《圆的对称性》PPT课件2

合集下载

3.1.1圆的对称性(2)

3.1.1圆的对称性(2)

CE = DE.
AE − CE = BE − DE.

AC = BD.
练习
1、如图 圆O中,AB∥CD. 、 中
求证: 求证:∠AOC = ∠BOD.
证明: 证明:
由上例知 AC = BD
O · C A B D
∴∠AOC = ∠BOD
2、如图 圆O中,AB∥CD. 、 中 ∥ 求证: 求证:AC=BD.
相等 ……
A B
O · C
D
在同一个圆中,如果弧相等, 在同一个圆中,如果弧相等,那么 它们所对的圆心角相等吗? 它们所对的圆心角相等吗?所对的弦也 相等吗?你能讲出道理吗? 相等吗?你能讲出道理吗?
相等 ……
垂直于弦的直径平分这条弦所对的两条弧吗? 垂直于弦的直径平分这条弦所对的两条弧吗?
如图,直径CD垂直于弦 如图,直径 垂直于弦AB. 垂直于弦 根据定理1可得,直线 是线段 是线段AB的垂直平分线 根据定理 可得,直线CD是线段 的垂直平分线 可得 从而点A与点 关于直线 对称. 从而点 与点B关于直线 对称. 与点 关于直线CD对称
A B O · C D
在同一个圆中,如果圆心角相等, 在同一个圆中,如果圆心角相等, 那么它们所对的弧相等, 那么它们所对的弧相等,所对的弦也相等.
在同一个圆中,如果弦相等, 在同一个圆中,如果弦相等,那 么它们所对的圆心角相等吗? 么它们所对的圆心角相等吗?所对的 弧相等吗?你能讲出道理吗? 弧相等吗?你能讲出道理吗?
证明: 证明
∵ AB∥CD ∥

AC = BD
C A
O · D B
∴ ∠AOC =∠BOD 又 OC=OB OA=OD
∴△AOC≌△BOD ∴ AC=BD

2.2圆的对称性 (2)2

2.2圆的对称性 (2)2

C
在Rt AOC中,AO2 AC2 OC 2
设⊙O的半径为R, 则
R2 302 (R 10)2 R 50
2R 100cm,即内径为100cm的管道。
如图,水平放置的圆柱形排水管的截面为⊙Oቤተ መጻሕፍቲ ባይዱ 有水部分弓形的高为2,弦AB=4
求⊙O的半径.
问题:你知道赵州桥吗? 它的主桥是圆弧形, 它的跨度(弧所对的弦的长)为37.4m, 拱高(弧 的中点到弦的距离)为7.2m,你能求出赵州桥主 桥拱的半径吗?
例2、某居民区一处圆形下水管破裂,修理人 员准备更换一段新管道,如图,污水水面宽 度为60cm,水面至管道顶部距离为10cm,问 修理人员应准备内径多大的管道?
解:过点O作OC⊥AB,垂足为点
C,交⊙O与点D,连接OA。
AC 1 AB 30,
D
2 OC OD CD AO 10.
A
20 E
B
A
. 25
15
C
25
C
O7
D
24
E
B
.F
D
O
EF有两解:15+7=22cm 15-7=8cm
过圆内任意一点有没有最短的 弦和最长的弦,如果有请你把它找 出来
初中数学 九年级(上册)
2.2 圆的对称性 (2)2
垂径定理三种语言:
文字语言 定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
如图∵ CD是直径,
C
CD⊥AB,
A M└
B
●O
∴AM=BM,
A⌒C =B⌒C,
A⌒D=B⌒D.
D
图形语言
几何语言
老师提示: 垂径定理是圆中

24.2 圆的对称性2

24.2 圆的对称性2
(2 )到点B的距离都等于2cm的点组成的图形.
A
B
练习
设AB=3cm,作图说明满足下列要求的图形:
(3)到点A和点B的距离都等于2cm的所有点 组成的图形.
C
A
B
D
练习
设AB=3cm,作图说明满足下列要求的图形: (4)到点A和点B的距离都小于2cm的所有点 组成的图形.
A
B
练习
设AB=3cm,作图说明满足下列要求的图形: (5)到点A的距离小于2cm,且到点B的距离 大于2cm的所有点组成的图形.
定的一个端点O旋转一周,另一个 端点A随之旋转所形成的图形叫圆。 固定的端点O叫做圆心,线段OA叫 做半径。
定义二:圆是到定点的距离等于定
长的点的集合。
与圆有关的概念


A
连接圆上任意两点的线段 (如图AC)叫做弦,
B
经过圆心的弦(如图中 的AB)叫做直径.
C
注意 (1)直径是弦,但弦不一定是直径
(2)直径是最长的弦

圆上任意两点间的部分叫做圆弧,简称弧.以A、B
为端点的弧记作 AB ,读作“圆弧AB”或“弧AB”。
圆的任意一条直径的两个端点把圆分成两条弧,每一 条弧都叫做半圆。
B

A
C
劣弧与优弧
小于半圆的弧(如图中的 AC )叫做劣弧;
大于半圆的弧(用三个字母表示,如图中的 ABC ) 叫做优弧。
B

A
C
思考
• o 同圆内,半径有无数条, 长度都相等。
思考
• o 同圆内,直径有无数条, 长度都相等。
同步练习
判断下列说法的正误:
(1)弦是直径; (2)半圆是弧; (3)过圆心的线段是直径; (4)半圆是最长的弧; (5)直径是最长的弦; (6)圆心相同,半径相等的两个圆是同心圆。

《圆的对称性》课件

《圆的对称性》课件

总结词
阐述圆的基本属性
详细描述
圆具有许多基本的性质,包括其对称性、弧长与角度的关系、圆周角定理等。这 些性质是理解圆更深层次特性的基础。
圆的应用
总结词
列举圆在日常生活中的实际应用
详细描述
圆在日常生活和科学中有着广泛的应用,包括几何学、物理学、工程学和天文学等领域。例如,轮胎的设计、管 道的铺设、天文望远镜的制造等都涉及到圆的知识。
详细描述
自然界中的圆对称性,如花朵、树叶、果实 等,这些自然形态的圆对称性不仅美化了我 们的生活,还揭示了生命的奥秘和自然法则 。这种圆对称性的存在,使得生物能够更好 地适应环境,提高生存和繁衍的机会。
艺术创作中的圆对称性
要点一
总结词
艺术创作中的圆对称性,能够创造出和谐、平衡和完美的 艺术效果,是艺术家们常用的表现手法之一。
旋转变换
旋转变换定义
在平面内,将图形绕某一 定点旋转一定的角度,但 不改变图形的大小和形状 。
旋转变换性质
图形在旋转过程中,其内 部任意两点之间的距离保 持不变,且与旋转的角度 和中心点位置无关。
旋转变换的应用
在几何、解析几何等领域 中都有广泛的应用,如三 角形的旋转、极坐标系中 的角度变化等。
轴对称变换
平移变换
01Leabharlann 0203平移变换定义
在平面内,将图形沿某一 方向平行移动一定的距离 ,但不改变图形的大小和 形状。
平移变换性质
图形在平移过程中,其内 部任意两点之间的距离保 持不变,且与平移的方向 和距离无关。
平移变换的应用
在几何、代数、解析几何 等领域中都有广泛的应用 ,如平行线、平行四边形 、函数图像等。
02
圆的对称性

5.2圆的对称性(二)

5.2圆的对称性(二)
求弦AB的长. 已知r、d,求a

1 2
2
a



d2

R2
变式3:在半径为5㎝的⊙O 总常结用:的已辅知助四线个:量中
中,弦AB=8cm,OE⊥AB于E交 的①任作意半两径个②量过,圆总心可作
⊙O于F,求EF的长.
以弦求的出垂其线余(两段个)量.
已知a、r,求h
例题导学
例2、已知:如图,在以O为圆心的两个同心 圆中,大圆的弦AB交小圆于C,D两点.你认为 AC和BD有什么关系?为什么? 解:AC=BD
E O

D
2、 在⊙O中弦CD=24,圆心O到
弦CD的距离为5,则⊙O的直径是 C
•o
EF
D
___2_6___
A
3、 若AB为⊙O的直径,弦
CD⊥AB于E,AE=16,BE=4,
D
O• E
则CD=___1_6___
C
B
如B⌒图D相,等AB吗、?C为D什是么⊙?O的两条平行弦,A⌒C与
解:AC = BD
A
Dx
B
设CD=xcm,则AO=OC=(x+4)cm
10 C
在Rt△AOD中,AD2 OA2 OD2 (x 4)2 42
在Rt△ACD中,AD2 AC2 CD2
2
10 x2
(x 4)2 42
2
10 x2
x1 1, x2 5(舍去) OC 5cm
∵ OE⊥AB
∴ AB=2AE=8cm
大刀阔斧
变式3:在半径为5㎝的⊙O中,弦AB=8cm,
OE⊥AB于E交⊙O于F,求EF的长.
解:连接OA,则OA=5cm

圆的轴对称性课件

圆的轴对称性课件

圆的轴对称性的基本元素

圆是一个闭合的曲线,由一系列 等距离于圆心的点组成。
对称轴
对称轴是一个直线,将圆分成两 个对称的部分。
对称中心
对称中心是指图形中心点关于对 称轴的镜像对称点。
圆的轴对称性的性质
性质一
对称轴上的任意两点,在旋转180度后仍然保持 重合。
性质三
通过使用圆的轴对称性,可以轻松地构建出美 丽而复杂的图形和图案。
3
数学与几何
圆的轴对称性是几何学中一个重要的概念,用于研究图形的对称性和相似性。
练习题和答案解析
1 题目一
如何判断一个图形是否具有圆的轴对称性?
2 答案一
如果一个图形可以沿着一条直线旋转180度后 与原图形重合,那么它具有圆的轴对称性。
3 题目二
请举例说明圆的轴对称性在日常生活中的应 用。
4 答案二
圆的轴对称性的特点
1 无限的对称轴
圆具有无数个对称轴,因为每条通过圆心的 直线都是它的对称轴。
2 完美的平衡
圆的轴对称性使得图形在旋转时能够保持完 美的平衡和和谐。
3 不变的形状
无论如何旋转圆,它的形状始终保持完全不 变。
4 多样化的图案
通过使用不同的对称轴和图案,可以创造出 各种美丽的圆形图案。
圆的轴对称性ppt课件
欢迎来到本次精彩的PPT课件!在这个课件中,我们将深入探讨圆的轴对称性, 了解它的定义、特点、基本元素、性质以及应用。通过练习题和答案解析, 巩固你的知识,并最终总结要点。让我们一起来领略圆的轴对称性的魅力吧!
什么是轴对称性?
轴对称性是指一个图形具有对称轴,当图形沿着这个轴旋转180度时,能够完全重合。
圆的轴对称性在日常生活中的应用包括对称 的艺术品、建筑结构的平衡设计,以及判断 图形的相似性等。

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
在同圆或等圆中,如果两条弦相等,你能得出什么 结论?
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°

华师大版九年级数学下册第二十七章《圆的认识(圆的对称性2)》优质课课件

华师大版九年级数学下册第二十七章《圆的认识(圆的对称性2)》优质课课件

这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
You made my day!
倍 速 课 时 学 练
我们,还在路上……
解:连结OA,作OE⊥AB于E,则
OE=3cm,AE=BE
A
∵AB=8cm
∴AE=4cm
E
B

•o
在Rt中有 OA= OE2 AE2
= 32 42
=5cm ∴ ⊙O的半径为5cm
解后指出:从例2看出圆的半径OA, 圆心到弦的垂线段OE及半弦长AE构 成Rt△AOE.把垂径定理和勾股定理 结合起来,解决这类问题就显得很 容易了。
(4)多方练习,分层评价.
• 练习:
A组 在圆中某弦长为8cm,圆的直径是10cm,
则圆心到弦的距离是(
)cm
C
答案:3
•o
E
D
B组 在圆o中弦CD=24,圆心到弦CD的距离
为5,则圆o的直径是(
)
C
E
O•
D
答案:26
A
C组 若AB为圆O的直径,弦CD⊥AB于E,
AE=16,BE=4,则CD=(
)
例1、如图,在⊙O中,A⌒C =B⌒D ∠1=45o,求∠2的度数。


解Байду номын сангаас∵
⌒⌒
AC =BD
∴ ⌒ ⌒⌒ ⌒
AD-BC=BD-BC
∴ ⌒AB =C⌒D
∴ ∠2=∠1=45°
B
C
A
2
D
1
O
我们还知道:圆是轴对称图形,它的任意一条直 径所在的直线都是它的对称轴。
试一试,我们如何十分简捷地将一个圆2等分,4 等分,8等分。

第3课时圆的对称性(2)

第3课时圆的对称性(2)

弦心距的概念
弦心距
O A C B
OC
圆心角、弧、弦、弦心距之间的关系
在两个等圆中,做∠AOB=∠A’O’B’
B O A
O' B' A'
这两个相等的圆心角所对的弦分别是哪两条? 它们相等吗? 用尺量一量! 这两个相等的圆心角所对的弧分别是哪两条? 它们相等吗? 用什么方法验证? 叠合法
圆心角、弧、弦、弦心距之间的关系
圆的对称性(2)
圆心角、弧、弦、弦 心距之间的关系
做一做,想一想:
1.请同学们画两个等圆,并把其中一个圆剪下, 让两个圆的圆心重合,使得其中一个圆绕着圆心 旋转,由此,你发现了什么?
结论:
圆中心对称圆形,对称轴中心是圆心.
圆心角、弧、弦、弦心距之间的关系
圆是轴对称图形
O
对称轴是任意一条过 圆心的直线 圆是中心对称图形 对称中心为圆心
我们已经学过的图形中,有哪些既是轴 对称图形,又是中心对称图形 ?
同圆、等圆的概念:
同圆
O
能够重合的两个圆
等圆
半径相等的两个圆
O
同圆或等圆的半径相等
O'
圆心角的概念
B A
圆心角
O C D
∠AOB ∠COD ∠AOC ∠BOD
等弧的概念
D
弦 弧
B
C
A
等弧
在同圆或等圆中,能够互相重合的两条弧 叫做等弧
圆心角、弧、弦、弦心距之间的关系
A

C
O B
AB = CD
?!

O'
在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等
D
圆心角、弧、弦、弦心距之间的关系

圆的轴对称性PPT课件

圆的轴对称性PPT课件
C
CC
C C
A A
A
CC C D D C
O
O
OO
A
AA
B BB
O O
B B
O O
O
A A
O O B
AA

D DD
DD D
② ②

B B B

① ①
③ ③
⑤ ⑤
探索规律
• AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M.

下图是轴对称图形吗?如果是,其对称轴是什么?
C
A
• 你能发现图中有哪些等量关系?与同伴说 说你的想法和理由.
A O
B D
2.在半径为5cm的⊙ O中,弦AB∥CD,且 AB=6cm,CD=8cm,求AB,CD之间的距离 3.如图,∠C=90°,⊙C与 AB交于点D,AC=5,CB=12, 求AD的长
A C B D
一、圆是轴对称图形,其对称轴是 任意一 条过圆心的直线(或直径所在直线.) 并且平分弦所对的弧. 三、垂径定理和勾股定理相结合,构造 直角三角形,可解决计算弦长、半 径、圆心到弦的距离等问题.

O
如何确定圆形纸片的圆心?说 说你的想法。
将圆纸片对折,确定出圆的一条直径; 用同样的方法,再确定出圆的另一条直 径.两条直径的交点即为圆形纸片的圆 心.
(1)判断下列图形是否具有对称性? 如果一个对称图形与圆具有相同 如果是中心对称图形,指出它的对称 的对称中心或对称轴,那么它和 中心,如果是轴对称图形,指出它的 对称轴。 圆组成的新图形也是对称图形.
O
解:过O点作OE⊥AB, 垂径定理和勾股定理相结合,构
造直角三角形,把圆的问题化归 并延长OE交⊙O于F,连接 为直线形问题解决。

圆的对称性2

圆的对称性2
1、了解10的弧的意义,理解圆心角的度数与所 对弧度数相等的关系; 2、能够熟练运用圆的对称性及相关性质定理进 行简单的计算和证明; 3、通过小组合作学习中,培养学生 的合作交流意识与习惯。
已知 AB = CD 你能得到什么结论?
(可以添加线段)
.A .B
... O
..ห้องสมุดไป่ตู้
CD
(1)线段AB=5cm,CD=5cm,两条线段相等吗? (2)AB的长为5cm,CD的长为5cm,两条弧相 等吗? (3)“弧相等”指什么相等?
(1)弧的弯曲程度可以用度数来刻画,那 么弧的度数是怎么定义的呢?什么是1度的 弧? (2)10 的弧所对的圆心角的的度数是多少? 反过来呢? (3)700的弧所对的圆心角的度数是 多少? (4)n0的弧所对的圆心角的度数是多 少?
1. 如图4-15,在⊙O中,已知弦AB所对的劣弧
为圆的
1 3
,⊙O的半径为R,求弦AB的长。
...O
A
B
已知⊙O的半径为R,弦AB长为 R, 试求弧AB的度数。
2. 如图4-16,已知AB,CD为 ⊙O的两条直径, 弦CE∥AB,∠BOD=1100,求弧CE的度数。
D A
E
O
B C
(1)了解了10的弧的意义;
(2)知道了圆心角的度数与它所 对弧的度数相等的关系。
大演草:习题5.3第1,2,3(画图)

九上数学课件 圆的对称性(课件)

九上数学课件  圆的对称性(课件)
A
则AC与AE的大小关
系是 AC=AE .
C
D B
O
2.如图,在△ABC中,
∠C=90°,∠A=25°,以点C
为圆心,BC为半径的圆交
AB于点D,交AC于点E,
则弧BD度数5为0°
.
B D
C
EA
能力提升: 我们已经知道在⊙O中,如果2∠AOB=∠COD,则 C⌒D=2A⌒B,那么CD=2AB也成立吗?若成立,请说明 理由;若不成立,那它们之间的关系又是什么?
B D OC A
知 一 推 三
1.判断题 (1)等弦所对的弧相等.
(× )
(2)等弧所对的弦相等.
(√ )
(3)圆心角相等,所对的弦相等. ( × )
2.弦长等于半径的弦所对的 圆心角等于 60 ° .
弧、弦与圆心角关系定理的推论
在同圆或等圆中,如果 两个圆心角、两条弧、两条 弦中有一组量相等,那么它 们所对应的其余各组量都分 别相等.
( ( ( (
( (
填一填: 如图,AB、CD是⊙O的两条弦.
(1)如果AB=CD,那么_A_B_=__C_D___,∠__A_O_B__=_∠__C_O_D_. (2)如果AB=CD ,那么_A_B__=_C_D___,∠_A_O__B_=_∠__C_O__D__.
(3)如果∠AOB=∠COD,那么__A__B_=__C_D___,A__B_=_C__D___.
2AB>CD
AB C
O
E
D
如图,已知⊙O与△ABC三
A
边均相交,在三边上截得的
D
H
线段DE=FG=HK,∠A= 50°,则∠BOC的度数
N
Q
O E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/
PPT课件:/kejian/ 数学课件:/kejian/shuxue/
英语课件:/kejian/yingyu/ 美术课件:/kejian/meishu/
圆的相关概念
• 圆上任意两点间的部分叫做圆弧,简称弧.
以A,B两点为端点的弧.记作 A⌒B,读作“弧AB”. 小于半圆的弧叫做劣弧,如记作 A⌒B (用两个字母). 大于半圆的弧叫做优弧,如记作 A⌒DB
(用三个字母).
连接圆上任意两点间的线段叫做弦
B
(如弦AB).
经过圆心的弦叫做直径(如直径AC).
∴当圆沿着直径CD对折时,点A与点B
D
重合, ⌒ AC和B⌒C重合, ⌒ AD和B⌒D重合.
∴ A⌒C = B⌒C,
⌒AD = ⌒BD.
探究一:垂径定理的三种语言
定理 垂直于弦的直径平分弦以及弦所对的两条弧.
C
∵ CD是直径,
A
B
M└
CD⊥AB,
●O
∴ AM=BM,
⌒ ⌒⌒ ⌒
AC = BC, AD = BD.
科学课件:/kejian/kexue/ 物理课件:/kejian/wuli/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
少条对称轴?
圆的对称轴是任意一条经过
圆心的直线,它有无数条对称轴.
∴当圆沿着直径CD对折时,点A与点B
重合, ⌒AC和⌒BC重合, ⌒ AD和B⌒D重合. ∴ A⌒C = ⌒BC, ⌒AD用构造等腰三角形得出上面的等量关
系?证明:连接OA,OB, 则OA=OB.
C
∵CD⊥AB于M
A
M└
●O
B ∴AM=BM.
∴点A和点B关于CD对称. ∵⊙O关于直径CD对称,
A
●O
C
D
自主学习:
1、圆是轴对称图形吗? • 圆是轴对称图形.
如果是,它的对称轴是什么?你能找到多 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuwen/
自主学习:
• 如图,小明的理由是:
角 能 • 连接OA,OB, 则OA=OB.
形不 得能 出试
在Rt△OAM和Rt△OBM中,
C
∵OA=OB,OM=OM,
A
M└
B
上 着 ∴Rt△OAM≌Rt△OBM.
●O
面利 的用
∴AM=BM.
等 构 ∴点A和点B关于CD对称.
D
量 造 ∵⊙O关于直径CD对称,
关等 系腰 ?三
●O
2.已知⊙O的直径AB=10,弦CD ⊥AB,
垂足为M,OM=3,则CD= 8 .
B
3.在⊙O中,CD ⊥AB于M,AB为直径, 若CD=10,AM=1,则⊙O的半径是 13 .
赵州石拱桥
• 1400多年前,我国隋朝建造的赵州石拱桥(如图) 的桥拱是圆弧形,它的跨度(弧所对是弦的长)为 37.02m,拱高(弧的中点到弦的距离,也叫弓形高) 为7.23m,求桥拱的半径(精确到0.1m).
课后提升:
船能过拱桥吗
如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出 水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出 水面2米的货船要经过这里,此货船能顺利通过这座拱 桥吗?
感谢您的阅读! 为了便于学习和使用,本 文档下载后内容可随意修 改调整及打印。 欢迎下载!
3.1 圆的对称性
---垂径定理
学习目标:
• 理解圆的轴对称性及其相关性质; • 理解垂径定理; • 会运用垂径定理解决有关问题。
重点、难点:
垂径定理及其应用。
预习案的交流与展示:
知识准备:
什么是轴对称图形?我们曾经学过哪些轴 对称图形?
如果一个图形沿一条直线对折, 直线两旁的部分能够互相重合,那 么这个图形叫轴对称图形。如线段、 角、等腰三角形、矩形、菱形、等 腰梯形、正方形等。
●O
你是用什么方法找到对称轴的? 利用折叠的方法即可解决上述问题.
自主学习:
2、按下面的步骤做一做: 1)拿出一张圆形纸片,把这个圆对折, 使圆的两半部分重合. 2)得到一条折痕CD. 3)在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,
其中,点M是两条折痕的交点,即垂足. 4)将纸打开,新的折痕与圆交于另一点B,如上图. 在上述的操作过程中,你发现了哪些相等 的线段和相等的弧? 它们为什么相等呢?
求证:OA=OB。
探究二:垂径定理的应用
A
例2:如图,已知在⊙O 中,弦AB的长为8厘米, 圆心O到AB的距离为3厘 米,求⊙O的半径。
E
B
.
O
实际应用
如(中即图C图D,中=一60C⌒条0Dm公,,E路点为的oC是⌒转D弯C⌒上D处一的是点圆一,段心且圆),弧其
OE⊥CD ,垂足为F,EF=90m,求这段 弯路的半径。
C E
FD O
挑战自我:
如图,P为⊙O内一点,你能用尺规作⊙O的 一 条弦AB,使点P恰为AB的中点吗? 说明你的理由。
你说、我说、大家说:
当堂达标:
1.在⊙O中,若CD ⊥AB于M,AB为直径, A
则下A列、结A⌒C论=不A⌒D正确的B、是B(⌒C=CB⌒)D
C
D
M└
C、AM=OM D、CM=DM
D
①一条直径 条件
②垂直于弦
③直径平分弦 结论 ④平分弦所对的劣弧
⑤平分弦所对的优弧
同步训练:
在下列图形中,你能否利用垂径定理找到相等的线段
或相等的圆弧?
D
A
B
E
A
O
O
CE
O
A
E
B
B
C
A
C D
O
E
C
D
AE
B
D
O
BA
E
B
C
探究二:垂径定理的应用
例1:如图,以△OAB的顶点O为圆心的⊙O 交AB于点C、D,且AC=BD。
相关文档
最新文档