小学五年级经典奥数题 -(用鸡兔同笼方法解决)
小学五年级经典奥数题
小学五年级经典奥数题小学五年级经典奥数题小学五年级经典奥数题1 1.一个牧场,草每天匀速生长,每头牛每天吃的草量一样,17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完,现有一群牛,吃了6天后,卖掉4头牛,余下的牛再吃2天就将草吃完。
问没有卖掉4头牛之前,这一群牛一共有多少头?2.一个蓄水池,每分钟流入4立方米水。
假如翻开5个水龙头,2小时半就把水池中的水放光;假如翻开8个水龙头,1小时半就把池中的水放光,现翻开13个水龙头,问要多少时间才能把水池中的水放光〔每个水龙头每小时放走的水量一样〕?3.甲、乙、丙3个仓库,各存放着同样数量的.化肥,甲仓库用皮带输送机一台和12个工人,需要5小时才能把甲仓库搬空;乙仓库用一台皮带输送机和28个工人,需要3小时才能把乙仓库搬空;丙仓库有两台皮带输送机,假如要求2小时把丙仓库搬空,同时还需要多少工人〔皮带输送机的成效一样,每个工人每小时的搬运量一样,皮带输送机与工人同时往处搬运化肥〕?4.快、中、慢3辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车的小偷,这3辆车分别用6分钟、10分钟、12分钟,追上小偷,如今知道快车的速度是每小时24千米,中车的速度是每小时20千米,问慢车的速度是多少?。
小学五年级经典奥数题2 小学五年级经典奥数题【例一】:有一批文章共15篇,各篇文章的页数是1页、2页、3页、……、14页和15页的稿纸,假如将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一页是奇数页码的文章最多有多少篇?答案与解析:先将偶数页的文章(2页、4页、…… 、14页)编排,这样共有7篇文章的第一页都是奇数页码.然后将奇数页的文章(1页、3页、5页、7页、9页、11页、13页和15页)依次编排,这样编排的1页、5页、9页和13页的4篇文章的第一页都是奇数页码.因此每篇文章的第一页是奇数页码的文章最多是7+4=11 (篇).小学五年级经典奥数题【例二】:某工程队需要在规定日期内完成,假设由甲队去做,恰好如期完成,假设乙队去做,要超过规定日期三天完成,假设先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案与解析:由“假设乙队去做,要超过规定日期三天完成,假设先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=6小学五年级经典奥数题【例三】:一个池上装有3根水管。
小学五年级奥数题100道及答案(完整版)
小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
小学五年级数学奥数题100道及答案(完整版)
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
小学五年级奥数题集锦及答案
1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶千米,乙行了5小时。
求AB两地相距多少千米?解:AB距离=(×5)/(5/11)=千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走千米,求甲、乙两人的速度?解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/=4小时所以甲的速度=20/4=5千米/小时乙的速度==千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。
【经典】小学五年级奥数题及答案(可直接打印) 一
【经典】小学五年级奥数题及答案(可直接打印) 一一、拓展提优试题1.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.3.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.4.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.5.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.6.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.7.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.8.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.9.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.10.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.11.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.12.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).13.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.16.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.17.观察下面数表中的规律,可知x = .18.A 、B 两桶水同样重,若从A 桶中倒2.5千克水到B 桶中,则B 桶中水的重量是A 桶中水的重量的6倍,那么B 桶中原来有水 千克.19.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有 人.20.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数. 例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到 对孪生质数.21.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了 米.22.已知13411a b -=,那么()20132065b a --=______。
五年级奥数题精选及答案二
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。
那么有多少人两个小组都不参加?2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。
那么语文成绩得满分的有多少人?3、50名同学面向老师站成一行。
老师先让大家从左至右按1,2,3, (49)50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。
问:现在面向老师的同学还有多少名?4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。
按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。
那么游艺会为该项活动准备的奖品铅笔共有多少支?5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?答案:1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40—23=17,2个小组都不参加的17人2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45—7—29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50—12—8+4=344,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100—50—33+16=28,所以,准备铅笔为50X2+33X3+28=2275,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45—15=90奥赛专题—- 鸡兔同笼问题[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。
【经典】小学五年级奥数题及答案(可直接打印) word百度文库
【经典】小学五年级奥数题及答案(可直接打印) word百度文库一、拓展提优试题1.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?2.如图,从A到B,有条不同的路线.(不能重复经过同一个点)3.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.4.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.5.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.6.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.7.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.8.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.9.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).10.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.11.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.12.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?13.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.【参考答案】一、拓展提优试题1.【分析】假设第一次每人都派3个,则还剩余2×(4﹣3)+11=13个,第二次如每人都派6个,同时少了4×(6﹣3)﹣10=2个,就是每人多派6﹣3=3个,则需要13+2=15个礼物,据此可求出人数,进而可求出礼物数.解:[2×(4﹣3)+11+4×(6﹣3)﹣10]÷(6﹣3)=[2×1+11+4×3﹣10]÷3=[2+11+12﹣10]÷3=15÷3=5(人)2×4+(5﹣2)×3+11=8+3×3+11=8+9+11=28(件)答:一共有28件礼物.2.解:如图,因为,从A到B有5条直连线路,每条直连线路均有5种不同的路线可以到达B点,所以,共有不同线路:5×5=25(条),答:从A到B,有25条不同的路线,故答案为:25.3.解:根据题干分析可得:3个红球的盒子数是:42﹣27=15(个),所以放3个白球的盒子数也是15(个),则放2白一红的盒子数是:100﹣15﹣15﹣27=43(个),所以白球的总数有:15×3+43×2+27=158(个),答:白球共有158个.故答案为:158.4.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.故答案为:四5.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.6.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.7.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.8.解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF和四边形BCEF周长和为:8+10=18(厘米),所以BC=18﹣16=2(厘米),答:BC=2厘米.故答案为:2.9.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.10.解:根据分析可得,朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,24﹣4+1=21(种)答:朝上一面的4个数字的和有 21种.故答案为:21.11.解:3n是5的倍数,3n的个数一定是0或5又因为大于0的自然数n是3的倍数,所以3n最小是453n=45n=15所以n最小取15时,n是3的倍数,3n是5的倍数.答:n的最小值是15.故答案为:15.12.解:设3小时顺流行驶单趟用时间为x小时,则逆流行驶单趟用的时间为(3﹣x)小时,故:x:(3﹣x)=4:88x=4×(3﹣x)8x=12﹣4x12x=12x=1逆流行驶单趟用的时间:3﹣1=2(小时),两船航行方向相同的时间为:2﹣1=1(小时),答:在3个小时中,有1小时两船同向都在逆向航行.13.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.14.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12015.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.。
小学五年级数学奥数题100道附完整答案
小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。
题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。
现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。
一共可以截成:(120 + 180 + 300) ÷60 = 10 段。
题目3:一间教室长8 米,宽6 米,高4 米。
要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。
题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。
把一块石头浸入水中后,水面升到16 厘米,求石块的体积。
答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。
题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。
题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。
题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。
小学五年级精选奥数题及解析
小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。
技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。
你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。
那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。
9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。
(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。
11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。
小学五六年级奥数题及答案经典
五年级奥数题每类型一道,问题+思路+答案9. 有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
解:7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810. 有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。
求第三个数。
解:28×3+33×5-30×7=39。
11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
13. 妈妈每4天要去一次副食商店,每5天要去一次百货商店。
妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次)。
14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。
解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7。
15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。
已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。
糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。
五年级数学有趣经典的奥数题及答案解析
五年级数学有趣经典的奥数题及答案解析一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
小学五年级奥数题带答案
小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。
(完整版)小学五年级奥数题及答案
小学五年级奥数题及答案一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 2.A和B是小于100的两个非零的不同自然数。
小学五年级经典奥数题及答案
小学五年级经典奥数题题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?一、填空题(每小题5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。
3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。
5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积是立方厘米;(取3.14)6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积是平方米。
小学五年级奥数题(含答案)
小学五年级奥数题及答案一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 2.A和B是小于100的两个非零的不同自然数。
小学五年级奥数经典题型
【题目】有一个正六边形点阵,如图,它的中心是一个点,算作第一层;第二层每边两个点(相邻两边公用一个点);第三层每边三个点,……,这个六边形点阵共100层。
问这个点阵共有多少个点【解析】:最里面一层先不看,原点阵则变成了由内到外,第一层有1个6点,后面每层依次比前一层多1个6点,共99层的一个点阵。
解法一:先用求和公式求这个99层的点阵共有多少个6点:1+2+3+4+……+99=(1+99)×99÷2=4950(个)。
原点阵共有点:1+6×4950=72901(点)。
解法二:先求出这个99层的点阵第99层的点子数为:6×99=594(点)。
再由求和公式求出这个99层的点阵共有点:(6+594)×99÷2=72900(点)。
原点阵共有点:72900+1=72901(点)。
【题目】:司机开车按顺序到5个车站接学生到学校,每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,问车到学校时,车上最少有多少学生【解析】:这一题适合用倒推法解题。
“以后每站上车的人数都是前一站上车人数的一半”即:从后往前,前一站上车人数都是后一站上车人数的2倍。
又因为“每个车站都有学生上车”,则最后一站最少上了1名学生。
假设到学校前的最后一站上了1名学生,依次往前推,则之前四站每站依次上了2名、4名、8名、16名学生。
因为接学生到学校中途不会有人下车,所以车到学校时,车上最少有学生:1+2+4+8+16=31(名)。
【题目】:625名学生参加100米比赛,跑道有5条,每赛一次可淘汰4名选手,只留下第一名继续比赛,共需要赛多少次才能决出冠军【解析】:共有625名选手,决出冠军,即最后只剩下一名选手,就需要淘汰选手:625-1=624(名)。
每赛一次可淘汰4名选手,要淘汰选手624名,共需比赛:624÷4=156(次)。
【题目】:一个人要住宾馆但是忘记带钱,身上只有一根7个银环套在一起的手链。
小学五年级五年级奥数题
小学五年级五年级奥数题在小学五年级时,学生们已经开始接触奥数了。
随着年级的升高,奥数的难度也逐渐加大。
下面就来看一些小学五年级的奥数题。
1. 鸡兔同笼问题一个笼子里关着鸡和兔,它们的头和脚的数量加起来共有50个。
问笼子里有几只兔子,几只鸡?解析:设兔子的数量为x,鸡的数量为y。
由题可知,2x+4y=50,化简可得x+2y=25。
因为一定存在整数解,所以我们可以从0开始枚举y的值,然后求解x的值,如果x是整数,那么就是一个解。
例如,当y=1时,x=23,此时笼子里有1只兔子,23只鸡。
当y=2时,x=21,此时笼子里有2只兔子,21只鸡。
当y=3时,x=19,此时笼子里有3只兔子,19只鸡……以此类推,直到找到所有的解。
2. 工程问题两个工人一起修路,需要5天时间才能修完;其中一个工人单独修路需要10天时间,问另一个工人单独修路需要多少天?解析:设两个工人单独修路所需要的时间分别为x和y,由题意可知,两个工人一起修路的效率是一样的。
所以可以列出下面的方程式:5/(1/x+1/y) = 5化简可得2x+2y=xy,移项可得xy-2x-2y=0,变形可得(x-2)(y-2)=4,因为要求的是整数解,所以只需枚举4的因数即可求解。
当4=1*4时,可得x=6,y=3;当4=2*2时,可得x=4,y=4。
所以另一位工人单独修路需要4天的时间。
3. 蒙提霍尔问题蒙提霍尔问题又称“三门问题”,是一个经典的悖论。
题目如下:有三扇门,其中一扇门后面是一辆汽车,另外两扇门后面是山羊。
你选择其中一扇门,然后主持人打开其中一扇门,露出其后面的山羊,问你是否要更换选择,以获得汽车的机会更大。
解析:这个问题的解法有两种,一种是基于概率的统计学方法,另一种是基于直觉的感性理解。
基于概率的统计学方法:首先,根据条件概率公式,汽车出现在你选择的门后面的概率是1/3。
而有两扇门没被选择,每扇门后面都是山羊的概率是2/3。
而当主持人打开一扇门,露出其中的山羊后,这个条件发生时,未被选择的门后面山羊的概率不变,仍然是2/3。
苏教版小学五年级经典奥数题及答案
苏教版小学五年级经典奥数题及答案一、拓展提优试题1.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.2.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.3.先将从1开始的自然数排成一列:123456789101112131415…然后按一定规律分组:1,23,456,7891,01112,131415,…在分组后的数中,有一个十位数,这个十位数是.4.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.5.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.6.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)7.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.8.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.9.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.10.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.11.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.12.观察下表中的数的规律,可知第8行中,从左向右第5个数是.13.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.14.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.15.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.【参考答案】一、拓展提优试题1.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.2.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.3.解:方法一:据分组律可得:从131415向后为1617181,92021222,324252627,2829303132(十位数),…;方法二:位数之前应该有1+2+3+…+9=45位.1位数有9位,10﹣19有20位,20﹣27有16位,所以十位数的开头应为28,为2829303132.故填:2829303132.4.解:设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c…c,即b×c+c=47,c×(b+1 )=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.故答案为:46,1.5.解:由于甲的速度是乙的速度的1.5倍所以两人速度比为:1.5:1=3:2,所以两人在E点相遇时,甲行了:(100×4)×=240(米);乙行了:400﹣240=160(米);则EC=240﹣100×2=40(米),DE=160﹣100=60(米);三角形ADE的面积比三角形BCE的面积大:60×100÷2﹣40×100÷2=3000﹣2000,=1000(平方米).故答案为:1000.6.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.7.设大合x盒,小盒y盒,依题意有方程:85.6x+46.8(9﹣x)=654解方程得x=6,9﹣6=3.所以大合6盒,小盒3盒,共有32×6+15×3=237块.答:可得点心237块.8.解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.9.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.10.解:(84×10﹣93)÷(10﹣1)=747÷9=83(分)答:其他9个人的平均分是83分.故答案为:83.11.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.12.解:由图可知,第1行的数为1,第2行的最后一个数为2×2=4,第3行的最后一个数为3×3=9,…所以第7行最后一个数为7×7=49,则第8行第1个数为49+1=50,第5个数为50+4=54,故答案为:54.13.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12014.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.15.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
112÷14=8天
假设都是晴天:8×20=160(次)160-112=48(次)20-12=8(次)
雨天:48÷8=6(天)晴天:8-6=2(天)
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
(290-250)÷0.05=800千克
假设都是小西瓜:800×0.3=240元290-240=50元0.4-0.3=0.1元
大西瓜:50÷0.1=500千克小西瓜:800-500=300千克
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?152÷2=76分16÷2=8分乙:76-8=68分甲:76+8=84分
乙:假设都投中:10×10=100分100-68=32分10+6=16分
脱靶:32÷16=2次投中:10-2=8次
甲:假设都投中:10×10=100分100-84=16分10+6=16分
脱靶:16÷16=1次投中:10-1=9次
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
假设都答对:20×5=100分100-86=14分5+2=7分
答错:14÷7=2道答对:20-2=18道
1.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地。
每小时60千米的速度行驶了几小时?
15+60=75千米
假设每小时都是60千米:7×60=420千米465-420=45千米75-60=15千米
每小时75千米:45÷15=3小时每小时60千米:7-3=4小时
2.笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚。
笼中原有兔、鸡各多少只?
100+92=192只192÷(4+2)=32只
假设都是鸡:32×2=64只100-64=36只4-2=2只
兔:36÷2=18只鸡:32-18=14只
3.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀。
蝉有6条腿和1对翅膀。
现在这三种小虫共18只,有118条腿和20对翅膀,每种小虫各几只?
(6+6)÷2=6条
假设都是蜘蛛:18×8=144条144-118=26条8-6=2条
蜻蜓和蝉:26÷2=13只蜘蛛:18-13=5只
假设都是蜻蜓:13×2=26对26-20=6对2-1=1对
蝉:6÷1=6只蜻蜓:13-6=7只
4.学雷锋活动中,同学们共做好事240件,大同学每人做好事8件,小同学每人做好事3件,他们平均每人做好事6件。
参加这次活动的小同学有多少人?240÷6=40人
假设都是大同学:40×8=320件320-240=80件8-3=5件
小同学:80÷5=16人大同学:40-16=24人
5.某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?
42÷2=21人21×3-21×2=21棵56-21=35棵35÷(3+2)=7人
男生:21+7=28人女生:21-7=14人。