西城区2018-2019学年第二学期期末八年级数学试题

合集下载

北京西城初二年级下学期期末考试数学试题 含答案

北京西城初二年级下学期期末考试数学试题 含答案

北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 函数11y x =+中,自变量x 的取值范围是( ).A. x ≠1-B. x ≠1C. x >1-D. x ≥1- 2. 一次函数+3y x =的图象不经过...的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,30OCB ∠=︒,如果OE =2,那么对角线BD 的长为( ).A. 4C. 8D. 105. 如果关于x 的方程220x x k --=有两个相等的实数根,那么以下结论正确的是( ).A. 1k =-B. 1k =C. k >1-D. k >16. 下列命题中,不正确...的是( ). A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分7. 北京市6月某日10个区县的最高气温如下表:(单位:℃)则这10个区县该日最高气温的中位数是( ).A. 32 C. 308. 如图,在Rt△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A ′B ′C ,使得点A ′恰好落在AB 边上,则α等于( ).A. 150°B. 90°C. 60°D. 30°9. 教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为万人,而2016年各类留学回国人员总数为万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x,那么根据题意可列出关于x的方程为().A. 36.48(1)=43.25xx++ B. 36.48(12)=43.25C. 2x36.48(1)=43.25-36.48(1)=43.25+ D. 2x路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是().二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 如果关于x的方程2320-++=有一个根为0,那么m的值等于 .x x m12. 如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于2cm.13. 在平面直角坐标系xOy中,直线24=-+与x轴的交点坐标为,y x与y轴的交点坐标为,与坐标轴所围成的三角形的面积等于 .14.如图,在Y ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果1=70ADC∠∠,那么=∠°.ABC∠︒,=3215.如图,函数2=-的图象交于点P,那y kx=+与函数1y x b么点P的坐标为_______,关于x的不等式12->+的解集kx x b是.16. 写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,2)-的点. 你写出的解析式为 .17. 如图,正方形ABCD的边长为2cm,正方形AEFG的边长为1cm.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为_______cm.18. 利用勾股定理可以在数轴上画出表示图,并保留画图痕迹:第一步:(计算)=,使其中a,b都为正整数.你取的正整数a=____,b= ;以第一步中你所取的正整数a,b为两条直第二步:∠︒,则斜边OFOEF=90请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)M,并描述第三步:第三步...的画图步骤:.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. 解方程:2610--=.x x20.如图,在四边形ABCD中,AD21.《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰好能出去.解决下列问题:(1)示意图中,线段CE的长为尺,线段DF的长为尺;(2)求户斜多长.22. 2016年9月开始,初二年级的同学们陆续到北京农业职业技术学院进行了为期一周的学农教育活动.丰富的课程开阔了同学们的视野,其中“酸奶的制作”课程深受同学们喜爱.学农1班和学农2班的同学们经历“煮奶—降温—发酵—后熟”四步,制作了“凝固型”酸奶.现每班随机抽取10杯酸奶做样本(每杯100克),记录制作时所添加蔗糖克数如表1、表2所示.表 1 学农1班所抽取酸奶添加蔗糖克数统计表(单位:克)表 2 学农2班所抽取酸奶添加蔗糖克数统计表(单位:克)据研究发现,若蔗糖含量在5%~8%,即100克酸奶中,含糖5~8克的酸奶口感最佳.两班所抽取酸奶的相关统计数据如表3所示.表3 两班所抽取酸奶的统计数据表根据以上材料回答问题:(1)表3中,x=:(2)根据以上信息,你认为哪个学农班的同学制作的酸奶整体..口感较优?请说明理由.23. (1)阅读以下内容并回答问题:小雯用这个方法进行了尝试,点(1,2)A -向上平移3个单位后的对应点A '的坐标为 ,过点A '的直线的解析式为 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线2y x =-向右平移1个单位,平移后直线的解析式为 ,另外直接将直线2y x =-向 (填“上”或“下”)平移 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy 内的图形M ,将图形M 上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M 的一次..“斜平移”. 求将直线2y x =-进行两次..“斜平移”后得到的直线的解析式.(3)解:24.(1)画图-连线-写依据:先分别完成以下画图..(不要求尺规作图),再与判断四边形DEMN形状的相应结论连线..,并写出判定依据(只将最后一步判定特殊平行..........四边形的依据......填在横线上).①如图1,在矩形ABEN中,D为对角线的交点,过点N画直线NP∥DE,过点E画直线EQ∥DN,NP与EQ的交点为点M,得到四边形DEMN;②如图2,在菱形ABFG中,顺次连接四边AB,BF,FG,GA的中点D,E,M,N,得到四边形DEMN.(2)请从图1、图2的结论中选择一个进行证明.证明:25. 如图所示,在平面直角坐标系x O y中,B,C两点的坐标分别为(4,0)B,(4,4)C,CD⊥y轴于点D,直线l 经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出45∠=︒,从而证明结论.CFB思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.……请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为.(2)①补全图形.②直线BF与直线l的位置关系是.③证明:北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学 附 加 题试卷满分:20分一、填空题(本题6分)1. 如图,在平面直角坐标系xOy 中,点1(2,2)A 在直线y x =上,过点1A 作11A B ∥y 轴,交直线12y x =于点1B ,以1A 为直角顶点,11A B 为直角边,在11A B 的右侧作等腰直角三角形111A B C ;再过点1C 作22A B ∥y轴,分别交直线y x =和12y x =于2A ,2B 两点,以2A 为直角顶点,22A B 为直角边,在22A B 的右侧作等腰直角三角形222A B C ,…,按此规律进行下去,点1C 的横坐标为 ,点2C 的横坐标为 ,点 n C 的横坐标为 .(用含n 的式子表示,n 为正整数)二、操作题(本题6分)2.如图,在由边长都为1个单位长度的小正方形组成的66⨯正方形网格中,点A ,B ,P 都在格点上.请画出以AB 为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件: 条件1:点P 到四边形的两个顶点的距离相等; 条件2:点P 在四边形的内部或其边上; 条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个Y ABCD , 使点P 在所画四边形的内部; (2)在图②中画出符合条件的一个四边形ABCD ,使点P 在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.三、解答题(本题8分)3.如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点.作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由△≌△,及B(m, n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.解:①②北京市西城区2016-2017学年度第二学期期末试卷八年级数学参考答案及评分标准一、选择题(本题共30分,每小题3分)题号12345678910答案A D B C A B A C C D二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 2-. 12. 12. 13. (2,0),(0,4),4.(各1分)14. 60. 15.(1,2)-(2分),x<1(1分).16. 答案不唯一,如2=-等.(只满足一个条件的y x得2分)17. 2.18. 第一步:a= 4 ,b= 2 (或a= 2 ,b= 4 );…………2分第二步:如图1. ……………………………………… 3分第三步:如图1,在数轴上画出点M. ………………………………………………………4分第三步的画图步骤:以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M. ………………………………………………………………………………………… 5分说明:其他正确图形相应给分,如2OE =,4EF =.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. (本题5分) 解:1a =,6b =-,1c =-. …………………………………………………………………… 1分224(6)41(1)40b ac ∆=-=--⨯⨯-=>0. …………………………………………………2分 方程有两个不相等的实数根x = ……………………………………………………………………… 3分(6)6322--±±===所以原方程的根为13x =+,23x =-………………………………………… 5分20.(本题5分)解:(1)如图2.∵ △ABC 中,AB=10,BC=6,AC =8,∴222AC BC AB. ……………………… 1分+=∴△ABC是直角三角形,=90∠︒.……2分ACB(2)∵AD==90∠∠︒…………………………………………………………… 3分CAD ACB∵在Rt△ACD中,=90∠︒,AC=AD=8,CAD∴CD=…………………………………………………………… 4分=………… 5分21.(本题7分)解:(1)4,2.…………………………………………………………………………………2分(2)设户斜x尺.…………………………………… 3分则图3中BD=x,BC BE CE x=-=-,(x>4)4=-=-.(x>2)2CD CF DF x又在Rt△BCD中,=90∠︒,BCD由勾股定理得222BC CD BD.+=所以222(4)+(2)=x x x--.………………… 4分整理,得212200x x-+=.因式分解,得(10)(2)=0x x--.解得110x=,22x=.……………………………………………………………… 5分因为x> 4 且x>2,所以2x=舍去,10x=.…………………………………… 6分答:户斜为10尺.…………………………………………………………………… 7分22.(本题5分)解:(1)6.…………………………………………………………………………………………1分(2)学农2班的同学制作的酸奶整体口感较优.………………………………………… 2分理由如下:所抽取的样本中,两个学农班酸奶口感最佳的杯数一样,每杯酸奶中所添加蔗糖克数的平均值基本相同,学农2班的方差较小,更为稳定.……………………5分23.(本题7分)解:(1)(1,1),y x=-+.…………………………………………………………………… 2分23(2)22=-+,上,2.(各1y x 分)…………………………………………………………5分(3)直线2=-上的点(1,2)A-进行一次“斜平移”后的对应点的坐标为y x(2,1),进行两次“斜平移”后的对应点的坐标为(3,4).设经过两次“斜平移”后得到的直线的解析式为2=-+.y x b 将(3,4)点的坐标代入,得234-⨯+=.b解得10b=.所以两次“斜平移”后得到的直线的解析式为210=-+.y x……………………… 7分说明:其他正确解法相应给分.24.(本题7分)解:(1)见图4,图5,连线、依据略. ……………………………5分(两个画图各1分,连线1分,两个依据各1分,所写依据的答案不唯一)(2)①如图4.∵ NP ∥DE ,EQ ∥DN ,NP 与EQ 的交点为点M ,∴ 四边形DEMN 为平行四边形.∵ D 为矩形ABEN 对角线的交点,∴ AE=BN ,12DE AE =,12DN BN =.∴ DE= DN .∴ 平行四边形DEMN 是菱形.……………………………………………………… 7分②如图6,连接AF ,BG ,记交点为H .∵ D ,N 两点分别为AB ,GA 边的中点,∴ DN ∥BG ,12DN BG =.同理,EM ∥BG ,12EM BG =,DE ∥AF ,12DE AF =.∴ DN ∥EM ,DN =EM .∴ 四边形DEMN 为平行四边形.∵ 四边形ABFG 是菱形,∴ AF ⊥BG .∴90∠=︒.AHB∴118090∠=︒-∠=︒.AHB∴2180190∠=︒-∠=︒.∴平行四边形DEMN是矩形. ………………………………………………………7分25.(本题8分)解:(1)(0,4).……………………………………………………………………………………1分(2)①补全图形见图7.……………………………………………………………………… 2分②BF⊥直线l.…………………………………………………………………………… 3分③法1:证明:如图8,作CM⊥CF,交直线l于点M.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC DC OD∵CE⊥直线l,CM⊥CF,45∠=︒,ECF可得△CEF,△CEM 为等腰直角三角形,=45∠∠=︒,CMD CFECF=CM.①∵=90∠︒-∠,DCM DCFBCF DCF∠︒-∠,=90∴=∠∠.②BCF DCM又∵CB=CD,③∴△CBF≌△CDM.…………………………………………………………6分∴∠∠=︒.……………………………………………………7分CFB CMD=45∴=90∠∠+∠=︒.BFE CFB CFE∴BF⊥直线l.………………………………………………………………8分法2:证明:如图9,作BN⊥CE,交直线CE于点N.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC CD OD∵CE⊥直线l,BN⊥CE,∴90BNC CED∠=∠=︒.①∴1390∠+∠=︒.∠+∠=︒,2390∴12∠=∠.②又∵CB=DC,③∴△BCN≌△CDE.………………6分∴BN= CE.又∵45∠=︒,ECF可得△CEF为等腰直角三角形,EF = CE.∴BN= EF.又∵180BNE NED∠+∠=︒,∴BN∥FE.∴四边形BFEN为平行四边形.又∵90CEF∠=︒,∴平行四边形BFEN为矩形.…………………………………………………7分∴=90BFE∠︒.∴BF⊥直线l.……………………………………………………………… 8分北京市西城区2016-2017学年度第二学期期末试卷八年级数学附加题参考答案及评分标准一、填空题(本题6分)1.解:3,92,322n⎛⎫⨯ ⎪⎝⎭.(各2分)二、操作题(本题6分)2. 解:(1)答案不唯一,如:或其他.(2)答案不唯一,如:或其他.(3)说明:每图2分,答案不唯一时,其他正确答案相应给分.三、解答题(本题8分)3.解:(1)如图 1.由△OFF≌1△1BOB ,及B (m, n )可得点F 的坐标为(,)n m -,同理可得点D 的坐标为(,)a n a m +-. (全等1分,两个坐标各1分)…………………3分(2)①设点M 的坐标为(,)M x y .∵ 点M 为线段FD 的中点,(,)F n m -,(,)D a n a m +-,可得点M 的坐标为(,)22a a . …………………………………………………… 5分 ∴ ,2.2a x a y ⎧=⎪⎪⎨⎪=⎪⎩消去a ,得y x =.所以,当点A 在x 轴的正半轴上指定范围内运动时,相应的点M 在运动时总落在直线y x =上,即点M 总落在函数y x =的图象上. ………………………6分②如图2,当点A 在x 轴的正半轴上运动且满足2≤a ≤8时,点A 运动的路径为线段12A A ,其中1(2,0)A ,2(8,0)A ,相应地,点M 所经过的路径为直线y x =上的一条线段12M M ,其中1(1,1)M ,2(4,4)M .……………………………… 7分 而12M M =∴ 点M 所经过的路径的长为……………………………………………8分。

山西省2018-2019学年第二学期八年级阶段二质量评估·数学(北师版)·试题+答案

山西省2018-2019学年第二学期八年级阶段二质量评估·数学(北师版)·试题+答案

21.(本题 8 分)牛奶是最古老的天然饮料之一,被誉为“白色血液”,对人体的重要性可想 而知,现已成为国家营养餐计划备选食品之一.为推行国家营养餐计划,某乳品公司向 某营养餐中心运输一批牛奶,由铁路运输每千克只需运费 0.58 元;由公路运输,每千 克需运费 0.28 元,还需其他费用 600 元.请探究选用哪种运输方式所需费用较少?
20. 解:(1)如图所示,直线 EF 即为线段 BD 的垂直平分线. 333333333 3 分
(2)DE⊥DP. 33333333333333333333333333 4 分 理由如下:∵PD=PA, ∴∠A=∠PDA. 33333333333333333333333333 5 分 ∵EF 是 BD 的垂直平分线, ∴BE=DE. 33333333333333333333333333333 6 分 ∴∠B=∠EDB. 33333333333333333333333333 7 分 ∵∠C=90°, ∴∠A+∠B=90°,∴∠PDA+∠EDB=90°. 3333333333333333 8 分 ∴∠PDE=180°-∠PDA-∠EDB=90°. 33333333333333333 9 分 ∴DE⊥DP. 333333333333333333333333333 10 分
22.( % 本题 11 分)探索与实践: 氢动力汽车是一种真正实现零排放的交通工具,排放出的是纯净水,其具有无污染,零 排放,储量丰富等优势,因此,氢动力汽车是传统汽车最理想的替代方案.某实验团队 进行氢动力汽车实验,在一条笔直的公路上有 A,B 两地,小张驾驶氢动力汽车从 B 地 去 A 地然后立即原路返回到 B 地,小陈驾驶观察车从 A 地驶向 B 地.如图是氢动力汽 车、观察车离 B 地的距离 y(km)和行驶时间 x(h)之间的函数图象,请根据图象回答下 列问题: (1)A,B 两地的距离是 _______ km,小陈驾驶观察车行驶的速度是 _______ km/h; (2)当小张驾驶氢动力汽车从 A 地原路返回 B 地时,有一段时间小陈驾驶的观察车与 氢动力汽车之间的距离不超过 30 千米,请探究此时行驶时间 x 在哪一范围内?

2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)

2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)

2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x 2+2x +k ﹣4=0有实数根 (1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+6k ﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB =AD =5m ,∠A =60°,BC =12m ,∠ABC =150°小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.2018-2019学年北京市海淀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.4【分析】先把方程化为x2=4,方程两边开平方得到x=±=±2,即可得到方程的两根.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;2.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.10【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB===10,故选:D.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.【点评】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【解答】解:显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;故选:C.【点评】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和5【分析】根据平均数和众数的概念求解.【解答】解:这组数据的平均数是:(2+6+4+5+4+3)=4;∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.6.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=1,x2﹣8x+16=17,(x﹣4)2=17.故选:D.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小【分析】先根据直线y=x+2判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=x+2,k=>0,∴y随x的增大而增大,又∵﹣3<1,∴y1<y2.故选:A.【点评】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y 随x的增大而增大;当k<0,y随x的增大而减小.8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.2【分析】利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.【解答】解:∵正方形ABCD的边长为,∴OB=OC=BC=×=1,OB⊥OC,∵CE=OC,∴OE=2,在Rt△OBE中,BE==.故选:C.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.9.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.14【分析】经过观察5组自变量和相应的函数值得(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【解答】解:∵(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.10.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②【分析】根据条形统计图中的信息对4个结论矩形判断即可.【解答】解:①2012年到2018年,我国博物馆参观人数持续增,正确;②10.08×(1+)=10.45,故2019年末我国博物馆参观人数估计将达到10.45亿人次;故错误;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;正确;④设平均年增长率为x,则8.50(1+x)2=10.08,解得:x=0.0889,故2016年到2018年,我国博物馆参观人数平均年增长率是8.89%,故错误;故选:A.【点评】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=110°.【分析】直接利用平行四边形的对角相等即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=110°.故答案为:110.【点评】此题主要考查了平行四边形的性质,正确得出对角相等是解题关键.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是甲.【分析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【解答】解:甲==8,乙==8,=[(8﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2]=0.4,=[(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点评】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=9.【分析】利用判别式的意义得到△=62﹣4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【解答】解:△=62﹣4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=﹣6,所以m=9满足条件.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是南偏东30°.【分析】由题意得:P与O重合,得出OA2+OB2=AB2,由勾股定理的逆定理得出△PAB 是直角三角形,∠AOB=90°,求出∠COP=30°,即可得出答案.【解答】解:由题意得:P与O重合,如图所示:OA=12nmile,OB=16nmile,AB=20nmile,∵122+162=202,∴OA2+OB2=AB2,∴△PAB是直角三角形,∴∠AOB=90°,∵∠DOA=60°,∴∠COP=180°﹣90°﹣60°=30°,∴“长峰”号航行的方向是南偏东30°,故答案为:南偏东30°.【点评】此题主要考查了直角三角形的判定、勾股定理的逆定理及方向角的理解及运用.利用勾股定理的逆定理得出△PAB为直角三角形是解题的关键.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为(38﹣x)2=38x.【分析】设AD为xm,根据“矩形的长边的平方等于短边与其周长一半的积”列出列出方程即可.【解答】解:设AD的长为x米,则AB的长为(38﹣x)m,根据题意得:(38﹣x)2=38x,故答案为:(38﹣x)2=38x.【点评】考查了由实际问题抽象出一元二次方程的知识,解题的关键是表示出另一边的长,难度不大.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为±.【分析】根据菱形的性质知AB=5,由一次函数图象的性质和两点间的距离公式解答.【解答】解:令y=0,则x=﹣,即A(﹣,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,∴AB=5,则AB2=25.∴(﹣)2+32=25.解得k=±.故答案是:±.【点评】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=5.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)【分析】(1)根据配方法的步骤,可得答案;(2)根据公式法,可得答案.【解答】解:(1)移项,得x2+2x=3配方,得x2+2x+1=3+1即(x+1)2=3开方得x+1=±2,x1=1,x2=﹣3;(2)a=2,b=5,c=﹣1,△=b2﹣4ac=25﹣4×2×(﹣1)=33>0,x==,x1=,x2=.【点评】本题考查了解一元二次方程,配方得出完全平方公式是解题关键.18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.【分析】(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.【解答】解:(1)∵函数y=kx+b的图象与直线y=2x平行,∴k=2,又∵函数y=2x+b的图象经过点A(1,6),∴6=2+b,解得b=4,∴一次函数的解析式为y=2x+4;(2)在y=2x+4中,令x=0,则y=4;令y=0,则x=﹣2;∴一次函数y=kx+b的图象与坐标轴交于(0,4)和(﹣2,0),∴一次函数y=kx+b的图象与坐标轴围成的三角形的面积为×2×4=4.【点评】本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形【点评】本题考查作图﹣复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.【分析】(1)根据判别式的意义得到△=22﹣4(k﹣4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k﹣5=2(k2+3k)﹣5,然后利用整体代入的方法计算.【解答】解:(1)△=22﹣4(k﹣4)≥0,解得k≤5;(2)把x=k代入方程得k2+2k+k﹣4=0,即k2+3k=4,所以2k2+6k﹣5=2(k2+3k)﹣5=2×4﹣5=3.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意小明的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵BC=12m,BD=5m,∴DC ==13(m ),答:CD 的长度为13m .【点评】此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD 是等边三角形是解题关键.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级 平均数 中位数 众数 方差 七年级 84.2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题 (1)a =8 b = 88.5 ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有180,280人.【分析】(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,(2)从中位数、众数、方差进行分析,调查结论,(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.【解答】解:(1)a=20﹣1﹣10﹣1=8,b=(88+89)÷2=88.5故答案为:8,88.5.(2)八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定.(3)七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,故答案为:180,280.【点评】考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【点评】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.【分析】(1)把A点坐标代入y=x﹣2中,求得m的值,再把求得的A点坐标代入y =kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN ≤2PM,列出n的不等式,再求得结果.【解答】解:(1)把A(3,m)代入y=x﹣2中,得m=3﹣2=1,∴A(3,1),把A(3,1)代入y=kx+7中,得1=3k+7,解得,k=﹣2;(2)由(1)知,直线y=kx+7为y=﹣2x+7,根据题意,作出草图如下:∵点P(n,n),∴M(n+2,n),N(n,﹣2n+7),∴PM=2,PN=|3n﹣7|,∵PN≤2PM,∴|3n﹣7|≤2×2,∴1≤n≤,∵P与N不重合,∴n≠﹣2n+7,∴n≠,综上,1≤n≤,且n≠【点评】本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.【分析】(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【解答】解:(1)①补全图形如图所示:②结论:DE=BC.理由:如图一中,连接OD交BC于F,连接AF.∵OC∥BD,∴∠FCO=∠FBD,∵∠CFO=∠BFD,OC=BD,∴△FCO≌△FBD(AAS),∴BF=CF,∵OA=AE,∵DE=2AF,∵∠BAC=90°,BF=CF,∴BC=2AF,∴DE=BC.(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°﹣15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

北京市西城区2019—2020学年度八年级第二学期期末试卷(含答案)

北京市西城区2019—2020学年度八年级第二学期期末试卷(含答案)

北京市西城区2019—2020学年度第二学期期末试卷一、基础·运用(共14分)中国人使用筷子,是一桩值得骄傲和推崇的事。

一双筷子,蕴含着中国人独特的文明气息。

初二语文组开展了“筷子的前世今生——探寻筷子文化”主题学习活动,请你完成下列任务。

1.下面是一位同学搜集的材料。

阅读材料,完成(1)-(4)题。

(共8分) 中国是筷子的发源地,中国人用筷子进餐至少有3000年的历史。

筷子在世界各受到我国影响,筷子文化也fú( )射到日本、越南、韩国和朝鲜等国家。

筷子最初叫“箸(zh ù)”或“梜(ji ā)”,到了宋代才开始有“筷子”的称呼。

古人讲究忌讳,因“箸”与“住”谐音, 【甲】 听着有“停滞不前”的意思, 【乙】 故谓不吉利之语,特别是对于行船的人更是讳言,所以古人便反其意改“住”为“快”;加之筷子多以竹子为材料,所以又在“快”字上冠以“竹”字头而名“筷”,寄寓了人们对美好生活的向往。

民以食为天��轻便灵巧的筷子被人们餐餐使用,筷子文化逐渐融化在中国人的血液里。

中央电视台曾拍过一个主题�为��筷子��的春节公益宣传片,通过八个不同地域的家庭在除夕使用筷子的故事,揭示了筷子所蕴含的丰富的传统文化和中国人特有的�r én q ín ɡ sh ì ɡù( ),令人感动。

�方寸之中有乾坤。

小小的筷子承载着中华民族几千年来深厚的文化内涵,是华夏其实/相辅相成)。

(1)根据拼音依次所填的汉字和给加点字注音全都正确的一项是(2分)A .幅射 人情世故 z àiB .辐射 人情是故 z ǎiC .辐射 人情世故 z àiD .幅射 人情是故 z ǎi(2)结合上下文,文中所应填入成语正确的一项是(2分)A.独树一帜相辅相成 B.叹为观止相辅相成C.叹为观止名副其实 D.独树一帜名副其实(3)文中方框处�依次填入标点全都正确的一�项是(2分)A.句号引号 B.冒号引号C.句号书名号 D.冒号书名号(4)下面语句是从文中第二段抽取出来的,它在文中原本的位置是(2分)不符合人们祈望兴旺发达的民族心理,【甲】【乙】2.下列有关“筷子”的表述中没有语病的一项是(2分)A.研究者们之所以认为筷子起源于中国,是因为在安阳殷墟曾出土了6支青铜箸头的原因。

北京市西城区2021-2022学年八年级下学期期末数学试题(试题+答案)

北京市西城区2021-2022学年八年级下学期期末数学试题(试题+答案)

学年度第二学期期末试卷八年级数学第一部分选择题一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1.下列各式中是最简二次根式的是()A.B.C.D.2.如图,BD 是ABCD 的对角线,如果80ABC ∠=︒,25ADB ∠=︒,则BDC ∠等于()A.65°B.55°C.45°D.25°3.下列计算,正确的是()A.2=- B.= C.3-= D.1=4.下列命题中,正确的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.两组邻边分别相等的四边形是平行四边形C.两组对边分别平行的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形5.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差6.在△ABC 中,A ∠,B Ð,C ∠的对边分别记为a ,b ,c ,下列条件中,能判定△ABC 是直角三角形的是()A.()()2a cbc b =-+ B.1a =,2b =,3c =C.A C∠=∠ D.::3:4:5A B C ∠∠∠=11223 ⎪⎝⎭,则关于x,y的方程组22y k x b⎨=+⎩,的解为()A.2,32xy⎧=⎪⎨⎪=-⎩B.2,23xy=-⎧⎪⎨=⎪⎩C.2,32xy⎧=⎪⎨⎪=⎩D.2,23xy=-⎧⎪⎨=-⎪⎩8.点P从某四边形的一个顶点A出发,沿着该四边形的边逆时针匀速运动一周.设点P运动的时间为x,点P与该四边形对角线交点的距离为y,表示y与x的函数关系的大致图象如图所示,则该四边形可能是()A. B. C. D.第二部分非选择题二、填空题(本题共16分,每小题2分)9.在实数范围内有意义,则x的取值范围是______.10.如图,在Rt ABC中,∠ACB=90°,点D是AB的中点,AC=6,BC=8,则CD=______________.11.将函数2y x=的图象沿y轴向下平移3个单位长度后,所得图象对应的函数表达式为______.12.如图,在△ABC中,90C∠=︒,30A∠=︒,点M,N分别为AC,BC的中点,连接MN.若2BC=,则MN的长度是______.13.在平面直角坐标系xOy 中,菱形ABCD 的四个顶点都在坐标轴上.若()4,0A -,()0,3B -,则菱形ABCD的面积是______.14.射击运动员小东10次射击的成绩(单位:环):7.5,8,7.5,8.5,9,7,7,10,8.5,8.这10次成绩的平均数是8.1,方差是0.79,如果小东再射击一次,成绩为10环,则小东这11次成绩的方差______0.79.(填“大于”、“等于”或“小于”)15.关于函数121y x =-和函数()20y x m m =-+>,有以下结论:①当01x <<时,1y 的取值范围是111y -<<②2y 随x 的增大而增大③函数1y 的图像与函数2y 的图像的交点一定在第一象限④若点(),2a -在函数1y 的图像上,点1,2b ⎛⎫⎪⎝⎭在函数2y 的图像上,则a b <其中所有正确结论的序号是______.16.小明与小亮两人约定周六去博物馆参观学习.两人同时出发,小明乘车从甲地途径乙地到博物馆,小亮骑自行车从乙地到博物馆.已知甲地、乙地和博物馆在一条直线上,右图是两人分别与乙地的距离S (单位:km )与时间t (单位:min )的函数图像,在小明到达博物馆前,当两人相距1km 时,t 的值是______.三、解答题(本题共68分)17.计算:(12463;(2))313118+-+18.已知:如图,在Rt ABC 中,90ACB ∠=︒.求作:矩形ABCD .作法:①作线段AB 的垂直平分线交AB 于点O .②作射线CO .③以点O 为圆心,线段CO 长为半径画弧,交射线CO 于点D .④连接AD ,BD ,则四边形ACBD 即为所求作的矩形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵OA OB =,①OD=∴四边形ACBD 是平行四边形.(②)(填推理的依据)∵90ACB ∠=︒,∴四边形ACBD 是矩形.(③)(填推理的依据)19.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图像经过点()3,0和()3,2--.(1)求该一次函数的解析式;(2)在所给的坐标系中画出该一次函数图像,并求它的图像与坐标轴围成的三角形的面积.20.如图,矩形ABCD 的对角线交于点O ,且DE AC ∥,CE BD ∥.(1)求证:四边形OCED 是菱形;(2)连接BE .若2AB =,60BAC ∠=︒,求BE 的长.21.在平面直角坐标系xOy 中,一次函数22y x =-+图像与x 轴、y 轴分别相交于点A 和点B .(1)求A ,B 两点的坐标;(2)点C 在x 轴上,若△ABC 是以边AB 为腰的等腰三角形,求点C 的横坐标.某校为了解该校七年级和八年级学生线上数学学习的情况,从这两个年级的学生中,各随机抽取了名学生进行有关测试,获得了他们的成绩(百分制,且成绩均为整数),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a .该校抽取的八年级学生测试成绩的数据的频数分布直方图如下(数据分为4组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤):b .该校抽取的八年级学生测试成绩在7080x ≤<这一组的数据是:70707474757575767778c .该校抽取的七、八年级学生测试成绩的数据的平均数、中位数、众数如下:平均数中位数众数七年级7879.579八年级79m75根据以上信息,回答下列问题:(1)写出表中m 的值;(2)此次测试成绩80分及80分以上为优秀.①记该校抽取的七年级学生中成绩优秀的人数是1n ,抽取的八年级学生中成绩优秀的人数为2n ,比较1n ,2n 的大小,并说明理由;②若该校七年级有200名学生,八年级有180名学生,假设该校七、八年级学生全部参加此次测试,估计该校七年级和八年级学生中成绩优秀的人数共有多少人.23.对于函数y x b =+,小明探究了它的图像及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是______;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是______,n 的值是______;x…3-2-1-0123...y x =...3210123 (1)y x =+…4m21234…2y x =-…1n2-1-01…(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图像:(4)结合函数y x =,1y x =+,2y x =-的图像,写出函数y x b =+的一条性质:______;(5)点()11,x y 和点()22,x y 都在函数y x b =+的图像上,当120x x >时,若总有12y y <,结合函数图像,直接写出1x 和2x 的大小关系.24.如图,在正方形ABCD 中,P 为边BC 上一点(点P 不与点B ,C 重合),连接DP ,作点A 关于直线DP 的对称点E ,连接AE 分别交DP ,DC 于点G ,H .过点C 作CF AE ⊥于点F ,连接DE .(1)依题意补全图形;(2)求证:CF EF =;(3)连接FB ,FD ,用等式表示线段FA ,FB ,FD 之间的数量关系,并证明.25.在平面直角坐标系xOy 中,直线():40l y kx k =+≠与y 轴交于点A ,点B 和点C 的坐标分别是()1,m y 和()22,m y +.(1)当120y y ==时,△ABC 的面积是______;(2)若点B 和点C 都在直线l 上,当BC ≤时,k 的取值范围是______.26.对于定点P 和图形W ,给出如下定义:若图形W 上存在两个不同的点M ,N ,使得四边形PMQN 是平行四边形,则称点Q 是点P 关于图形W 的衍生点.特别地,当平行四边形PMQN 的面积最大时,称点Q 是点P 关于图形W 的最佳衍生点.在平面直角坐标系xOy 中,点()0,1A ,()1,1B ,()0,2C ,()0,3D ,3,22E ⎛⎫ ⎪⎝⎭.(1)点C ,D ,E 中,点O 关于线段AB 的衍生点是______;(2)将点O 关于线段AB 的最佳衍生点记为T ,①直接写出点T 的坐标;②若直线y x b =-+上存在点O 关于四边形ABTC 的衍生点,求b 的取值范围.学年度第二学期期末试卷八年级数学第一部分选择题一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.【1题答案】【答案】D 【2题答案】【答案】B 【3题答案】【答案】D 【4题答案】【答案】C 【5题答案】【答案】B 【6题答案】【答案】A 【7题答案】【答案】A 【8题答案】【答案】B第二部分非选择题二、填空题(本题共16分,每小题2分)【9题答案】【答案】1x ≥-【10题答案】【答案】5【11题答案】【答案】23y x =-【12题答案】【13题答案】【答案】24【14题答案】【答案】大于【15题答案】【答案】①④【16题答案】【答案】12或18三、解答题(本题共68分)【17题答案】【答案】(1)(2)2+【18题答案】【答案】(1)见解析(2)①OC②对角线互相平分的四边形是平行四边形③有一个角是直角的平行四边形是矩形【19题答案】【答案】(1)113y x =-(2)画图见解析;32【20题答案】【答案】(1)证明见解析;(2)【21题答案】【答案】(1)()1,0;()0,2(2)1-或11【22题答案】【答案】(1)76.5(2)①12n n >;理由见解析②172人【答案】(1)全体实数(2)3,1-(3)补全图像见解析(4)图像关于y 轴对称;当0x >时,y 随x 的增大而增大(5)当1>0x 且20x >时,12x x <;当10x <且20x <时,12x x >【24题答案】【答案】(1)见解析;(2)证明见解析;(3FB FD =+;证明见解析.四、选做题(满分10分)【25题答案】【答案】(1)4(2)1122k -≤≤且0k ≠【26题答案】【答案】(1)E(2)①()1,2②26b <<更多咨询,扫码了解。

2018-2019学年第二学期八年级数学期中模拟试卷(1)

2018-2019学年第二学期八年级数学期中模拟试卷(1)

2018-2019学年第二学期八年级数学期中模拟试卷(1)一.选择题(共10小题,满分30分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.02.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.63.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.15.计算结果是()A.0B.1C.﹣1D.x6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值27.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.108.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣369.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个二.填空题(共8小题,满分24分)11.若代数式有意义,则x的取值范围是.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为,△EOF的面积为.反比例函数值大于一次函数值时x的范围是.16.(3分)若关于x的分式方程无解,则m=.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为.三.解答题(共10小题,满分76分)19.解下列分式方程:(1)=(2)﹣=20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案与试题解析一.选择题(共10小题,满分3分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0故选:A.2.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.6故选:B.3.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.故选:B.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.1故选:A.5.计算结果是()A.0B.1C.﹣1D.x故选:C.6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值2【解答】解:由图可得,该函数的图象关于原点对称,是中心对称图形,故A选项结论正确;当x>0时,有三种情况:0<x<1时,y的值随x值的增大而减小,且y>2;x=1时,y =2;x>1时,y>2;故B选项结论正确;当y的值为1时,可得方程x+=1,△<0,无解,故y的值不可能为1,故D选项结论正确.所以,结论不正确的是C.故选:C.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.8.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.9.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.【解答】解:如图,连接CG.∵正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,∴△CDE≌△CBF,易得,△BGE≌△DGF,所以S△BGE=S△EGC,S△DGF=S△CGF,于是S△BGE=S△EGC=S△DGF=S△CGF,又因为S△BFC=1××=cm2,所以S△BGE=×=cm2,则空白部分的面积为4×=cm2,于是阴影部分的面积为1×1﹣=cm2.故选:B.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个【解答】解:在正方形ABCD中有,AB=BC,AD=CD,∠ACB=45°,∴△ABC,△ADC是等腰三角形,∠EFC=90°﹣∠ACB=45°=∠ACB,∴EF=CE,△EFC是等腰三角形,∵AE=AB,∴△AEB是等腰三角形,∠ABE=∠AEB,∴∠FBE=90°﹣∠ABE=90°﹣∠AEB=∠BEF,∴FB=FE,∴△BEF是等腰三角形.故共有5个等腰三角形.故选:D.二.填空题(共8小题,满分9分)11.若代数式有意义,则x的取值范围是x≠4.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值﹣2.【解答】解:∵a2﹣2ab﹣b2=0,∴b2﹣a2=﹣2ab,则===﹣2,故答案为:﹣2.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.【解答】解:∵反比例函数y=﹣的k=﹣2<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣1<0,﹣0.25<0,∴点(﹣1,y1),(﹣0.25,y2)位于第二象限,∴y1>0,y2>0,∵﹣0.25>﹣1<0,∴0<y1<y2.∵3>0,∴点(3,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故答案为:y3<y1<y2.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=8.【解答】解:∵E是AC中点,且EF∥CD,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为:8.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为(1,5),△EOF的面积为12.反比例函数值大于一次函数值时x的范围是0<x<1或x>5.【解答】解:联立两函数解析式可得,解得或,∴E点坐标为(1,5),在y=﹣x+6中,令y=0可求得x=6,∴A(6,0),∴OA=6,∴S△EOF=S△AOE﹣S△AOF=×6×5﹣×6×1=15﹣3=12,∵E(1,5),F(5,1),∴当反比例函数值大于一次函数值时x的取值范围为0<x<1或x>5,故答案为:(1,5);12;0<x<1或x>5.16.(3分)若关于x的分式方程无解,则m=6,10.【解答】解:∵关于x的分式方程无解,∴x=﹣,原方程去分母得:m(x+1)﹣5=(2x+1)(m﹣3)解得:x=,m=6时,方程无解.或=﹣是方程无解,此时m=10.故答案为6,10.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解答】解:如图,作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE=2,故答案为:2.三.解答题(共10小题,满分30分)19.解下列分式方程:(1)=(2)﹣=【解答】解:(1)方程两边都乘以x(x+7),得100(x+7)=30x.解这个一元一次方程,得x=﹣10.检验:当x=﹣10,x(x+7)≠0.所以,x=﹣10是原分式方程的根.(2)方程两边都乘以(x+3)(x﹣3),得x﹣3+2(x+3)=12.解这个一元一次方程,得x=3.检验:当x=3时,(x+3)(x﹣3)=0.因此,x=3是原分式方程的增根,所以,原分式方程无解.20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.【解答】(1)解:∵正方形ABCO,B(4,4),E为BC中点,∴OA=AB=BC=OC=4,CE=BE=2,F的横坐标是4,∴E的坐标是(2,4),把E的坐标代入y=得:k=8,∴y=,∵F在双曲线上,∴把F的横坐标是4代入得:y=2,∴F(4,2),答:反比例函数的函数解析式是y=,点F的坐标是(4,2).(2)线段OE与CF的位置关系是OE⊥CF,理由是:∵E的坐标是(2,4),点F的坐标是(4,2),∴AF=4﹣2=2=CE,∵正方形OABC,∴OC=BC,∠B=∠BCO=90°,∵在△OCE和△CBF中,∴△OCE≌△CBF,∴∠COE=∠BCF,∵∠BCO=90°,∴∠COE+∠CEO=90°,∴∠BCF+∠CEO=90°,∴∠CME=180°﹣90°=90°,即OE⊥CF.(3)证明:∵OC=4,CE=2,由勾股定理得:OE=2,过M作MN⊥OC于N,∵OE⊥CF,∴∠CMO=∠OCE=90°,∵∠COE=∠COE,∴△CMO∽△ECO,∴==,即==,解得:CM=,OM=,在△CMO中,由三角形的面积公式得:×OC×MN=×CM×OM,即4MN=×,解得:MN=,在△OMN中,由勾股定理得:ON==,即M(,),∵A(4,0),∴由勾股定理得:AM=4=AO,即AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【解答】解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积不变(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.【解答】解:(1)不变,∵S△AOC=|k1|,S△BOC=|k2|,∴S△AOB=S△AOC+S△BOC=(|k1|+|k2|),∵k1,k2分别为某一确定值,∴△AOB的面积不变,故答案为:不变;(2)由题意可知:k1>0,k2<0,∴S△AOB=k1﹣k2=8,∵k1+k2=0,解得k1=8,k2=﹣8.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=2∠EAC,∠DCA=2∠FCA,∴∠EAC=∠FCA,∴AE∥CF,∵AE∥EF,∴四边形AECF是平行四边形;(2)当2AB=AC时,四边形AECF是菱形,理由如下:∵2AB=AC,∠ABC=90°,∴∠ACB=30°,∠BAC=60°,∴∠EAC=30°,∴∠EAC=∠ACB,∴AE=EC,∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。

冀教版2018-2019学年八年级第二学期期末数学试卷含答案解析

冀教版2018-2019学年八年级第二学期期末数学试卷含答案解析

冀教版2018-2019学年八年级第二学期期末数学试卷一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。

请把最符合题意的选项序号填在题后的括号内)1.(2分)函数y=中,自变量x的取值范围是()A.x>2 B.x≥2C.x>﹣3 D.x≥﹣32.(2分)如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15°B.30°C.45°D.60°3.(2分)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个4.(2分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)5.(2分)菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角6.(2分)如图,一次函数y=(m﹣1)x﹣3+m的图象分别于x轴、y轴的负半轴相交于点A、B,则m的取值范围是()A.m>3 B.m<3 C.m>1 D.m<17.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.88.(2分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>39.(2分)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A. B. C. D.10.(2分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.10911.(2分)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.9612.(2分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4.5小时B.4.75小时C.5小时D.5小时二、认真填一填(每空3分,共30分,请把正确答案填在题后的横线上)13.(3分)如图是一次函数y=kx+b的图象,则方程kx+b=0的解为.14.(3分)如果点P1(﹣3,y1)、P2(﹣2,y2)在一次函数y=2x+b的图象上,则y1y2.(填“>”,“<”或“=”)15.(3分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=.16.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.17.(3分)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费元.18.(3分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)19.(3分)如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.20.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.21.(3分)在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是.22.(3分)如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.三、解答题(本大题共66分)23.(9分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?24.(10分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?25.(11分)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF 交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC 就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC 上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.26.(12分)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?27.(12分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.28.(12分)在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用A、B两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.(1)设A型货车安排x辆,总运费为y万元,写出y与x的函数关系式;(2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排A、B两种型号货车一次性运完这批茶叶,共有哪几种运输方案?(3)说明哪种方案运费最少?最少运费是多少万元?参考答案与试题解析一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。

2018-2019学年八 年级上学期期中考试数学试题(含答案)

2018-2019学年八 年级上学期期中考试数学试题(含答案)

2018-2019学年度第一学期阶段联考八年级数学试卷一.选择题(本大题共10小题,每小题3分,共30分)点P在第二象限内,P到x轴的距离是2,到y轴的距离是3,那么点P的坐标为()A. (-2,3)B. (-3,-2)C. (-3,2)D. (3,-2)如图所反映的两个量中,其中y是x的函数的个数有()A. 4个B. 3个C. 2个D. 1个下列语句中,是命题的是()A. ∠α和∠β相等吗?B. 两个锐角的和大于直角C. 作∠A的平分线MND. 在线段AB上任取一点在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,下列表述正确的是()A. 若x1<x2,则y1<y2B. 若x1<x2,则y1>y2C. 若x1>x2,则y1<y2D. y1与y2大小关系不确定在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则()A. k=-2,b≠3B. k=-2,b=3C. k≠-2,b≠3D. k≠-2,b=3如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A. x≥4B. x≤4C. x≥1D. x≤17.一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.8.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的大致图象是()A. B. C. D.9如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B. 3C.(m-1)D.()2 23-m10. 如图,在平面直角坐标系上有个点A (-1,0),点A 第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2017次跳动至点A2017的坐标是( ) A. (-504,1008) B. (-505,1009) C. (504,1009) D. (-503,1008) 填空题(本大题共8小题,每小题3分,共24分)11.在平面直角坐标系中有一点A (-2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A 的坐标为 ______ .12.函数31-=x y 的自变量x 的取值范围是 ______ .13.已知a <b <0,则点A(a-b ,b)在第____________象限.14.如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的____________15.等腰三角形的三边长为3,a ,7,则它的周长是 ______ .16.当k= ______ 时,函数y=()532-++k x k 是关于x 的一次函数.17.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b1﹣b2等于 .18.等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为 ______ .三.解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A (1,2),图书馆的位置坐标为B (-2,-1),解答以下问题: (1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C (1,-3),食堂坐标为D (2,0),请在图中标出体育馆和食堂的位置; (3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD ,求四边形ABCD 的面积.20.已知y与x+1.5成正比例,且x=2时,y=7.(1)求y与x之间的函数表达式;(2)若点P(-2,a)在(1)所得的函数图象上,求a.21.如图,在平面直角坐标系中直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标(2)求三角形OAC的面积.22.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)23.一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)西宁到西安两地相距_________千米,两车出发后___________小时相遇;普通列车到达终点共需__________小时,普通列车的速度是___________千米/小时.(2)求动车的速度;(3)普通列车行驶t小时后,动车的达终点西宁,求此时普通列车还需行驶多少千米到达西安?24.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D ; 【简单应用】(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC=36°,∠ADC=16°, 求∠P 的度数; 【问题探究】(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC=36°,∠ADC=16°,请猜想∠P 的度数,并说明理由.【拓展延伸】(4)在图4中,若设∠C =α,∠B =β,∠CAP=31∠CAB ,∠CDP=31∠CDB ,试问∠P 与∠C 、∠B之间的数量关系为: ______ (用α、β表示∠P,不必证明)八年级数学答案一.选择题(共10小题,每小题3分,满分30分)题号 1234567 8 9 10 答案C C B A A DCDBB二.填空题(共8小题,每小题3分,满分24分)11.(1,-1) ,12.3x ≠,13.三,14.稳定性15.17 16.-1,17.4 ,18.67.5°或22.5° 三.解答题(共6小题,满分66分)19.(1) 略…3分(2)体育馆C (1,-3),食堂D (2,0)…6分 (3)四边形ABCD 的面积=10.…8分20.(1)y=2x+3,……5分(2)1-=a …10分21.解:(1) ∴点C 的坐标为(4,4). ……………5分(2)点A 的坐标为(6,0),∴OA=6,∴S △OAC=21OA •yC=21×6×4=12.…10分22.(1)∵CD 为高,∴∠CDB=90°,∴∠BCD=90°-∠B ,∵CE 为角平分线,∴∠BCE=∠ACB ,而∠ACB=180°-∠A-∠B ,∴∠BCE=(180°-∠A-∠B )=90°-(∠A+∠B ),∴∠ECD=∠BCE-∠BCD =90°-(∠A+∠B )-(90°-∠B )=(∠B-∠A ), 当∠A=30°,∠B=50°时,∠ECD=×(50°-30°)=10°; ………………………8分 (2)由(1)得∠ECD=(∠B-∠A ).………………………12分23.(1)1000,3,12,,3250…………4分(2)250……8分(3)32000……12分24.(1)证明:在△AOB 中,∠A+∠B+∠AOB=180°,在△COD 中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD ,∴∠A+∠B=∠C+∠D ;…………3分 (2)26°.…………7分 (3)如图3,∵AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D ,∴∠P=(∠B+∠D )=×(36°+16°)=26°;……………11分(4)∠P=α+β; …………………………14分。

北京市西城区2019-2020 学年八年级(上)期末数学试卷(含答案解析)

北京市西城区2019-2020 学年八年级(上)期末数学试卷(含答案解析)

2019-2020学年北京市西城区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A.B.C.D.2.500米口径球面射电望远镜,简称FAST,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为()A.0.519×10﹣2B.5.19×10﹣3C.51.9×10﹣4D.519×10﹣63.在△ABC中,AB=3,AC=5,第三边BC的取值范围是()A.10<BC<13 B.4<BC<12 C.3<BC<8 D.2<BC<84.如图,∠1+∠2+∠3+∠4+∠5等于()A.360°B.540°C.720°D.900°5.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>36.下列各式中,正确的是()A.=B.=C.=D.=﹣7.如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A .甲B .乙C .丙D .丁8.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm /h ,则下面所列方程正确的是( )A .=+B .=﹣C .=+D .=﹣9.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是( )A .30°B .45°C .60°D .90°10.如图,线段AB =6cm ,动点P 以2cm /s 的速度从A ﹣B ﹣A 在线段AB 上运动,到达点A 后,停止运动;动点Q 以1cm /s 的速度从B ﹣A 在线段AB 上运动,到达点A 后,停止运动.若动点P ,Q 同时出发,设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为s (单位:cm ),则能表示s 与t 的函数关系的是( )A .B .C.D.二、填空题(本题共18分,第11~16题,每小题2分,第17题3分,第18题3分)11.若分式的值为零,则x的值为.12.在平面直角坐标系中,点P(1,﹣2)关于x轴对称的点的坐标是.13.计算:20+2﹣2=.14.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD.若AC=7,BC=5,则△BDC的周长是.15.如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等式.16.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE=2cm,则△BCD的面积为cm2.17.如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.(1)写出一个符合题意的点P 的坐标 ; (2)请在图中画出所有符合条件的△AOP .18.(1)如图,∠MAB =30°,AB =2cm .点C 在射线AM 上,利用图1,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题.你画图时,选取的BC 的长约为 cm (精确到0.1cm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .三、解答题(本题共30分,每小题6分) 19.(1)分解因式x (x ﹣a )+y (a ﹣x ) (2)分解因式x 3y ﹣10x 2y +25xy20.计算: +21.解方程:+=122.如图,点A ,B ,C ,D 在一条直线上,且AB =CD ,若∠1=∠2,EC =FB .求证:∠E =∠F .23.在平面直角坐标系xOy 中,直线l 1:y =3x 与直线l 2:y =kx +b 交于点A (a ,3),点B (2,4)在直线l上.2(1)求a的值;(2)求直线l的解析式;2(3)直接写出关于x的不等式3x<kx+b的解集.四、解答题(本题共12分,第24题7分,第25题5分)24.在平面直角坐标系xOy中,正方形ABCD的两个顶点的坐标分别为A(﹣2,0),D(﹣2,4),顶点B在x轴的正半轴上.(1)写出点B,C的坐标;(2)直线y=5x+5与x轴交于点E,与y轴交于点F.求△EFC的面积.25.阅读下列材料下面是小明同学“作一个角等于60°的直角三角形”的尺规作图过程.已知:线段AB(如图1)求作:△ABC,使∠CAB=90°,∠ABC=60°作法:如图2,(1)分别以点A,点B为圆心,AB长为半径画弧,两弧交于点D,连接BD(2)连接BD并延长,使得CD=BD;(3)连接AC△ABC就是所求的直角三角形证明:连接AD.由作图可知,AD=BD=AB,CD=BD∴△ABD是等边三角形(等边三角形定义)∴∠1=∠B=60°(等边三角形每个内角都等于60°)∴CD=AD∴∠2=∠C(等边对等角)在△ABC中,∠1+∠2+∠B+∠C=180°(三角形的内角和等于180°)∴∠2=∠C=30°∴∠1+∠2=90°(三角形的内角和等于180°),即∠CAB=90°∴△ABC就是所求作的直角三角形请你参考小明同学解决问题的方式,利用图3再设计一种“作一个角等于60°的直角三角形”的尺规作图过程(保留作图痕迹),并写出作法,证明,及推理依据.五、解答题(本题8分)26.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.2018-2019学年北京市西城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念解答.【解答】解:A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选:A.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.500米口径球面射电望远镜,简称FAST,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为()A.0.519×10﹣2B.5.19×10﹣3C.51.9×10﹣4D.519×10﹣6【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00519=5.19×10﹣3.故选:B.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.在△ABC中,AB=3,AC=5,第三边BC的取值范围是()A.10<BC<13 B.4<BC<12 C.3<BC<8 D.2<BC<8【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:第三边BC的取值范围是5﹣3<BC<5+3,即2<BC<8.故选:D.【点评】考查了三角形三边关系,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.4.如图,∠1+∠2+∠3+∠4+∠5等于()A.360°B.540°C.720°D.900°【分析】多边形内角和定理:(n﹣2)•180°(n≥3)且n为整数),依此即可求解.【解答】解:(n﹣2)•180°=(5﹣2)×180°=3×180°=540°.故∠1+∠2+∠3+∠4+∠5等于540°.故选:B.【点评】考查了多边形内角和定理,关键是熟练掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).5.对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3【分析】一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【解答】解:根据一次函数的性质,对于y=(k﹣3)x+2,当k﹣3>0时,即k>3时,y随x的增大而增大.故选:D .【点评】本题考查了一次函数的性质.一次函数y =kx +b ,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小. 6.下列各式中,正确的是( )A .=B .=C .=D .=﹣【分析】根据分式的基本性质解答即可.【解答】解:A 、=,故错误;B 、=+,故错误;C 、=,故正确;D 、=﹣,故错误;故选:C .【点评】本题考查了分式的基本性质,熟记分式的基本性质是解题的关键.7.如图,已知△ABC ,下面甲、乙、丙、丁四个三角形中,与△ABC 全等的是( )A .甲B .乙C .丙D .丁【分析】根据全等三角形的判定定理作出正确的选择即可.【解答】解:A .△ABC 和甲所示三角形根据SA 无法判定它们全等,故本选项错误;B .△ABC 和乙所示三角形根据SAS 可判定它们全等,故本选项正确; C .△ABC 和丙所示三角形根据SA 无法判定它们全等,故本选项错误;D .△ABC 和丁所示三角形根据AA 无法判定它们全等,故本选项错误;故选:B .【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是()A.=+B.=﹣C.=+D.=﹣【分析】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.【解答】解:设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,由题意得:=+,故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.9.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC 与PE的和最小时,∠CPE的度数是()A.30°B.45°C.60°D.90°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题;【解答】解:如连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°,故选:C.【点评】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.10.如图,线段AB=6cm,动点P以2cm/s的速度从A﹣B﹣A在线段AB上运动,到达点A后,停止运动;动点Q以1cm/s的速度从B﹣A在线段AB上运动,到达点A后,停止运动.若动点P,Q 同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),则能表示s与t的函数关系的是()A.B.C.D.【分析】根据题意可以得到点P运动的慢,点Q运动的快,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【解答】解:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t解得,t=2此时,点P离点B的距离为:6﹣2×2=2cm,点Q离点A的距离为:6﹣2=4cm,相遇后,点P到达B点用的时间为:2÷2=1s,此时两个动点之间的距离为3cm,由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选:D.【点评】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.二、填空题(本题共18分,第11~16题,每小题2分,第17题3分,第18题3分)11.若分式的值为零,则x的值为 1 .【分析】分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【解答】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.【点评】本题考查分式的值为0的条件,注意分式为0,分母不能为0这一条件.12.在平面直角坐标系中,点P(1,﹣2)关于x轴对称的点的坐标是(1,2).【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P(1,﹣2)关于x轴对称的点的坐标是(1,2),故答案为:(1,2).【点评】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.13.计算:20+2﹣2=.【分析】根据零指数幂和负指数幂的知识点进行解答.【解答】解:原式=1+=.故答案为.【点评】本题主要考查了幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算,任何非0数的0次幂等于1,比较简单.14.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD.若AC=7,BC=5,则△BDC的周长是12 .【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵NM是AB的垂直平分线,∴DA=DB,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=12,故答案为:12.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等式a2+2ab+b2=(a+b)2.【分析】依据大正方形的面积的不同表示方法,即可得到等式.【解答】解:由题可得,大正方形的面积=a2+2ab+b2;大正方形的面积=(a+b)2;∴a2+2ab+b2=(a+b)2,故答案为:a2+2ab+b2=(a+b)2.【点评】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.16.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE=2cm,则△BCD的面积为 6 cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.(1)写出一个符合题意的点P的坐标答案不唯一,如:(﹣5,0);(2)请在图中画出所有符合条件的△AOP.【分析】(1)根据等腰三角形的性质即可求解;(2)可分三种情况:①AO=AP;②AO=PO;③AP=PO;解答出即可.【解答】解:(1)一个符合题意的点P的坐标答案不唯一,如:(﹣5,0);(2)如图所示:故答案为:答案不唯一,如:(﹣5,0).【点评】本题主要考查了作图﹣复杂作图、等腰三角形的判定和坐标与图形的性质,注意讨论要全面,不要遗漏.18.(1)如图,∠MAB=30°,AB=2cm.点C在射线AM上,利用图1,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题.你画图时,选取的BC的长约为答案不唯一如:BC=1.2cm cm(精确到0.1cm).(2)∠MAB为锐角,AB=a,点C在射线AM上,点B到射线AM的距离为d,BC=x,若△ABC的形状、大小是唯一确定的,则x的取值范围是x=d或x≥a..【分析】(1)答案不唯一,可以取BC=1.2cm(1cm<BC<2cm);(2)当x=d或x≥a时,三角形是唯一确定的;【解答】解:(1)取BC=1.2cm,如图在△ABC和△ABC′中满足SSA,两个三角形不全等.故答案为:答案不唯一如:BC=1.2cm.(2)若△ABC的形状、大小是唯一确定的,则x的取值范围是x=d或x≥a,故答案为x=d或x≥a.【点评】本题考查全等三角形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本题共30分,每小题6分)19.(1)分解因式x(x﹣a)+y(a﹣x)(2)分解因式x3y﹣10x2y+25xy【分析】(1)直接提取公因式(x﹣a)分解因式即可.(2)先提取公因式xy,然后利用完全平方公式进一步进行因式分解.【解答】(1)解:x(x﹣a)+y(a﹣x)=x(x﹣a)﹣y(x﹣a)=(x﹣a)(x﹣y);(2)解:x3y﹣10x2y+25xy=xy(x2﹣10x+25)=xy ( x ﹣5)2.【点评】考查了因式分解﹣提公因式法.当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.20.计算: +【分析】原式先计算除法运算,再计算加减运算即可求出值.【解答】解:原式=+•=+=+=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.解方程: +=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:方程两边乘 (x ﹣3)(x +3),得 x (x +3)+6 (x ﹣3)=x 2﹣9,解得:x =1,检验:当 x =1 时,(x ﹣3)(x +3)≠0,所以,原分式方程的解为x =1.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.如图,点A ,B ,C ,D 在一条直线上,且AB =CD ,若∠1=∠2,EC =FB .求证:∠E =∠F .【分析】求出∠DBF =∠ACE ,AC =DB ,根据SAS 推出△ACE ≌△DBF ,根据全等三角形的性质得出即可.【解答】证明:∵∠1+∠DBF =180°,∠2+∠ACE =180°.又∵∠1=∠2,∴∠DBF =∠ACE ,∵AB =CD ,∴AB +BC =CD +BC ,即AC =DB ,在△ACE 和△DBF 中,∴△ACE ≌△DBF (SAS ),∴∠E =∠F .【点评】本题考查了全等三角形的性质和判定,能求出△ACE ≌△DBF 是解此题的关键.23.在平面直角坐标系xOy 中,直线l 1:y =3x 与直线l 2:y =kx +b 交于点A (a ,3),点B (2,4)在直线l 2上.(1)求a 的值;(2)求直线l 2的解析式;(3)直接写出关于x 的不等式3x <kx +b 的解集.【分析】(1)把A (a ,3)代入y =3x 可求出a 的值;(2)利用待定系数法求直线l 2的解析式;(3)写出直线l 2:y =kx +b 在直线l 1:y =3x 上方所对应的自变量的范围即可.【解答】解:(1)直线 l 1:y =3x 与直线 l 2:y =kx +b 交于点 A (a ,3),所以3a =3. 解得a =1.(2)由(1)得点 A (1,3),直线 l 2:y =kx +b 过点 A (1,3),点 B ( 2,4 ),所以,解得所以直线 l 2 的解析式为 y =x +2.4 分(3)不等式3x<kx+b的解集为x<1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.四、解答题(本题共12分,第24题7分,第25题5分)24.在平面直角坐标系xOy中,正方形ABCD的两个顶点的坐标分别为A(﹣2,0),D(﹣2,4),顶点B在x轴的正半轴上.(1)写出点B,C的坐标;(2)直线y=5x+5与x轴交于点E,与y轴交于点F.求△EFC的面积.【分析】(1)根据正方形的性质以及A、D、B的位置即可求得;(2)求得E、F点的坐标,进而求得OB=2,BC=4,OF=5,OE=1,EB=3,根据三角形的面积公式和梯形的面积公式求得即可.【解答】解:(1)如图,∵正方形ABCD的两个顶点的坐标分别为A(﹣2,0),D(﹣2,4),顶点B在x轴的正半轴上,∴B (2,0),C (2,4);(2)∵直线y =5x +5与x 轴交于点E ,与y 轴交于点F ,∴E (﹣1,0),F (0,5),∵B (2,0),C (2,4),∴OB =2,BC =4,OF =5,OE =1,EB =3,∴S 梯形OBCF =(OF +BC )•OB =×(5+4)×2=9,S △OEF =OE •OF =×2×5=5,S △EBC =EB •BC =×3×4=6,∴S △EFC =S 梯形OBCF +S △OEF ﹣S △EBC =9+5﹣6=8.【点评】本题考查一次函数图象上点的坐标特征以及正方形的性质,坐标与图形的性质,求得点的坐标解题的关键.25.阅读下列材料下面是小明同学“作一个角等于60°的直角三角形”的尺规作图过程.已知:线段AB (如图1)求作:△ABC ,使∠CAB =90°,∠ABC =60°作法:如图2,(1)分别以点A,点B为圆心,AB长为半径画弧,两弧交于点D,连接BD(2)连接BD并延长,使得CD=BD;(3)连接AC△ABC就是所求的直角三角形证明:连接AD.由作图可知,AD=BD=AB,CD=BD∴△ABD是等边三角形(等边三角形定义)∴∠1=∠B=60°(等边三角形每个内角都等于60°)∴CD=AD∴∠2=∠C(等边对等角)在△ABC中,∠1+∠2+∠B+∠C=180°(三角形的内角和等于180°)∴∠2=∠C=30°∴∠1+∠2=90°(三角形的内角和等于180°),即∠CAB=90°∴△ABC就是所求作的直角三角形请你参考小明同学解决问题的方式,利用图3再设计一种“作一个角等于60°的直角三角形”的尺规作图过程(保留作图痕迹),并写出作法,证明,及推理依据.【分析】根据题意设计“作一个角等于60°的直角三角形”的尺规作图过程,连接DC.得到△DBC 是等边三角形,根据等边三角形的性质得到∠B=60°,根据等腰三角形的性质证明.【解答】解:作法:(1)延长BA至D,使AD=AB;(2)分别以点B,点D为圆心,BD长为半径画弧,两弧交于点C;(3)连接AC,BC.则△ABC就是所求的直角三角形,证明:连接DC.由作图可知,BC=BD=DC,∴△DBC是等边三角形,∴∠B=60°,∵CD=CB,AD=AB,∴AC⊥BD,∴△ABC就是所求作的直角三角形.【点评】本题考查的是等边三角形的性质,基本尺规作图,掌握等边三角形的判定定理和性质定理,等腰三角形的三线合一是解题的关键.五、解答题(本题8分)26.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.【分析】(1)分别求出∠ADF,∠ADB,根据∠BDF=∠ADF﹣∠ADB计算即可;(2)①根据要求画出图形即可;②设∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC中,根据∠BAC+∠ACB+∠ABC=180°,构建方程求出α,再证明∠MNB=∠MBN即可解决问题;【解答】(1)解:如图1中,在等边三角形△ACD中,∠CAD=∠ADC=60°,AD=AC.∵E为AC的中点,∴∠ADE=∠ADC=30°,∵AB=AC,∴AD=AB,∵∠BAD=∠BAC+∠CAD=160°,∴∠ADB=∠ABD=10°,∴∠BDF=∠ADF﹣∠ADB=20°.(2)①补全图形,如图所示.②证明:连接AN.∵CM平分∠ACB,∴设∠ACM=∠BCM=α,∵AB=AC,∴∠ABC=∠ACB=2α.在等边三角形△ACD中,∵E为AC的中点,∴DN⊥AC,∴NA=NC,∴∠NAC=∠NCA=α,∴∠DAN=60°+α,在△ABN和△ADN中,∴△ABN≌△ADN(SSS),∴∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∴∠BAC=60°+2α,在△ABC中,∠BAC+∠ACB+∠ABC=180°,∴60°+2α+2α+2 α=180°,∴α=20°,∴∠NBC=∠ABC﹣∠ABN=10°,∴∠MNB=∠NBC+∠NCB=30°,∴∠MNB=∠MBN,∴MB=MN.【点评】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

北京市西城区2018-2019年八年级下期末考试数学试卷及答案

北京市西城区2018-2019年八年级下期末考试数学试卷及答案

数学试卷北京市西城区 2019—2019 学年度第二学期期末考试八年级数学试卷2019.7试卷满分: 100 分,考试时间: 100 分钟 一、选择题(本题共24 分,每小题 3 分)下面各题均有四个选项,其中只有一个 ..是符合题意的.1.下列各组数中,以它们为边长的线段能构成直角三角形的是().A .1,1,1B .3,4,5C .2,3,4D .1,1, 33452.下列图案中,是中心对称图形的是().3.将一元二次方程x 2-6x - 5= 0 化成 (x - 3)2= b 的形式,则 b 等于().A .4B .- 4C . 14D .- 144.一次函数 y 2x1 的图象不 经过()..A .第一象限B .第二象限C .第三象限D .第四象限5.已知四边形 ABCD 是平行四边形,下列结论中不正确 的是( )....A .当 AB = BC 时,它是菱形 B .当 AC ⊥ BD 时,它是菱形C .当∠ ABC = 90o 时,它是矩形D .当 AC = BD 时,它是正方形6.如图,矩形 ABCD 的对角线 AC , BD 交于点 O ,AC = 4cm ,∠ AOD = 120o ,则 BC 的长为().A.43B. 4C.23D. 27.中学生田径运动会上,参加男子跳高的15 名运动员的成绩如下表:跳高成绩 (m)1.50 1.55 1.60 1.65 1.70 1.75人数132351这些运动员跳高成绩的中位数和众数分别是().A . 1.65, 1.70B . 1.70, 1.65C. 1.70,1.70 D .3, 58.如图,在平面直角坐标系xOy 中,菱形 ABCD 的顶点 A 的坐标为(2,0),点 B 的坐标为 (0,1) ,点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点 E,F . 将菱形 ABCD 沿 x 轴向左平移 m 个单位,当点 D 落在△ EOF 的内部时 (不包括三角形的边 ),m 的值可能是().A .3 B. 4C. 5D. 6二、填空题(本题共25 分,第9~ 15 题每小题 3 分,第16题4分)9.一元二次方程x22x0 的根是.10.如果直线y x 向上平移 3 个单位后得到直线AB,那么直线AB 的解析式是_________. 11.如果菱形的两条对角线长分别为 6 和 8,那么该菱形的面积为_________.12.如图, Rt△ ABC 中,∠ BAC=90 °,D ,E, F 分别为 AB, BC,AC的中点,已知DF =3,则AE=.13.若点则 y1A(1, y1 ) 和点 B(2, y2 ) 都在一次函数y x 2 的图象上,y2(选择“>”、“<”、“=”填空).14.在平面直角坐标系xOy 中,点 A 的坐标为( 3,2),若将线段OA 绕点 O 顺时针旋转90°得到线段O A,则点A的坐标是.15.如图,直线l1: y x1与直线l 2:y mx n相交于点P2( a ,),则关于 x 的不等式x1≥mx n 的解集为.16.如图 1,五边形ABCDE 中,∠ A=90 °, AB ∥DE , AE∥ BC,点 F, G 分别是 BC, AE 的中点 . 动点 P 以每秒 2cm 的速度在五边形 ABCDE 的边上运动,运动路径为 F→ C→ D →E→G,相应的△ABP 的面积y(cm2)关于运动时间t (s)的函数图象如图 2 所示.若AB=10cm ,则 (1)图 1 中 BC 的长为 _______cm ; (2) 图 2 中 a 的值为 _________.三、解答题(本题共30 分,第17 题 5 分,第 18~ 20 题每小题6分,第 21 题 7分)17.解一元二次方程:x24x 2 0 .解:18.已知:在平面直角坐标系xOy 中,一次函数y kx 4 的图象与y轴交于点A,与x 轴的正半轴交于点B,OA2OB .(1)求点 A、点 B 的坐标;( 2)求一次函数的解析式.解:19.已知:如图,点 A 是直线 l 外一点, B,C 两点在直线l 上,BAC 90 , BC 2BA .( 1)按要求作图:(保留作图痕迹)①以 A 为圆心, BC 为半径作弧,再以 C 为圆心, AB 为半径作弧,两弧交于点 D;②作出所有以 A,B, C, D 为顶点的四边形;( 2)比较在( 1)中所作出的线段BD 与 AC 的大小关系.解:( 1)( 2) BD AC.20.已知:如图,ABCD 中, E,F 两点在对角线BD 上, BE=DF .(1)求证: AE=CF ;(2)当四边形 AECF 为矩形时,直接写出BD AC的值.BE(1)证明:( 2)答:当四边形 AECF 为矩形时,BDAC =.BE21.已知关于 x 的方程x2( k 2) x 2k 10 .(1)求证:方程总有两个不相等的实数根;(2)如果方程的一个根为x 3,求 k 的值及方程的另一根.(1)证明:( 2)解:四、解答题(本题7 分)22.北京是水资源缺乏的城市,为落实水资源管理制度,促进市民节约水资源,北京市发改委在对居民年用水量进行统计分析的基础上召开水价听证会后发布通知,从2019年 5 月 1 日起北京市居民用水实行阶梯水价,将居民家庭全年用水量划分为三档,水价分档递增,对于人口为 5 人(含)以下的家庭,水价标准如图 1 所示,图 2 是小明家在未实行新水价方案时的一张水费单(注:水价由三部分组成). 若执行新水价方案后,一户 3 口之家应交水费为y(单位:元),年用水量为x(单位:m3), y 与 x 之间的函数图象如图3所示.图1图2根据以上信息解答下列问题:( 1)由图 2 可知未调价时的水价为元 / m3;( 2)图 3 中, a=, b=,图 1 中, c=;( 3)当180< x≤ 260 时,求y 与 x 之间的函数关系式.解:图3数学试卷五、解答题(本题共14 分,每小题7 分)F 在AB 边上,BF2AF.23.已知:正方形ABCD 的边长为6,点 E 为 BC 的中点,点画出EDF ,猜想EDF 的度数并写出计算过程.解:EDF 的度数为.计算过程如下:数学试卷24.已知:如图,在平面直角坐标系xOy 中,A(0,4),B(0,2),点 C 在 x 轴的正半轴上,点D为OC的中点.(1)求证: BD∥ AC;(2)当 BD 与 AC 的距离等于 1 时,求点 C 的坐标;( 3)如果 OE⊥ AC 于点 E,当四边形ABDE为平行四边形时,求直线AC 的解析式.解:( 1)(2)O x (3)备用图北京市西城区 2019—2019 学年度第二学期期末试卷八年级数学参考答案及评分标准2019.7一、选择题(本题共24 分,每小题 3 分)题号12345678答案B D C D D C A C数学试卷二、填空题(本题共25 分,第 9~ 15 题每小题 3 分,第 16题 4 分)9.x10, x2 2 .10.y x3 .11. 24.12. 3.13.>.14.(2,3) .15.x≥ 1(阅卷说明:若填x ≥a只得1分)16.( 1) 16;(2 )17.(每空 2 分)三、解答题(本题共30 分,第 17题5分,第18~ 20 题每小题 6 分,第 21 题 7 分)17.解:x24x20 .a 1 ,b 4 ,c 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分b24ac 4241(2) 24.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分方程有两个不相等的实数根b b24ac⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分x2a424 4 2 6 .212所以原方程的根为x12 6 , x22 6 .(各1分)⋯⋯⋯⋯⋯⋯ 5 分18.解:( 1)∵ 一次函数y kx4的图象与 y 轴的交点为 A,∴点 A 的坐标为A(0,4).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∴ OA 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵ OA2OB ,∴ OB 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∵一次函数 y kx4的图象与 x 轴正半轴的交点为B,∴点 B 的坐标为B(2,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)将B(2,0)的坐标代入y kx4,得0 2k 4 .A D1解得k 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分C∴ 一次函数的解析式为y2x4.B l⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分19.解:( 1)按要求作图如图 1 所示,四边形ABCD1和D2图 1四边形 ABD 2C 分别是所求作的四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) BD ≥ AC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分阅卷说明:第(1)问正确作出一个四边形得 3 分;第( 2)问只填 BD> AC 或 BD=AC只得 1分.20.( 1)证明:如图 2 .∵四边形 ABCD是平行四边形,∴ AB∥ CD, AB=CD.⋯⋯⋯⋯⋯ 1 分A D∴ ∠ 1=∠ 2.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分F21EB C数学试卷在△ ABE 和△ CDF 中,AB CD , 12, ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分BEDF ,∴ △ABE ≌△ CDF .( SAS ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴AE=CF .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分( 2)当四边形 AECF 为矩形时,BDAC= 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分BE21.( 1)证明:∵ x 2(k 2) x 2k 1 0 是一元二次方程,b 2 4ac (k2)2k 24k 8 ⋯⋯⋯⋯ 1 分4 1 (2k 1)(k2) 24 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分无论 k 取何实数,总有 ( k 2) 2 ≥ 0, ( k 2)24 > 0.⋯⋯⋯⋯⋯⋯3 分∴ 方程总有两个不相等的实数根.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分( )解:把x 3代入方程 x 2 ( k 2)x 2k 1 0 ,有2323(k 2) 2k 1 0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分整理,得 2 k 0 .解得 k2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分此时方程可化为 x 2 4x 3 0 . 解此方程,得x 1 1 , x 23 .∴ 方程的另一根为x 1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分四、解答题(本题7 分)22.解:( 1) 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1分( 2) a=900 , b= 1460 ,(各 1 分)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分c= 9.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分(3)解法一:当 180< x ≤ 260 时, y 180 5 7( x 180) 7x 360 .⋯⋯ 7 分解法二:当 180< x ≤ 260 时,设 y 与 x 之间的函数关系式为 y kx( k ≠0).b由( 2)可知: A(180,900) , B(260,1460) .180k b 900,k 7, 得b 1460.解得360.260k b∴ y7 x 360 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分五、解答题(本题共 14 分,每小题 7 分)23.解:所画EDF 如图 3 所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分数学试卷EDF 的度数为45.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分AF 解法一:如图 4 ,连接 EF,作 FG⊥ DE 于点 G.⋯⋯ 3 分B E∵正方形 ABCD的边长为6,∴ AB=BC=CD= AD =6,ABC90.∵点 E 为 BC的中点,∴ BE=EC=3.∵点 F在AB边上,BF2AF ,∴ AF=2, BF=4.在 Rt△ADF 中, A 90,DF 2 AD2AF2622240.在 Rt△BEF, Rt△ CDE中,同理有D图 3AFGCBEEF 2BE 2BF 2324225 ,D图 4 DE 2CD 2CE 2623245 .在 Rt△DFG和 Rt△ EFG中,有FG 2DF 2DG 2EF 2EG2.设 DG x ,则 40 x225(3 5 x) 2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯C4分整理,得 6 5x 60 .解得x 2 5,即DG 2 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴ FG DF 2DG 240 (25) 220 25.∴ DG FG .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵DGF90 ,∴EDF 180DGF45 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分2解法二:如图 5 ,延长 BC到点 H,使 CH=AF,连接 DH, EF.⋯⋯⋯⋯⋯⋯⋯ 3 分∵正方形 ABCD的边长为6,∴ AB=BC=CD=AD =6,A B ADC DCE =90 .∴DCH180DCE =90 ,A DCH .在△ ADF 和△ CDH 中,AD CD ,A F BA DCH ,AF CH ,E1∴ △ADF≌△ CDH.( SAS)⋯⋯⋯⋯⋯ 4 分∴DF=DH,①D2C1 2 .图 5H数学试卷∴FDH FDC 2 FDC 1 ADC 90 .⋯⋯⋯⋯⋯⋯5 分∵ 点 E 为 BC 的中点, ∴ BE=EC=3.∵ 点 F 在AB 边上, BF 2AF ,∴ CH= AF=2, BF=4. ∴ EHCE CH 5.在 Rt △BEF 中, B 90 ,EFBE 2 BF 2 32 42 5.∴ EFEH .②又∵ DE= DE ,③由①② ③ 得△ DEF ≌△ DEH .( SSS ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∴EDFEDHFDH 7 分45 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯224.解:( 1)∵ A(0,4) , B(0,2) ,∴ OA=4, OB=2,点 B 为线段 OA 的中点.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵ 点 D 为 OC 的中点,∴ BD ∥ AC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( 2)如图 6,作 BF ⊥ AC 于点 F ,取 AB 的中点 G ,则 G(0,3) .∵ BD ∥ AC , BD 与 AC 的距离等于 1, ∴ BF 1.∵ 在 Rt △ ABF 中, AFB 90 , AB=2,点 G 为 AB 的中点,∴ FGAB 1 .BG2∴ △BFG 是等边三角形, ABF60 .∴BAC 30 .y设 OC x ,则 AC 2 x , OAAC 2 OC 23x . A∵ OA=4, G FB∴ x433 分.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3OD Cx∵ 点 C 在 x 轴的正半轴上,图 6∴ 点 C 的坐标为 (43,0) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分3y(3)如图 7,当四边形 ABDE 为平行四边形时, AB ∥ DE .∴ DE ⊥ OC .A∵ 点 D 为 OC 的中点,∴ OE=EC .B EODC x图 7数学试卷∵OE⊥ AC,∴OCA 45 .∴ OC=OA=4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分∵点 C 在 x 轴的正半轴上,∴点 C 的坐标为(4,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分设直线 AC 的解析式为y kx b (k≠0).4k b 0,k1,则解得b 4.b 4.∴直线 AC的解析式为y x 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分。

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。

北京西城区三帆中学2018-2019年初二下年中数学试题及解析

北京西城区三帆中学2018-2019年初二下年中数学试题及解析

北京西城区三帆中学2018-2019年初二下年中数学试题及解析初二数学班级﹏﹏﹏﹏﹏﹏分层班﹏﹏﹏﹏﹏﹏﹏﹏姓名﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏学号﹏﹏﹏﹏﹏﹏﹏﹏﹏成绩﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏ 注意:时刻100分钟,总分值120分【一】选择题〔此题共30分,每题3分〕1.一元二次方程2410x x +-=旳二次项系数、一次项系数、常数项分别是〔〕. A 、4,0,1 B 、4,1,1 C 、4,1,-1 D 、4,1,02.由以下线段a ,b ,c 不能..组成直角三角形旳是〔〕. A 、a =1,b =2,c =3B 、a =1,b =2,c =5C 、a =3,b =4,c =5D 、a =2,b=c =33.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,那么四边形ABCD 一定是〔〕. A 、平行四边形 B 、矩形 C 、菱形 D 、正方形4.以下各式是完全平方式旳是〔〕. A.224x x ++ B.269x x -+C.244x x --D.232x x -+5.正方形具有而矩形不一定具有旳性质是〔〕.A 、四个角差不多上直角B 、对角线互相平分C 、对角线相等D 、对角线互相垂直6.如图,数轴上点M 所表示旳数为m ,那么m 旳值是〔〕. A、7.平行四边形ABCD 旳两条对角线AC 、BD 交于平面直角坐标系旳原点,点A 旳坐标为〔-2,3〕,那么点C 旳坐标为〔〕. A.〔3,-2〕B.〔2,-3〕C.〔-3,2〕D.〔-2,-3〕 8.某果园2018年水果产量为100吨,2018年水果产量为144吨,求该果园水果产量旳年平均增长率.设该果园水果产量旳年平均增长率为x ,那么由题意可列方程为〔〕. A.100)1(1442=-x B.144)1(1002=-xC.100)1(1442=+xD.144)1(1002=+x9.如图,平行四边形ABCD 旳两条对角线相交于点O ,E 是AB 边旳中点,图中与△ADE 面积相等旳三角形〔不包括...△.ADE ...〕旳个数为〔〕. A .3B .4C .5D .610.如图,在长方形ABCD 中,AC 是对角线,将长方形ABCD 绕点B 顺时针旋转90°到长方形GBEF 位置,H 是EG 旳中点,假设AB =6,BC =8,那么线段CH 旳长为〔〕.第16题图DA 、52B 、41C 、102D 、21 【二】填空题〔此题共24分,每题3分〕11.2x =是一元二次方程2280x ax ++=旳一个根,那么a 旳值为.12.如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连接AC 和BC ,并分别找出它们旳中点M 和N 、假如测得MN =15m ,那么A ,B 两点间旳距离为m 、13.如图,在□ABCD 中,CE ⊥AB 于E ,假如∠A =125°,那么∠BCE =°、14.假设把代数式223x x --化为2()x m k -+旳形式,其中m 、k 为常数,那么m +k =.15、如图,在□ABCD 中,E 为AB 中点,AC BC ⊥,假设CE =3,那么CD =.16.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,那么AG17.8.〔1那么M .旳.坐标..为、 【三】解答题〔此题共26分,第1919.解方程:(1)x 2(3)25-=;(2)261x x -+=.解:解:20.如图,在□ABCD 中,AD =16cm ,AB =12cm ,DE 平分∠ADC 交BC 边于点E , 求BE 旳长度、 解: 21.一个矩形旳长比宽多1cm ,面积是90cm 2,矩形旳长和宽各是多少? 解:22.:关于x 旳一元二次方程2(21)20x m x m +++=、〔1〕求证:不管m 为何值,此方程总有两个实数根;〔2〕假设x 为此方程旳一个根,且满足06x <<,求整数m 旳值、 (1)证明: (2)解:【四】解答题〔此题共20分,第23题6分,第24、25题每题7分〕 23、如图,菱形ABCD 旳对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1)求证:BD =EC ;(2)假设∠E =57°,求∠BAO 旳大小.B(1)证明: (2)解:班级﹏﹏﹏﹏﹏﹏分层班﹏﹏﹏﹏﹏﹏﹏﹏姓名_____学号____ 24.:关于x 旳一元二次方程2251(21)0422a x a x a +++++=有实根、 〔1〕求a 旳值;〔2〕假设关于x 旳方程23210kx x k a ----=旳所有根均为整数,求整数k 旳值、解:〔1〕 〔2〕25.阅读以下材料:问题:如图1,在□ABCD 中,E 是AD 上一点,AE =AB ,∠EAB =60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .求证:EG =AG +BG .小明同学旳思路是:作∠GAH =∠EAB 交GE 于点H ,构造全等三角形,通过推理解决问题. 参考小明同学旳思路,探究并解决以下问题: 〔1〕完成上面问题中旳证明;〔2〕假如将原问题中旳“∠EAB =60°”改为“∠EAB =90°”,原问题中旳其它条件不变〔如图2〕,请探究线段EG 、AG 、BG 之间旳数量关系,并证明你旳结论. 〔1〕证明:〔2〕解:线段EG 、AG 、BG 之间旳数量关系为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.班级﹏﹏﹏﹏﹏﹏分层班﹏﹏﹏﹏﹏﹏﹏﹏姓名_____学号____【五】解答题〔此题共20分,第26、27题每题6分,第28题8分〕26、a 是方程2520x x +-=旳一个根,那么代数式22109a a +-旳值为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏;代数式32635a a a ++-旳值为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、27、如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n 、①四边形A 2B 2C 2D 2是形;②四边形A 3B 3C 3D 3是形; ③四边形A 5B 5C 5D 5旳周长是; ④四边形A n B n C n D n 旳面积是、 28、假设一个四边形旳一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫那个四边形旳和谐线,那个四边形叫做和谐四边形、如菱形确实是和谐四边形、 〔1〕如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC 、求证:BD 是四边形ABCD 旳和谐线;B〔2〕图2和图3中有三点A 、B 、C ,且AB =AC ,请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点旳四边形旳两条对角线差不多上和谐线,并画出相应旳和谐四边形〔要求尺规作图,保........留作图痕迹,不写作法..........〕; 〔3〕四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 旳和谐线,求∠BCD 旳度数、 (1)证明:(2)在方框内用尺规作图,..........保留作图痕迹,不写作法........... (3)解:北京三帆中学2018-2018学年度第二学期期中考试 初二数学【答案】及评分参考标准班级_____姓名_____学号_____成绩_____【一】选择题〔此题共30分每题3分,〕【二】填空题〔每题3分,共24分〕【三】解答题〔此题共26分,第19题每题5分,第20、21题每题5分,第22题每题6分〕 19.解方程(1)x 2(3)25-=解:35x -=±----------------------------3分 ∴1282x x ==-,------------------------5分〔2〕2610x x -+=解:261x x -=------------------------1分2698x x -+=-----------------------2分 2(3)8x -=--------------------3分图3图23x -=±分∴13x =+23x =-分另解:1a =,6b =-,1c =,--------------------------1分()224641132b ac -=--⨯⨯=-----------------2分x =3=±-------------------4分∴13x =+23x =-分20.如图,在□ABCD 中,AD =16cm ,AB =12cm ,DE 平分∠ADC 交BC 边于点E ,求BE 旳长度、解:∵四边形ABCD 是平行四边形,∴AD ∥BC , AB =CD =12cm ,AD =BC =16cm ,---------2分 ∵AD ∥BC∴∠ADE =∠DEC ,∵DE 平分∠ADC , ∴∠ADE =∠EDC , ∴∠DEC =∠EDC ,∴CE=CD =12cm ,----------4分 ∴BE=BC-CE =4cm.----------5分21.一个矩形旳长比宽多1cm ,面积是90cm 2,矩形旳长和宽各是多少?解:设矩形长为x cm ,那么宽为〔1x -〕cm ,--------------1分依题意得(x 1)90x -=--------------3分解得1210,9x x ==-〔不合题意,舍去〕--------------4分 答:矩形旳长和宽各是10cm 、9cm 、--------------5分 22、:关于x 旳一元二次方程2(21)20x m x m +++=、〔1〕求证:不管m 为何值,此方程总有两个实数根;〔2〕假设x 为此方程旳一个根,且满足06x <<,求整数m 旳值、 〔1〕证明:2(21)412m m ∆=+-⨯⨯ 2441m m =-+2(21)m =-、∵2(21)m -≥0,即∆≥0,--------------1分∴不管m 为何值,此方程总有两个实数根、-----------2分〔2〕解:因式分解,得(2)(1)0x m x ++=、B第19题B 因此得20x m +=或10x +=、解得12x m =-,21x =-、--------------4分∵10-<,而06x <<,∴2x m =-,即026m <-<、∴30m -<<、………………………………5分 ∵m 为整数,∴1m =-或2-、………………………………6分【四】解答题〔此题共20分,第23题6分,第24、25题每题,7分〕 23.如图,菱形ABCD 旳对角线相交于点O,延长AB 至点E,使BE=AB,连结CE. (1)求证:BD=EC;(2)假设∠E=50°,求∠BAO 旳大小. 〔1〕证明:∵菱形ABCD ,∴AB=CD ,AB ∥CD ,……………………………1分 又∵BE=AB ,∴BE=CD ,BE ∥CD , ∴四边形BECD 是平行四边形,…………………………2分 ∴BD=EC …………………………3分 〔2〕解:∵平行四边形BECD ,∴BD ∥CE ,∴∠ABO=∠E=57°,…………………………4分 又∵菱形ABCD , ∴AC 丄BD ,∴∠BAO=90°…………………………5分 ∴∠BAO+∠ABO=90°∴∠BAO=90°-∠ABO=33°、………………………………6分 24.:关于x 旳一元二次方程2251(21)0422a x a x a +++++=有实根、 〔1〕求a 旳值;〔2〕假设关于x 旳方程23210kx x k a ----=旳所有根均为整数,求整数k 旳值、 解:(1)∵关于x 旳一元二次方程2251(21)0422a x a x a +++++=有实数根. 22222514(21)4()42221(1)0a b ac a a a a a ∴-=+-++=-+-=--≥……………………1分1a ∴=……………………………2分〔2〕由1a =得2330kx x k ---=当k=0时,所给方程为-3x-3=0,有整数根x=-1、……………………………3分 当k ≠0时,所给方程为二次方程,有(1)(3)0x kx k +--= 12331,1k x x k k+∴=-==+……………………………5分 1,3k x k ∴=±±、为整数……………………………6分综上0,1,3k =±±.……………………………7分25.阅读以下材料:问题:如图1,在□ABCD 中,E 是AD 上一点,AE =AB ,∠EAB =60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG . 求证:EG =AG +BG .小明同学旳思路是:作∠GAH =∠EAB 交GE 于点H ,构造全等三角形,通过推理使问题得到解决.参考小明同学旳思路,探究并解决以下问题: 〔1〕完成上面问题中旳证明;〔2〕假如将原问题中旳“∠EAB =60°”改为“∠EAB =90°”,原问题中旳其它条件不变〔如图2〕,请探究线段EG 、AG 、BG 之间旳数量关系,并证明你旳结论.图1图2〔1〕证明:如图1,作∠GAH=∠EAB 交GE 于点H , 那么∠GAB=∠HAE 、……………………1分 ∵∠EAB=∠EGB ,∠AOE=∠BOF , ∴∠ABG=∠AEH 、 在△ABG 和△AEH 中GAB HAE AB AEABG AEH⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH 、……………………2分∴BG=EH ,AG=AH 、 ∵∠GAH=∠EAB=60°, ∴△AGH 是等边三角形、O∴AG=HG 、∴EG=AG+BG ;……………………3分〔2〕线段EG 、AG 、BG 之间旳数量关系是EG+BG=AG 、……………………4分 证明:如图2,作∠GAH=∠EAB 交GE 旳延长线于点H ,那么∠GAB=∠HAE 、 ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°、 ∴∠ABG=∠AEH 、……………………5分 在△ABG 和△AEH 中,∴△ABG ≌△AEH 、……………………6分 ∴BG=EH ,AG=AH 、∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形、 ∴AG=HG ,∴EG+BG=AG 、……………………7分【五】解答题〔此题共20分,第26、27题每题6分,第28题8分〕26、a 是方程2520x x +-=旳一个根,那么代数式22109a a +-旳值为﹏﹏-5﹏﹏﹏﹏;代数式32635a a a ++-旳值为﹏﹏﹏-3﹏﹏﹏﹏、……………………每空3分27、如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n 、①四边形A 2B 2C 2D 2是菱形;………1分②四边形A 3B 3C 3D 3是矩形;………2分 ③四边形A 5B 5C 5D 5旳周长是4m n +;………4分④四边形A n B n C n D n 旳面积是12n mn+、……6分28、假设一个四边形旳一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫那个四边形旳和谐线,那个四边形叫做和谐四边形、如菱形确实是和谐四边形、〔1〕如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC 、求证:BD 是四边形ABCD 旳和谐线;〔2〕图2和图3中有三点A 、B 、C ,且AB =AC ,请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点旳四边形旳两条对角线差不多上和谐线,并画出相应旳和谐四边形〔要求尺规作图,.......保留作图痕迹,不写作法...........〕; 〔3〕四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 旳和谐线,求∠BCD 旳度数、ABC D1A 1B 1C 1D2A2C2D 2B〔1〕证:〔1〕∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC、∵∠BAD=120°,∴∠ABC=60°、∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形、…………………1分在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是四边形ABCD旳和谐线;……………………2分〔2〕由题意作图为:图2,图3……………………4分〔在方框内用尺规作图,..........保留作图痕迹,.......不写作法....〕解〔3〕∵AC是四边形ABCD旳和谐线,∴△ACD是等腰三角形、∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°、∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°、……………………5分如图5,当AD=CD时,∴AB=AD=BC=CD、∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°……………………6分如图6,当AC=CD时法〔一〕:过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD、CE⊥AD,∴AE=AD,∠ACE=∠DCE、∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形、∴BF=AE、∵AB=AD=BC,图1∴BF=BC ,∴∠BCF=30°、 ∵AB=BC ,∴∠ACB=∠BAC 、∵AB ∥CE ,∴∠BAC=∠ACE , ∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°、……………………8分 法〔二〕:作DM ⊥AD ,作BM ⊥AB ,那么四边形ABMD 是正方形 ∴BC=B M ∵AC=CD∴∠CA D=∠CDA ∴∠BAC=∠C DM在△AB C和△DMC中AB BAC CDM AC ⎧⎪∠∠⎨⎪⎩=DM ==CD∴△ABC ≌△D MC、 ∴BC=C M,∠BCA=∠MC D ∴△BCM 为等边三角形∴∠C MD=150o∵MC=MD∴∠MC D=∠MDC =15o∴∠BCD=∠BCM -∠MC D=60°-15=45o……………………8分B。

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。

北京市西城区 2020-2021 学年度第二学期期末试卷附加题参考答案

北京市西城区 2020-2021 学年度第二学期期末试卷附加题参考答案

北京市西城区2020—2021学年度第二学期期末试卷 八年级数学附加题答案及评分参考2021.7一、填空题(本题6分) 1.解:(1……………………………………………………………………… 2分; ………………………………………………………………… 3分(2或 ………………………………………………………………… 5分(3)9. …………………………………………………………………………… 6分二、解答题(本题共14分,第2题6分,第3题8分)2.(1)解:如图1.∵Q ,M 分别是CD ,CE 的中点,∴QM ∥DE ,QM =12DE . …………… 1分 ∴∠CQM =∠CDE .∵△DCE 是等边三角形,∴∠CDE =60°.∴∠CQM =60°. ……………………… 2分∵P 是AD 的中点,∴PQ ∥AC ,PQ =12AC . ∴∠PQC =180°―∠ACD =180°―α.∴∠PQM =∠PQC +∠CQM =240°―α. …………………………………… 3分(2)证明:如图2.∵△ABC 和△DCE 都是等边三角形,∴AC=BC ,DE=CE ,∠ACB =∠DCE =∠E∵N 是BC 的中点,∴NC =12BC =12AC . ∴NC =PQ .同理CM =QM .∵∠NCM =360°―∠ACB ―∠ACD ―∠DCE =240°―α,∴∠NCM =∠PQM . …………………………………………………… 4分在△NCM 与△PQM 中,NC =PQ ,∠NCM =∠PQM ,CM =QM ,∴△NCM ≌△PQM .∴NM =PM ,∠NMC =∠PMQ . …………………………………………… 5分∴∠NMC+∠CMP =∠PMQ+∠CMP ,即∠NMP =∠CMQ .∵∠CMQ =∠E =60°,∴∠NMP =60°.∴△PNM 是等边三角形. ………………………………………………… 6分3.解:(1)①P 1,P 3; ………………………………………………………………… 2分 ②如图1所示;(2)如图2,与原点O 的“纵2倍直角距离”等于3的所有点组成的图形是四边形Q 1Q2Q 3Q 4.当直线2=+y x b 经过点Q 2(3,0)时,023=⨯+b ,解得6=-b ;当直线2=+y x b 经过点Q 4(3-,0)时,02(3)=⨯-+b ,解得6=b .∵直线2=+y x b 上恰好有两个点与原点O 的“纵2倍直角距离”等于3, ∴b 的取值范围是66-<<b . ……………………………………………… 6分(3)31-≤≤t 或37≤≤t . ……………………………………………………… 8分图1 图2。

2018–2019学年北京市西城区八年级(下)期末数学试卷

2018–2019学年北京市西城区八年级(下)期末数学试卷

2018–2019学年北京市西城区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)若在实数范围内有意义,则实数x的取值范围是()A.x≥1B.x≤1C.x<1D.x≠12.(3分)如图,在▱ABCD中,∠A+∠C=140°,则∠B的度数为()A.140°B.120°C.110°D.100°3.(3分)把一元二次方程x2﹣4x﹣1=0配方后,下列变形正确的是()A.(x﹣2)2=5B.(x﹣2)2=3C.(x﹣4)2=5D.(x﹣4)2=34.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,若∠AOD=120°,BD=6.则AB的长为()A.B.3C.2D.5.(3分)关于反比例函数y=的图象,下列说法中,正确的是()A.图象的两个分支分别位于第二、第四象限B.图象的两个分支关于y轴对称C.图象经过点(1,1)D.当x>0时,y随x增大而减小6.(3分)若关于x的一元二次方程(a﹣2)x2+2x+a2﹣4=0有一个根为0,则a的值为()A.±2B.±C.﹣2D.27.(3分)在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定△ABC是直角三角形的是()A.∠A+∠B=90°B.∠A+∠B=∠CC.a=1,b=3,c=D.a:b:c=1:2:28.(3分)12名同学分成甲、乙两队参加播体操比赛,已知每个参赛队有6名队员,他们的身高(单位:cm)如表所示:设这两队队员平均数依次为甲,乙,身高的方差依次为S2甲,S2乙,则下列关系中,完全正确的是()A.甲>乙,S2甲>S2乙B.甲<乙,S2甲<S2乙C.甲=乙,S2甲>S2乙D.甲=乙,S2甲<S2乙9.(3分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是()A.21m B.13m C.10m D.8m10.(3分)将一个边长为4cn的正方形与一个长,宽分別为8cm,2cm的矩形重叠放在一起,在下列四个图形中,重叠部分的面积最大的是()A.B.C.D.二、填空题(本题共20分,第11~14题,每小题3分;第15~18题.每小题3分)11.(3分)计算:()2=.12.(3分)若关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,则m的取值范围,13.(3分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若∠A=26°,则∠BDC的度数为.14.(3分)如图,菱形ABCD的两条对角线AC,BD交于点O,若AC=6,BD=4,则菱形ABCD的周长为.15.(2分)已知反比例函数y=,当1<x<2时,y的取值范围是.16.(2分)如图,正方形ABCD是由四个全等的直角三角形围成的,若AE=5,BE=12,则EF的长为.17.(2分)如图,在矩形ABCD,BE平分∠ABC,交AD于点E,F是BE的中点,G是BC的中点,连按EC,若AB=8,BC=14,则FG的长为.18.(2分)如图,在平面直角坐标系xOy中,A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长与这个双曲线的另一分支交于点B,以AB为底边作等腰直角三角形ABC,使得点C位于第四象限.(1)点C与原点O的最短距离是;(2)设点C的坐标为(x,y)(x>0),点A在运动的过程中,y随x的变化而变化,y关于x的函数关系式为.三、解答题(本题共50分,第19题3分,第20题8分,第21题6分,第22题5分,第23题7分,第24题6分,箱25题7分,第26题8分)19.(3分)计算﹣÷20.(8分)解下列方程(1)(x﹣3)2=25(2)x2﹣3x﹣1=021.(6分)已知关于x的一元二次方程x2+mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求m的取值范围.22.(5分)如图,在平直角坐标系xOy中,直线y=x+2与反比例函数y=的图象交于点P(1,a).(1)求点P的坐标及反比例函数的解析式;(2)点Q(n,0)是x轴上的一个动点,若PQ≤5,直接写出n的取值范围.23.(7分)如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.(1)求证:四边形AFCE是平行四边形;(2)若∠DAC=60°,∠ADB=15°,AC=4.①直接写出▱ABCD的边BC上的高h的值;②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→菱形→平行四边形D.平行四边形→菱形→平行四边形→矩形→平行四边形24.(6分)在平面直角坐标系xOy中,点P在函数y=(x>0)的图象上,过P作直线P A⊥x轴于点A,交直线y=x于点M,过M作直线MB⊥y轴于点B.交函数y=(x>0)的图象于点Q.(1)若点P的横坐标为1,写出点P的纵坐标,以及点M的坐标;(2)若点P的横坐标为t,①求点Q的坐标(用含t的式子表示);②直接写出线段PQ的长(用含t的式子表示).25.(7分)树叶有关的问题:如图1,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值.某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,整理如表:表1A树、B树、C树树叶的长宽比统计表表2A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表解决下列问题:(1)将表2补充完整;(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等.”②小李同学说:“从树叶的长宽比的平均数来看,我认为,如图3的树叶是B树的树叶.”请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图2中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由.26.(8分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC,过点C作FC⊥CE,且CF=CE.连接AE、AF,M是AF的中点,作射线DM交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求∠EAC与∠ADN的和的度数.四、填空题(本题共6分,第1题2分,第2题4分)27.(2分)甲、乙两人面试和笔试的成绩如表所示:某公司认为,招聘公关人员,面试成绩应该比笔试成绩重要,如果面试和笔试的权重分别是6和4,根据两人的平均成绩,这个公司将录取.28.(4分)如图,在平面直角坐标系xOy中,一次函数y1=ax+b与反比例函数y2=的图象交于点A(﹣2,1),B(1,﹣2).结合图象,直接写出关于x的不等式ax+b>的解集.五、解答题(本题共14分,每小题7分)29.(7分)如图1,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm,E,F分别是AB,BC 的中点,点P是对角线AC上的一个动点,设AP=xcm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1)画函数y1的图象①按表中自变量的值进行取点、画图、测量,得到了y1与x的几组对应值:②在图2所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象;(2)画函数y2的图象,在同一坐标系中,画出函数y2的图象;(3)根据画出的函数y1的图象、函数y2的图象,解决问题①函数y1的最小值是;②函数y1的图象与函数y2的图象的交点表示的含义是;③若PE=PC,AP的长约为cm30.(7分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K(﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.2018–2019学年北京市西城区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.【解答】解:由题意可知:x﹣1≥0,解得x≥1.故选:A.2.【解答】解:∵四边形ABCD是平行四边形∴∠A=∠C,∠A+∠B=180°,且∠A+∠C=140°∴∠A=70°∴∠B=110°故选:C.3.【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选:A.4.【解答】解:∵ABCD是矩形,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB为等边三角形,∵BD=6,∴AB=OB=3,故选:B.5.【解答】解:∵k=2>0,∴图象位于一三象限,故A不正确,反比例函数的图象关于直线y=x或y=﹣x成轴对称,不关于y轴对称,因此B是不正确的,∵1×1≠2,∴图象不过(1,1)点,因此C是不正确的,∵k=2>0,∴图象位于一三象限,在每个象限内,y随x的增大而减小因此D是正确的,故选:D.6.【解答】解:把x=0代入方程,得a2﹣4=0,解得a=2或a=﹣2,而a﹣2≠0,所以a的值为﹣2.故选:C.7.【解答】解:(D)设a=1,b=2,c=2,∵b=c>a,∴△ABC不是直角三角形,故D不能判断,故选:D.8.【解答】解:∵=(176+175+174+172+175+178)÷6=175(cm),=(170+176+173+174+180+177)÷6=175(cm),∴=,∵S2甲=[(176﹣175)2+2×(175﹣175)2+(174﹣175)2+(172﹣175)2+(178﹣175)2]=,S2乙=[(170﹣175)2+(176﹣175)2+(173﹣175)2+(174﹣175)2+(180﹣175)2+(177﹣175)2]=10,∴S2甲<S2乙.故选:D.9.【解答】解:如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=1米,CH=5米,设AB=AC=x米.在Rt△ACH中,∵AC2=AH2+CH2,∴x2=52+(x﹣1)2,∴x=13,∴AB=13(米),故选:B.10.【解答】解:A、S阴影=2×4=8(cm2);B、设重叠的平行四边形的较短边为x,则较长边为由正方形的面积=重叠部分的面积+2个小直角三角形面积,可得16=2×+4(4﹣x)可求x=,∴S重叠部分=2×2×=C、图C与图B对比,因为图C的倾斜度比图D的倾斜度小,所以,图C的底比图B的底小,两图为等高不等底,所以图C阴影部分的面积小于图B阴影部分的面积;D、S重叠部分==8﹣4故选:B.二、填空题(本题共20分,第11~14题,每小题3分;第15~18题.每小题3分)11.【解答】解:原式=3,故答案为:312.【解答】解:由题意可知:4﹣8m>0,∴m<;故答案为:m<13.【解答】解:∵∠ACB=90°,D是AB的中点,∴DC=AB=AD,∴∠DAC=∠A=26°,∴∠BDC=∠DAC+∠A=52°,故答案为:52°.14.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC=3,DO=BD=2,在Rt△AOD中,AD===,∴菱形ABCD的周长为4.故答案为:4.15.【解答】解:∵k=10>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=10,当x=2时,y=5,∴当1<x<2时,5<y<10.故答案为:5<y<10.16.【解答】解:∵正方形ABCD是由四个全等的三角形围成的,∴AE=BG=CF=DH=5,AH=BE=CG=DF=12,∠DAB=90°,∠DAH=∠ABE ∴EG=GF=FH=HF=7,∠ABE+∠BAE=90°,∴四边形EGFH是菱形,且∠AEB=90°∴四边形EGFH是正方形∴EF=EG=7故答案为:717.【解答】解:∵四边形ABCD是矩形,∴AB=CD=8,BC=AD=14,∠A=∠D=∠ABC=90°,∵BE平分∠ABC,∴∠ABE=∠ABC=45°,∴△ABE是等腰直角三角形,∴AB=AE,∴DE=AD﹣AE=AD﹣AB=14﹣8=6,∴CE===10,∵F是BE的中点,G是BC的中点,∴FG是△BCE的中位线,∴FG=CE=×10=5,故答案为:5.18.【解答】解:(1)由反比例函数的对称性可得OA=OB,△ABC是以AB为底边的等腰直角三角形,∴CO=AB=OA=OB,当AB落在直线y=x上时,AB的长度最短,此时A(1,1),B(﹣1,﹣1),C(1,﹣1)OA=OB=OC==,故答案为:;(2)如图,过点A作x轴的平行线,交过点C与y轴的平行线于点G,过点B作x轴的平行线交GC的延长线于点H,设点A、B的坐标分别为(a,b)、(﹣a,﹣b),ab=1,∵∠GAC+∠GCA=90°,∠GCA+∠BCH=90°,∴∠CBH=∠GAC,又AC=BC,∠CGA=∠BHC=90°,∴△CGA≌△BCH(AAS),∴AG=CH,即x﹣a=y+b…①,GC=BH,即:b﹣y=x+a…②,联立①②并解得:x=b,y=﹣a,即:xy=﹣ab=﹣1,故答案为:y=﹣,(x>0).三、解答题(本题共50分,第19题3分,第20题8分,第21题6分,第22题5分,第23题7分,第24题6分,箱25题7分,第26题8分)19.【解答】解:原式=2﹣=.20.【解答】解:(1)解:(x﹣3)2=25,开方得:x﹣3=±5,解得:x1=8,x2=﹣2;(2)x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,x=,x1=,x2=.21.【解答】解:(1)由于△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0,∴方程总有两个实数根;(2)由于(x﹣1)(x﹣m+1)=0,∴x=1或x=m﹣1,∵此方程有一个根是负数,∴m﹣1<0,∴m的取值范围是m<1.22.【解答】解:(1)∵直线y=x+2与反比例函数y=的图象交于点P(1,a),∴a=1+2=3.∴点P的坐标为(1,3),∴k=1×3=3,∴反比例函数的解析式为y=.(2)∵点P的坐标为(1,3),Q(n,0)是x轴上的一个动点,PQ≤5,由勾股定理得=4,∴1﹣4=﹣3,1+4=5,∴n的取值范围为﹣3≤n≤5.23.【解答】证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,AO=CO∴∠AEF=∠CFE,∠EAC=∠FCA,且AO=CO∴△AOE≌△COF(AAS)∴OF=OE,且AO=CO∴四边形AFCE是平行四边形;(2)①∵∠DAC=60°∴sin∠DAC=∴h=×AC=2②∵∠DAC=60°,∠ADB=15°,根据三角形得内角和定理得,∠AOD=105°,∴点E从D点向A点移动过程中,当∠AOE=90°时,EF⊥AC,∵OA=OC,∴AE=CE,∴平行四边形AECF是菱形;当∠BCE=90°时,平行四边形AECF是矩形,∴OE=OC,∠ACE=30°,∴∠OEC=30°,∴∠AOE=2∠ACE=60°,即:∠AOE=60°时,平行四边形AECF是矩形;综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.故选:D24.【解答】解:(1)∵点P在函数y=(x>0)的图象上,∴当点P的横坐标为1时,y=4,∴点P的纵坐标为4,∵P A交直线y=x于点M,∴当点P的横坐标为1时,y=1,∴点M的坐标为(1,1).(2)①∵点P的横坐标为t,点P在函数y=(x>0)的图象上,∴点P的坐标为(t,).∵直线P A⊥x轴,交直线y=x于点M,∴点M的坐标为(t,t).∵直线MB⊥y轴,交函数y=(x>0)的图象于点Q,∴点Q的坐标为(,t);②点P的坐标为(t,),点Q的坐标为(,t).∴PM=QM=|t﹣|,且△PQM是等腰直角三角形,∴线段PQ的长为|t﹣|.25.【解答】解(1)将B树叶的长宽的比从小到大排序处在第5、6位的两个数平均数为(2.0+2.2)÷2=2.1,因此中位数是2.1,出现次数最多的数是2.0,因此众数是2.0,补全的统计表如下:(2)小张同学的说法是合理的,C树叶的长宽比1:1左右;小李同学的说法是不合理的,该树叶来自A树,理由:观察该树叶其长是宽的6倍左右,应该是来自A树叶.(3)图2中,★表示这片树叶的数据,这片树叶来自B树;理由:这片树叶的长为103,宽为52,长宽的比大约为2.0,根据平均数可得它来自B数.26.【解答】证明:(1)①∵四边形ABCD是正方形∴∠ABE=∠ADF=90°,AB=BC=CD=AD∵CE=CF∴DF=BE,且AD=AB,∠ABE=∠ADF=90°,∴△ABE≌△ADF(SAS)∴∠BAE=∠DAF②∵M是AF的中点,∠ADF=90°∴AM=DM∴∠ADN=∠DAF,由①可知∠BAE=∠DAF∴∠BAE=∠ADN∵∠BAE+EAD=90°∴∠EAD+∠ADN=90°∴AN⊥DN(2)如图,延长AD至H,使得DH=AD,连接FH,CH.∵AD⊥CD,DH=AD∴AC=CH,∴∠CHA=∠CAD=45°∴∠ACH=90°=∠ECF∴∠ACE=∠HCF,且CE=CF,AC=CH∴△ACE≌△HCF(SAS)∴∠EAC=∠FHC∵M是AF的中点,D是AH的中点,∴DM∥FH∴∠ADN=∠AHF∴∠ADN+∠EAC=∠AHF+∠FHC=∠AHC=45°四、填空题(本题共6分,第1题2分,第2题4分)27.【解答】解:甲的平均成绩为:(86×6+92×4)÷10=88.4(分),乙的平均成绩为:(90×6+83×4)÷10=87.2(分),因为甲的平均分数较高,所以甲将被录取;故答案为:甲.28.【解答】解:关于x的不等式ax+b>的解集,实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,由图象的交点坐标可得:0<x<1或x<﹣2.故答案为:0<x<1或x<﹣2.五、解答题(本题共14分,每小题7分)29.【解答】解:(1)①由函数的对称性知,当x=0.5时,y1=0.71;②补全表格后描绘得到以下图象:(2)y1、y2关于x=2对称,故描点得到y2的图象,如下:(3)①从图象可以看出函数y1的最小值为:0.5,故答案为0.5;②函数y1的图象与函数y2的图象的交点点P到达点O处,故答案为:点P到达点O处;③PE=PC,即:y1=PC=AC﹣x=4﹣x,在图上画出直线l:y=4﹣x,直线l与y1的交点坐标为:x=2.5,y=1.58,故答案为2.5.30.【解答】解:(1)如图1中,①∵OA=1,OP1=1,OP4=1,∴P1,P4与点A是“中心轴对称”的,故答案为P1,P4.②如图2中,以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.易知E(,),F(,),观察图象可知满足条件的点E的横坐标x E的取值范围:≤x E≤.(2)如图3中,设GK交x轴于P.当一次函数y=x+b经过点G(﹣2,2)时,2=﹣2+b,b=2+2,当一次函数y=x+b经过点P(﹣2,0)时,0=﹣2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK 是“中心轴对称”的.根据对称性可知:当﹣2﹣2≤b≤﹣2时,线段MN与四边形GHJK是“中心轴对称”的.综上所述,满足条件的b的取值范围:2≤b≤2+2或﹣2﹣2≤b≤﹣2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区 2018—2019 学年度第二学期期末试卷
八年级数学
2019.7
1. 本试卷共 6 页,共三道大题,26 道小题,满分 100 分。考试时间:100 分钟。 考 2. 在试卷和答题卡上准确填写学校、班级、姓名和学号。 生 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 须 知 4. 在答题卡上,选择题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
中,完全正确的是
(A) x甲 > x乙 , s甲2 > s乙2
(B) x甲 < x乙 , s甲2 < s乙2
(C) x甲 = x乙 , s甲2 > s乙2
(D) x甲 = x乙 , s甲2 < s乙2
9.小红同学要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉
开 5 m 后,发现这时绳子的下端正好距地面 1 m,学校旗杆的高度是
(A)21 m
(B)13 m
(C)10 m
(D)8 m
10.将一个边长为 4 cm 的正方形与一个长,宽分别为 8 cm,2 cm 的矩形重叠放在一起.在下
列四个图形中,重叠部分的面积最大的是
(A)
(B)
(C)
八年级期末 数学试卷 第 2 页(共 6 页)
(D)
二、填空题(本题共 20 分,第 11~14 题,每小题 3 分;第 15~18 题,每小题 2 分)
19.计算 12 15 5
20.解下列方程:
(1) (x 3)2 25
(2) x2 3x 1 0
21.已知关于 x 的一元二次方程 x2 mx m 1 0 .
(1)求证:方程总有两个实数根;
(2)若方程有一个根为负数,求 m 的取值范围.
22. 如图,在平面直角坐标系 xOy 中,直线 y x 2 与
15.已知反 比 例 函 数
y
10 x
,当1
x
2时,y
的取值范围是___.
16.如图,正方形 ABCD 是由四个全等的直角三角形围成的, 若 AE=5, BE=12,则 EF 的长为____.
17.如图,在矩形 ABCD 中,BE 平分∠ABC,交 AD 于点 E, F 是 BE 的中点,G 是 BC 的中点,连接 EC.若 AB=8, BC=14,则 FG 的长为____.
11.计算 ( 3)2 ____.
12.若关于 x 的一元二次方程 x2 2x 2m 0 有两个不相等的实数根,则 m 的取值范围是 ___.
13.如图,在 Rt△ABC 中,∠ACB=90°,D 是 AB
的中点,若∠A=26°,则∠BDC 的度数为___°.
14.如图,菱形 ABCD 的两条对角线 AC,BD 交于点 O, 若 AC=6,BD=4,则菱形 ABCD 的周长为 .
随 x 的变化而变化,y 关于 x 的函数关系式为 .
八年级期末 数学试卷 第 3 页(共 6 页)
三、解答题本题(共 50 分,第 19 题 3 分,第 20 题 8 分,第 21 题 6 分,第 22 题 5 分,第 23 题 7 分,第 24 题 6 分,第 25 题 7 分,第 26 题 8 分)
(A) 2
(B) 2
(C) 2
(D) 2
7.在△ABC 中,∠A,∠B,∠C 的对边分别是 a ,b ,c,下列条件中,不.能.判定△ABC 是
直角三角形的是
(A)∠A+∠B = 90°
(B)∠A+∠B =∠C
(C)a = 1,b = 3,c = 10
(D)a : b : c = 1 : 2 : 2
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共 30 分,每小题 3 分)
下面各题均有四个选项,其中只有一.个.是符合题意的.
1.若 x 1 在实数范围内有意义,则实数 x 的取值范围是
(A) x ≥ 1
(B)x ≤ 1
(C)x < 1
(D)x > 1
2. 如图,在□ABCD 中,∠A+∠C=140°,则∠B 的度数为
(1)求证:四边形 AFCE 是平行四边形;
(2)若∠DAC=60°,∠ADB=15°,AC=4.
8.12 名同学分成甲、乙两队参加广播体操比赛,已知每个参赛队有 6 名队员,他们的
身高(单位:cm)如下表所示:
甲队 乙队
队员 1 176 170
队员 2 175 176
队员 3 174 173
队员 4 172 174
队员 5 175 180
队员 6 178 177
设这两队队员身高的平均数依次为 x甲 , x乙 ,身高的方差依次为 s甲2 , s乙2 ,则下列关系
(A)140°
(B)120°
(C)110°
(D)100°
3.把一元二次方程 x2 4x 1 0 配方后,下列变形正确的是
(A) (x 2)2 5
(B) (x 2)2 3
(C) (x 4)2 5
(D) (x 4)2 3
4.如图,在矩形 ABCD 中,对角线 AC,BD 交于点 O,若∠AOD=120°, BD=6,则 AB 的长为
18.如图,在平面直角坐标系
xOy
中,A
是双曲线
y
1 x
在 第一象限的分支上的一个动点,
连接 AO 并延长与这个双曲线的另一分支交于点 B,以 AB 为底
Байду номын сангаас
边作等腰直角三角形 ABC,使得点 C 位于第四象限.
(1)点 C 与原点 O 的最短距离是 ;
(2)设点 C 的坐标为(x,y)(x>0),点 A 在运动的过程中,y
反比例函数
y
k x
的图象交于点
P(1,a).
(1)求点 P 的坐标及反比例函数的解析式;
(2)点 Q(n,0)是 x 轴上的一个动点,若 PQ ≤ 5,
直接写出 n 的取值范围.
23.如图,在□ABCD 中,对角线 AC,BD 交于点 O,E 是 AD 上任意一点,连接 EO 并
延长,交 BC 于点 F.连接 AF,CE.
(A)
3 2
(B)3
(C) 2 3
(D) 3
5.关于反比例函数
y
2 x
的图象,下列说法中,正确的是
(A)图象的两个分支分别位于第二、第四象限
(B)图象的两个分支关于 y 轴对称
(C)图象经过点(1,1)
(D)当 x > 0 时,y 随 x 增大而减小
八年级期末 数学试卷 第 1 页(共 6 页)
6.若关于 x 的一元二次方程 (a 2)x2 2x a2 4 0 有一个根为 0,则 a 的值为
相关文档
最新文档