;其余测压管,分成两组,分别与上、下翼面测压孔一一对应连接,并有编号,其液柱长度为Li。左端第一测压管测量气流的总压,其液柱长度记为LII。
图1:开口风洞实验段
图2:风洞及来流静压测量孔
失速产生的原因:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。当超过临界迎角以后,气流在流过机翼的上表面时会发生分离,在翼面上产生很大的涡流,见图2。造成阻力增加,升力减小。
实验风速固定、迎角不变时,翼面上第i点的压差为:
,(i=0;1,2,3,……)(1)
(11)将风洞壁面测压孔、翼面测压孔与多管压力计的测压管对接好,注意检查导管,不得有破漏或堵塞。记录多管压力计的初始读数。
(12)将模型迎角调节到位并固定,风洞开车,由变频器稳定风速。实验中迎角调节范围为α=-4o~22o,△α=2o。

中学风洞实验报告(3篇)

中学风洞实验报告(3篇)

第1篇一、实验背景随着我国经济的快速发展,高层建筑、桥梁等大型结构物越来越多地出现在城市中。

这些结构物的设计、建造和使用过程中,风荷载的作用不容忽视。

为了更好地理解和预测风荷载对结构的影响,本研究开展了中风洞实验,旨在研究风场对高层建筑结构的影响,为结构设计提供理论依据。

二、实验目的1. 研究风场对高层建筑结构的影响,包括风荷载大小、方向、频率等。

2. 分析不同风向、不同高度、不同体型结构的风荷载特性。

3. 评估现有风荷载计算方法的适用性,提出改进建议。

三、实验方法1. 实验模型:采用1:200比例的模型,模拟实际高层建筑结构。

2. 风洞实验:在实验室风洞中进行,模拟不同风向、不同风速条件下的风荷载。

3. 测试仪器:采用压力传感器、风速仪、风向仪等设备,测量风荷载、风速、风向等参数。

四、实验过程1. 模型准备:将模型放置在风洞实验台上,确保模型稳定。

2. 风场模拟:设置不同风向、不同风速条件,模拟实际风场。

3. 数据采集:启动测试仪器,记录风荷载、风速、风向等参数。

4. 数据分析:对采集到的数据进行处理、分析,得出结论。

五、实验结果与分析1. 风荷载特性:实验结果表明,风荷载大小与风速、风向、建筑体型等因素有关。

在顺风向,风荷载较大;在横风向,风荷载较小。

建筑体型对风荷载影响较大,高宽比、长宽比等参数对风荷载有显著影响。

2. 风荷载计算方法:通过对比实验结果与现有风荷载计算方法,发现现有方法在部分情况下存在误差。

针对不同建筑体型,提出改进建议,以提高计算精度。

3. 风洞实验优点:风洞实验能较好地模拟实际风场,为结构设计提供可靠依据。

实验过程中,可以精确控制实验条件,提高实验结果的准确性。

六、结论与建议1. 风荷载对高层建筑结构有显著影响,设计中应充分考虑风荷载的作用。

2. 针对不同建筑体型,采用合适的计算方法,以提高风荷载计算精度。

3. 风洞实验是研究风荷载的有效手段,建议在结构设计中广泛应用。

南京航空航天大学实验空气动力学实验报告

南京航空航天大学实验空气动力学实验报告

南京航空航天大学实验空气动力学实验报告班级:学号:姓名:目录1.实验一:低速风洞全机模型测力实验 ............................................................................ - 1 -1.1实验目的: ........................................................................................................... - 1 -1.2实验设备: ........................................................................................................... - 1 -1.3实验步骤: ........................................................................................................... - 1 -1.4实验数据 ............................................................................................................... - 2 -1.5数据处理 (3)1.6结果分析: (5)2.实验二:天平实验观摩实验 (6)2.1塔式天平的原理图 (6)2.2各类天平的比较 (6)3.实验三:风洞测绘实验 (7)3.1 0.75米低速开口回流风洞 (7)3.2.二维低速闭口直流风洞 (7)3.3风洞主要部件的作用 (8)1.实验一:低速风洞全机模型测力实验1.1实验目的:全机模型测力实验是测量作用在标准飞机模型上的空气动力和力矩,为确定飞机气动特性提供原始数据。

风速压力测量实验报告

风速压力测量实验报告

风速压力测量实验报告本实验旨在通过测量风速和风压,探究风速与压力的关系,并通过实验结果来验证流体力学中的一些基本理论。

实验原理:根据流体力学的基本原理,流体在管道中流动时会受到内部的阻力作用,表现为流体受到的压力。

这种压力与流速之间存在着一定的关系。

实验中我们使用了风速压力计来测量风速和风压的数据,并通过分析数据来探究风速和压力之间的关系。

实验步骤:1. 连接风速压力计:将风速压力计的进气口与风源连接,将压力表和风速计与风速压力计的出口连接,确保连接牢固且密封良好。

2. 设置实验条件:调节风源的气压和风速,确保实验条件的稳定性。

3. 测量实验数据:在不同的风速下,使用风速计和压力表分别测量风速和风压的数值,并记录下来。

4. 数据处理与分析:根据实验数据,绘制风速和风压之间的关系曲线,并进行数据拟合和回归分析,以获得更准确的数据拟合模型。

实验结果:根据实验数据我们得到了风速和风压的数值,并绘制了风速和风压之间的关系曲线。

通过数据拟合和回归分析,我们发现风速和风压之间存在着一定的线性关系,即风速与风压成正比。

具体的拟合模型为:风压(P)= k * 风速(V)其中,k 为比例系数。

根据数据拟合的结果,我们可以估计出风压与风速之间的具体关系,从而在实际应用中可以根据测得的风压值来估计风速的大小。

实验结论:通过本次实验,我们验证了流体力学中的一些基本理论,即风速与风压之间存在着一定的线性关系。

通过实验数据的分析,我们得到了风压与风速之间的数学模型,并且通过数据拟合和回归分析,在一定程度上可以准确地估计风速大小。

这对于优化风力发电机组的设计和控制策略具有一定的实际意义。

实验中可能存在的误差来源:1. 实验设备的误差:风速压力计、风速计和压力表都有其自身的测量误差,可能会对实验结果造成一定的影响。

2. 实验环境的影响:实验室内外的温度、湿度等环境因素会对实验结果产生一定的影响。

3. 人为误差:实验操作中的操作不当或读数不准确等人为因素也可能引入误差。

低速风洞设计说明书

低速风洞设计说明书

流体力学实验技术课程设计学院:航空宇航学院学生姓名:**学号: *********二〇一六年十二月低速风洞设计课程设计报告1、实验段设计该风洞设计最大风速为100米每秒,预设功能为做全机模型低速气动特性测量试验,一般的迎角在负20度到正30度之间,采用回流式。

○1实验段截面形状选择实验段截面形状有圆形、方形、八角形、椭圆形及矩形等。

选择剖面形状的原则是在满足实验要求下最有效地利用全部气流切面积,因而可以减少风洞的驱动功率。

综合考虑气流均匀度和洞壁干扰等因素,选取矩形截面。

○2实验段截面尺寸选择为使雷诺数达到2.5*10^6,根据风速100米每秒,再取平均展弦比为6,并且要求模型展长不超过风洞宽度的0.7倍,估算得实验段宽度约为3.7米,取实际宽度为4米;由于迎角不太大,对于实验段高度要求不大,取为3米。

○3实验段开口式、闭口式的选择为保证实验段气流均匀度以及减少可能的能量损失,采用闭口式实验段。

○4实验段长度确定模型应置于实验段的均匀流场中。

模型头部至实验段入口应保持一定距离,以l1表示,假设实验段相当直径为D0,则L1大致为0.25~0.50 D0;模型的长度以l2表示,大约为0.75~1.25 D0,各种类型飞机的模型是不相同的;模型尾部至扩压段进口也应保持一定距离,以l3表示,一方面保证模型的尾流不过多影响扩压段效率,另一方面也不使扩压段的流动影响模型尾部,这个距离大约为0.75~1.25 D0。

因此,实验段长度应保持在1.75~3.0 D0的范围内。

经计算,D0约等于3.9米,取实验段长度为8米。

2、收缩段设计○1收缩段作用加速气流,使其达到实验所需要的速度。

收缩段应满足以下要求:(1)气流沿收缩段流动时,洞壁上不出现分离;(2)收缩段出口的气流要求均匀、平直而且稳定;(3)收缩段不宜过长。

L○2收缩段长度2收缩比取为10,收缩段出口尺寸根据试验段尺寸取R2为2米,根据收缩比计算得进口L为8米。

风洞实验报告

风洞实验报告

风洞实验报告风洞实验,听起来是不是超级酷?就好像进入了一个神秘的科学世界。

我还记得第一次听说风洞实验的时候,那是在一个阳光明媚的午后,我在图书馆偶然翻到一本介绍航空航天的书,里面提到了风洞实验,一下子就勾起了我的好奇心。

风洞,简单来说,就是一个能产生人造风的大管子。

可别小瞧这管子,它能帮助我们搞清楚好多关于物体在空气中运动的秘密。

这次咱们要讲的风洞实验,主要是为了研究一个新设计的飞机模型的空气动力学性能。

实验开始前,那准备工作可真是繁琐又精细。

先得把这个飞机模型小心翼翼地安装在风洞内部的支架上,确保它稳稳当当,不会有一丝晃动。

这就像是给一个小宝宝安置一个超级舒适的摇篮,稍有不慎,小宝宝就会哭闹不停。

模型上还布满了各种传感器,就像给它穿上了一层密密麻麻的“电子铠甲”,这些传感器能精确地测量出模型在风的作用下受到的力和产生的变化。

风洞启动啦!呼呼呼的风声响起,就像一场狂风交响曲。

随着风速逐渐增加,飞机模型开始在风中颤抖、摇摆。

通过那些传感器,我们能看到各种数据像瀑布一样涌出来。

比如升力、阻力、压力分布等等。

有个特别有趣的细节,当时风速加到一定程度的时候,模型的某个部位居然出现了轻微的抖动,就像人在寒风中打哆嗦一样。

这可把我们紧张坏了,赶紧检查是不是模型安装出了问题,还是设计本身有缺陷。

经过一番仔细排查,原来是一个小零件的安装角度稍微有点偏差,调整之后,一切又恢复了正常。

从实验数据来看,这个飞机模型的表现还算不错。

在低速时,升力和阻力的比例比较理想,说明它在起飞和降落阶段应该会比较稳定。

但是在高速时,某些部位的压力分布不太均匀,可能会影响飞行的效率和稳定性。

这就好比一个运动员,短跑还行,但长跑的时候体力分配不均匀,就容易累垮。

经过这次风洞实验,我们对这个飞机模型有了更深入的了解,也为后续的改进提供了有力的依据。

就像给它做了一次全面的体检,知道了哪里健康,哪里需要“治疗”。

风洞实验可不只是在航空航天领域大显身手哦!在汽车设计中,能让汽车的外形更符合空气动力学,降低风阻,节省燃油;在体育用品设计中,比如自行车、滑雪板,能让运动员在比赛中更加“风驰电掣”;甚至在建筑设计中,能让高楼大厦在大风中屹立不倒。

风洞试验检测报告

风洞试验检测报告

风洞试验检测报告实例风洞试验检测报告是针对风洞试验的检测结果进行记录和评估的报告。

以下是一个风洞试验检测报告的示例:标题:风洞试验检测报告1. 试验概述本报告旨在提供关于风洞试验的检测结果和评估。

本次试验旨在评估模型在特定风速下的表现,并为后续设计和优化提供依据。

2. 试验条件2.1 试验设备本次试验使用了型号为XXX的风洞设备,该设备具备稳定的空气动力学性能和先进的测控系统。

2.2 模型与设备本次试验的模型为XXX,尺寸为XXX,设备为XXX。

2.3 试验参数本次试验的参数包括风速、模型姿态、空气密度、气压等。

3. 试验过程3.1 模型安装与调试在风洞实验前,我们对模型进行了精确的安装和调试,确保模型与支架的位置和姿态正确。

3.2 数据采集与处理在试验过程中,我们使用了高速相机和传感器采集了模型周围的流场数据。

同时,我们还使用了图像处理技术对采集的数据进行处理和分析。

4. 试验结果与分析4.1 数据统计与分析根据采集的数据,我们统计了模型在不同风速下的表现,包括升力、阻力、侧向力等参数。

通过对比不同风速下的数据,我们发现模型在低风速下的表现较好,而在高风速下的性能有所下降。

这可能与模型的空气动力学设计有关,需要进行进一步的优化。

4.2 结果可视化为了更直观地展示试验结果,我们使用了专业的软件对数据进行了可视化处理。

通过生成的速度场云图和力矢量图,我们可以更清楚地了解模型周围的流场分布和受力情况。

根据这些结果,我们可以对模型的设计进行改进和优化。

5. 结论与建议根据本次风洞试验的检测结果,我们得出以下结论:(1) 在低风速下,模型表现良好,具有较高的升阻比和侧向力控制能力。

这表明模型在低风速飞行时具有较好的稳定性和操控性。

(2) 在高风速下,模型的性能有所下降。

特别是升力系数和阻力系数都显著增加,导致飞行速度难以控制。

这可能与模型的空气动力学设计有关,需要进行进一步的优化。

(3) 通过可视化处理,我们发现模型周围的流场存在一些不稳定的区域。

风速风向测量实验指导书与实验报告

风速风向测量实验指导书与实验报告

风向风速测量实验(一)实验目的掌握风向风速测量方法及测量原理,学会使用数字风向风速表等测量仪器测定风向及风速;(二)实验仪器设备及实验原理1、实验仪器设备:实验设备有HG-1低速风洞及测控系统、数字压力风速仪、数字风向风速表;图1为低速风洞,用于产生低速气流,图2为XDEI型数字风向风速表;图1HG-1低速风洞图2数字风向风速表HG-1低速风洞是一座回流式低速风洞见图1,气流速度最高60m/s,试验段大小:700mm宽×700mm高;数字压力风速仪是用于测量气流总压、静压及压差和风速的多功能测试仪,该仪器必须和皮托管探头配套使用;数字风向风速表是手持式风向风速测试仪,由风向风速感应器和数据处理、显示仪表2部分组成;其技术指标如下:风向:测量范围:0~360°准确度:±5°分辨力:3°.起动风速:≤0.5 m/s风速:测量范围:0~60 m/s准确度:±0.5+0.03Vm/sV─实际风速分辨力:0.1 m/s起动风速:≤0.5 m/s2、实验原理:风向、风速传感器所感应的不同物理量,经过相应的电路,转换成标准的电压模拟量和数字量,然后由数据采集器CPU按时序采集、计算,得出风向、风速的实时值,并实时显示;2.1风向传感器选用单叶式风向标见图3作为风向测定传感器,采用七位格雷码的编码方式进行光电转换,将轴角位移转换为数字信号,经采集器的CPU根据相应公式解算处理,得到相应的风向值;图3单叶式风向标风向传感器图4三杯回转架式风速传感器2.2风速传感器采用三杯回转架式风速传感器作为风速测定传感器见图4,利用光电脉冲原理;风杯带动码盘转动,光敏元件受光照后输出脉冲,经采集器CPU根据相应的风速计算公式解算处理,获得相应风速值;(三)实验方法与步骤1、风洞运行,将风速调至10m/s左右;2、把皮托管的总压测压软管及静压测压软管和数字压力风速仪对应接口连接;3、将数字压力风速仪电源打开,按功能键使面板切换到压力和速度显示界面;4、将皮托管安装在支架上,使总压管开孔方向与来流方向一致;5、用数字压力风速仪测量试验段出口气流总压和风速;6、将手持式数字风向风速表的数据采集、处理与显示部件与风速风向感应部件连接,并把感应部件伸到来流中,测定来流速度和来流方向;要求三个风杯处于同一水平面上;7、改变风洞来流速度,重复5和6步骤测定第二组数据;8、实验结束,关闭风洞;9、室外有风时手持数字风向风速表到室外测定某处风向风速;(四)实验数据处理将实测数据记录在下表中:(五)思考题1、比较数字压力风速仪和数字风向风速表测定的风速是否相同为什么2、请简述风速风向测量中还有哪些测量方法3、3、你认为本次实验中存在什么问题,应怎样改进谈谈本次实验的体会;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞行器设计与工程专业综合实验SHFD低速风洞全机模型气动力和力矩测量试验报告院系:专业:飞行器设计与工程班级:学号:姓名:风洞试验任务书姓名:班级:2 学号:指导教师:完成日期:2015年9月20日实验小组:第二组组长:(学号:)小组成员:姓名学号试验任务表实验风洞:SHFD 时间:2014.8.31~2015.9.20试验类型试验状态备注DSBM-01 标模测力试验纵向试验β=00:α=-40~120 ; ∆α=20β=00:α=120~320;∆α=40试验风速V=27m/s 横向实验α=40:β=-160~160;∆β=40α=80:β=-160~160;∆β=40摘要本次试验采用SHFD低速闭口回流风洞对DBM-01标准模型在不同迎角及侧滑角下受升力,阻力,侧力,俯仰力矩,滚转力矩,偏航力矩变化情况进行了测量,对SHFD低速风洞进行了详细的介绍,包括风洞的动力系统、控制和数据采集系统等。

最后根据模型所受各力随迎角变化情况应用tecplot 软件绘制出Cy-α,Cy-Cx,Mz-Cy,Cz-β,Mx-β,My-β曲线。

关键词 DBM-01标模测力实验 SHED风洞 tecplot目录第一章实验名称与要求 (1)1.1 实验名称 (1)1.2 实验要求 (1)第二章实验设备 (1)2.1风洞主要几何参数 (1)2.2流场主要技术指标 (2)2.3 控制与数据采集系统 (2)2.4 风洞动力系统 (2)2.5 DBM-01标准模型 (2)第三章风洞实验原理 (4)3.1相对性原理和相似准则 (4)3.2主要测量过程 (4)第四章实验方法及步骤 (6)4.1 了解风洞组成及开车程序 (6)4.2 制定试验计划 (6)4.3 模型及天平准备 (6)4.4实验步骤 (8)第五章实验数据处理与分析 (9)5.1干扰修正计算 (9)5.2实验结果分析 (11)结论 (21)参考文献 (22)第一章实验名称与要求1.1 实验名称全机模型气动力和力矩测量1.2 实验要求通过低速风洞常规测力试验,深化对空气动力学理论的理解,初步掌握空气动力低速风洞试验技术:常规测力实验设备的使用,了解使用工业控制机对风洞风速和模型姿态角控制和信号采集及处理的基本方法。

了解风洞试验数据的修正和处理方法,熟悉低速风洞标模的气动力特性规律和分析方法,初步掌握实验数据曲线的绘制软件的应用,为飞行器设计和空气动力学深入研究奠定。

第二章实验设备本试验采用沈阳航空工业学院SHFD低速闭口回流风洞(见图1):2.1风洞主要几何参数风洞试验段:闭口宽×高×长= 1.2m×1.0m×3m,四角切角。

风洞收缩段:长1m,收缩比n = 8。

风洞稳定段:圆形,截面尺寸直径4m,总长2m。

蜂窝器为正六角形孔,对边距20mm,深300mm。

阻尼网共6层,20目。

图1 SHFD低速闭口回流式风洞轮廓图2.2风洞动力系统变频器驱动三项异步交流电机带动螺旋桨工作。

变频器功率75kW;电机为四极,功率75kW。

桨叶翼型为RAF-D, -E,共6叶。

2.3控制和数据采集系统风洞的控制系统是由计工业控制计算机(研华610H)、风速传感器(DCXL-10D)和变频器(SPF-75)组成,用VB语言开发的控制程序,对风速进行闭环控制,风速的控制精度为±0.2m/s。

模型姿态控制由计算机、步进电机驱动器(BQH-300Y)和步进电机(110BF003)分别带动模型支撑系统(尾撑和腹撑)做垂直面内转动(称为迎角α)。

迎角α转动范围为-15°~+25°,侧滑角由转盘涡轮蜗杆手动控制,β转动范围为-180°~+180°。

由旋转编码器实施测量转动角度。

数据采集系统是通过数据采集处理程序驱动,将杆式应变天平受力(或力矩)变形感应到的电压变化信号和压力传感器输出的电压信号,通过信号调理器(XL 2102E )及高精度稳压电源(XL 2101)对信号进行滤波、放大后,送入12位数据采集卡(PCL -818L )变为数字量,进入计算机中央处理器处理。

2.4 风洞流场技术指标表1 SHFD 风洞流场的主要技术指标 流场技术参数指标 备注 最大速度V max (m/s ) 50实验中单位全部采用ISO 国际标准单位制最小稳定速度V min (m/s ) 5 轴向静压梯度|d Cp /d x | (1/m ) ≤0.005 场系数μi0.0045平均气流偏角|α| ≤0.5° 平均气流偏角|β| ≤0.5° 时间稳定性η 0.005 湍流度 ≤0.14%2.5 DBM-01标准模型试验模型采用DBM-01标模,模型全钢制造,比例1:3。

该模型是国际、国内通用的低速风洞标准模型,具有气动力在较大雷偌数范围内变化不敏感的优良特性,有国内外多个风洞的试验数据可作比较参考。

主要参数见表2:表2: DBM-01标准模型参数表机 翼机 身展弦比 3.0 长0.6096 m 梢跟比 0最大直径 0.0508 m 翼型 NACA0003.5-63 长细比12面积0.0413 m 2 平 尾平均气动力弦 0.1565 m 面积 0.0090 m 2 展长0.3519 m翼型NACA0004-64 全机力矩参考中心0.375b A平尾尾臂(平尾A b 41到力矩参考中心距离)0.2347 m第三章 风洞实验原理3.1 相对性原理和相似准则用模型在风洞中进行试验来模拟飞行器在空中的真实飞行应满足相对性原理和相似准则。

相对性原理即:在初始条件、物性条件和边界条件相同的情况下,物体在流体中运动所受的力与物体不动而流体以相同速度(大小和方向)相对物体运动时物体所受的力相同。

相似性准则即:对于流体动力学实验来说,只要满足模型与真实飞机是几何相似、运动相似、动力相似和热相似的,则两个流场相似。

对于低速流动来说,主要相似参数有:代表粘性影响的雷诺数: μρVl =Re ;代表压缩性影响的马赫数: M a = V/a ; 表示流体压力与惯性力之比欧拉数;2Eu V pρ∆= ; 物体上的力与惯性力之比 牛顿数22Ne lV Fρ=如果绕模型流动与绕实物流动的相似参数相等,那么两者压力系数相同,力系数相同。

试验时,让风洞的流场满足主要影响的相似准则,对不满足的相似参数进行修正来保证实现模拟,这样就可以把风洞中模型的力和压力用系数的形式用到真实的物体上。

3.2 主要测量过程通过调节可控制转速的电机带动螺旋桨产生所需的风速流过支撑在风洞中与真实物体几何相似的模型,用应变天平测量模型所受的6个力分量,再经过数据处理得到空气动力系数。

过程如下:(1) 在无风速V = 0时,采集模型在各个姿态下的各单元的初始记录。

如:阻力、升力和俯仰力矩单元的零读数x 0,y 0和M z 0(mV )。

(2) 风洞开车,改变模型姿态,在试验风速下V = VI 时,采集记录阻力、升力和俯仰力矩单元的读数xi ,yi 和Mzi (mV )。

(3) 用对应的试验值减去初始值:()0x x K x i x -= ()0y y K y i y -= ()0z i z M z M M K M z -= ………其中,Kx ,Kxy ,KMz 为天平校准系数,单位为N/mV 和N·m/mV ,由天平校准时给出。

(4) 对采集的数据进行风洞流场的各种修正,得到各分量的气动力系数:纵向的升力系数Cy ,阻力系数Cx 和俯仰力矩系数mz ,横向的侧力系数Cz ,滚 转力矩系数mx 和偏航力矩系数my 。

以及各分量的气动导数和气动力特征参数。

qs y C y =qs x C x = A z z q s b M m = qs zC z = q s l M m y y =q s l M m x x = 其中:q 为实验速压,222121V RTp V q a ==ρ;p a 为当天当地大气压(Pa ),T 为风洞内空气温度(K ),R 为空气气体常数,取287.05 J/(kg·K);s 为机翼面积(m 2);b A 为机翼平均气动弦(m );L 为机翼翼展。

(5) 存储和输出:按使用需要进行试验数据的显示、输出。

一般纵向数据按风轴输出,横向数据按体轴系输出。

第四章实验方法及步骤4.1 了解风洞组成及开车程序①了解风洞各部分构造及主要功能。

②了解风洞控制主电源开关的使用。

③了解变频器开启和停车步骤;变频器的远程控制开关位置;变频器工作时的安全注意事项。

④了解计算机测控及数据采集程序,熟悉开车过程、改变模型角度的控制方法和调速方法。

⑤应急停车按钮的正确使用方法。

4.2 制订试验计划①根据试验任务书编写试验运转计划、确定小组人员分工;试验风速可取V = 27m/s纵向试验:侧滑角β= 0°,改变模型迎角α,测量模型的升力、阻力和俯仰力矩,取模型迎角α变化范围为-4°~12°,变化间隔Δα =2°;120~320,变化间隔Δα =4°。

大迎角试验中间要更换支杆;横向试验:在迎角α = 4°、8°时,改变侧滑角β测量模型的侧力、偏航力矩和滚转力矩,取侧滑角β变化范围为-16°~16°,变化间隔Δβ =4°;②测量试验室当天的大气压强、温度,计算试验雷偌数Re和速压q;③计算风洞流场及模型各项干扰的修正参数(参照课程大作业)。

4.3 模型及天平准备①进入试验段内,将转盘上后部的小盖板拆下。

用计算机(或控制台)将α角调到-5°,安装弯刀支架和支杆。

②将Φ24六分力杆式应变天平从天平盒中取出,在风洞中先把天平信号线导引穿过支杆孔,然后用双向锁紧螺母将天平紧固在支杆上(天平后键槽向下)。

将从支杆孔穿出的天平信号线露出的部分用铝箔或细铜网包裹屏蔽,然后沿着弯刀后面的槽导出到风洞外的接线板上(用胶带辅助定位),按各元标号正确焊接。

连接信号调理器和稳压电源,并通电预热30分钟以上。

(此项由指导教师进行,注意:应非常小心,避免磕碰天平和折断天平信号线)③ 用手对天平加以适当的载荷,从信号调理器读数检查天平各元输出信号符号是否正确,判断连线是否正确。

在天平前端螺纹孔拧入一螺栓,并在螺栓上以柔软细索悬吊不大于10kg 砝码或重物(注意:应轻轻加载,避免对天平的冲击力),从信号调理器读数检查天平Z 方向力元输出信号是否为零。

否则,松开双向锁紧螺母,微量旋转天平调整并重新锁紧后再次检查。

检查完毕后拆去螺栓。

④ 将模型小心地从箱中取出,拆下头锥。

将模型安装在天平上(面向天平看时,天平前键槽在右侧),用螺栓紧固(注意,拧紧力矩不应太大,并用手扶住模型两翼,不使天平受到过大力矩),然后装上头锥。

相关文档
最新文档