高中数学《古典概型》公开课优秀教学设计

合集下载

.2.1古典概型(教学设计)

.2.1古典概型(教学设计)

3.2.1古典概型(教学设计)3.2.1古典概型(教学设计)宁夏彭阳县第一中学 张有花一、 教材分析(一) 教材地位、作用《古典概型》是高中数学人教A 版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。

是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。

(二)教材处理:学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。

他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。

通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。

对典型例题进行分析,以巩固概念,掌握解题方法。

二、三维目标知识与技能目标:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)理解古典概型的概率计算公式 :P (A )=总的基本事件个数包含的基本事件个数A (3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。

古典概型教学设计(汇总5篇)

古典概型教学设计(汇总5篇)

古典概型教学设计(汇总5篇)篇1:古典概型教学设计古典概型教学设计一、教材分析本节课的内容选自《一般高中课程标准试验教科书数学必修3(A)版》第三章中的3.2.1节古典概型。

它支配在随机大事之后,几何概型之前,同学还未学习排列组合的状况下教学的。

古典概型是一种特不的数学模型,也是一种最基本的概率模型,在概率论中占有重要的地位,是学习概率必不行少的内容,同时有利于理解概率的概念及利用古典概型求随机大事的概率。

二、教学目标依据本节教材在本章中的地位和大纲要求以及同学实际,本节课的教学目标制定如下:①结合一些具体实例,让同学理解并把握古典概型的两个特征及其概率计算公式,培育同学猜想、化归、观看比较、归纳询问题的力气。

②会用列举法计算一些随机大事所含的基本领件数及大事发生的概率, 渗透数形结合、分类争辩的思想方法。

③使同学初步学会把一些实际询问题转化为古典概型,关键是要使该询问题是否中意古典概型的两个条件,培育同学对各种不同的实际状况的分析、推断、探究,培育同学的应用力气。

三、教学的重点和难点重点:理解古典概型的含义及其概率的计算公式。

难点:如何推断一个试验是否为古典概型,分清在一个古典概型中某随机大事包含的基本领件的个数和试验中基本领件的总数。

四、学情分析高一(x)班是一个xx班,同学数学基础比较薄弱,对数学的了解比较浅显,课堂同意容量较低。

本课的学习是建立在同学基本了解了概率的意义,把握了概率的基本性质,明白了互斥大事和对立大事的概率加法公式。

同学基本具备了确信的归纳、猜想力气,但在数学的应用意识与应用力气方面尚需进一步培育。

多数同学能够乐观参与争论,但在合作沟通意识方面,进展不够均衡,有待加强。

五、教法学法分析本节课属于概念教学,依据这节课的.特点和同学的认知水平,本节课的教法与学法定为:为了培育同学的自主学习力气,激发学习爱好,借鉴布鲁纳的发觉学习理论,在教学中实行以询问题式引导发觉法教学,利用多媒体等手段,引导同学进行观看争辩、归纳总结。

古典概型公开课教案

古典概型公开课教案

古典概型公开课教案第一章:古典概型的概念与特点1.1 古典概型的定义1.2 古典概型的特点1.3 古典概型与实际问题的联系第二章:排列与组合2.1 排列的概念与计算方法2.2 组合的概念与计算方法2.3 排列与组合在实际问题中的应用第三章:概率的基本性质3.1 概率的定义与性质3.2 概率的基本运算法则3.3 条件概率与独立事件的概率第四章:互斥事件与概率计算4.1 互斥事件的定义与性质4.2 互斥事件的概率计算方法4.3 相互独立事件的概率计算方法第五章:古典概型应用案例分析5.1 抽奖活动中的古典概型问题5.2 扑克牌游戏中的古典概型问题5.3 随机抽选问题中的古典概型应用教学目标:1. 理解古典概型的概念与特点,能够识别和应用古典概型解决实际问题。

2. 掌握排列与组合的计算方法,能够运用排列与组合解决相关问题。

3. 理解概率的基本性质,掌握概率的基本运算法则,能够计算简单事件的概率。

4. 理解互斥事件与相互独立事件的性质,掌握其概率计算方法。

5. 能够分析实际问题中的古典概型,并运用相关知识解决案例问题。

教学方法:1. 采用讲解、案例分析、互动讨论等方式进行教学,引导学生理解和掌握古典概型的相关概念和计算方法。

2. 通过实际案例分析,让学生感受古典概型在现实生活中的应用,培养学生的实际问题解决能力。

3. 引导学生运用概率的基本性质和运算法则,解决互斥事件和相互独立事件的概率计算问题。

4. 提供适量的练习题,巩固学生对古典概型的理解和应用能力。

教学评估:1. 通过课堂讲解和案例分析,观察学生对古典概型的概念和特点的理解程度。

2. 通过作业和练习题的完成情况,评估学生对排列与组合计算方法的掌握情况。

3. 通过解答概率计算问题,评估学生对概率的基本性质和运算法则的应用能力。

4. 通过案例分析报告,评估学生对古典概型在实际问题中应用的能力。

教学资源:1. 教案、PPT课件、案例分析材料等教学资料。

高中数学教案古典概型

高中数学教案古典概型

高中数学教案古典概型
教学目标:
1. 了解古典概型的概念和基本原理。

2. 能够应用古典概型解决实际问题。

3. 培养学生的逻辑思维和数学分析能力。

教学重点和难点:
1. 熟练掌握古典概型的计算方法。

2. 能够灵活应用古典概型解决不同类型的问题。

教学内容:
1. 古典概型的概念和性质。

2. 古典概型的计算方法。

3. 古典概型在实际问题中的应用。

教学过程:
一、导入(5分钟)
教师通过举例引入古典概型的概念,并激发学生对此的兴趣。

二、讲解(10分钟)
1. 讲解古典概型的定义和基本原理。

2. 介绍古典概型的计算方法。

三、练习(15分钟)
教师布置几道古典概型的练习题,让学生独立思考和解答。

四、拓展(10分钟)
让学生结合实际问题进行古典概型的应用,培养学生的问题解决能力。

五、总结(5分钟)
总结本节课所学内容,强化学生对古典概型的理解和掌握。

六、作业(5分钟)
布置相关的作业,巩固学生对古典概型的应用能力。

板书设计:
古典概型
1. 定义和性质
2. 计算方法
3. 应用实例
教学反思:
通过本节课的教学,学生能够掌握古典概型的基本概念和计算方法,能够灵活应用古典概型解决实际问题。

通过不断练习和实践,可以进一步提高学生的数学分析能力和解决问题的能力。

古典概型优秀教学设计

古典概型优秀教学设计

古典概型优秀教学设计古典概型优秀教学设计古典概型也叫传统概率、其定义是由法国数学家拉普拉斯提出的。

古典概型优秀教学设计是小编想跟大家分享的,欢迎大家浏览。

【教学目标】1.知识与技能:1)掌握随机事件、必然事件、不可能事件的概念。

2)了解随机事件发生的不确定性和频率的稳定性,进一步认识随机现象,了解概率的意义;2.过程与方法:通过经历数学实验,观察、发现随机事件的统计规律性,了解通过大量重复试验,用频率估计概率的方法;3. 情感、态度、价值观:通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性和必然性的对立统一.【教学重点】概率的意义.【教学难点】通过观察数据图表,总结出在大量重复试验的情况下,随机事件的发生所呈现出的规律性.【教学方法】教师启发引导与学生自主探索相结合.【教学手段】投影和计算机辅助教学.【教学流程】考察概括【教学过程】一、创设情境,体会随机事件发生的不确定性1.展示生活实例1:“麦蒂的35秒奇迹”从同学们都很感兴趣的篮球比赛说起,介绍比赛最后时刻的情形.为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进了吗?设计意图从学生感兴趣的生活实例引入,一方面是为了激发学生的听课热情,另一方面也是让学生体会学习随机事件及概率的原因和必要性.抓住生活实例中包含数学思维的部分进行提问,引导学生用数学的眼光观察、认识我们生活的世界,对生活中的现象和感性认识进行理性思考.2.展示生活实例2:杜丽北京奥运夺金我们都曾非常关注北京2008奥运会,大家知道这名中国射击运动员的名字吗?为什么射击比赛中每一枪都如此扣人心弦呢?设计意图奥运会是社会热点话题,可以增强学生的国家自豪感.3.展示生活实例3:“石头、剪刀、布”再看发生在我们身边的实例,甲、乙两个同学想看同一本好书,于是采用“石头、剪刀、布”的方式决定谁先看.那么能够预先确定甲和乙谁获胜吗?设计意图回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.二、归纳共性,形成随机事件的概念从数学的角度研究事件时我们主要关注事件是否发生,结果能否预先知道,从结果能够预知的角度看,能够发现以上事件的共同点吗?设计意图有了前面的基础,此时学生能够有效的概括、抽取上述生活体验的共性.在数学上研究事件时,主要关注在相应的条件下,事件是否发生,因此在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散. 以上这些事件都是可能发生也可能不发生的事件.那么在自己的身边,还能找到此类的事件吗?有没有不属于此类的事件呢?通过以上思考,发现事件可以分为以下三类:必然事件:在一定的条件下必然要发生的事件;不可能事件:在一定的条件下不可能发生的事件;随机事件:在一定的条件下可能发生也可能不发生的事件.事件的表示:用大写字母A、B、C??表示设计意图在形成概念之前,通过主动的思考,在自己身边举例,巩固学生对随机事件的思维基础;二是通过对比,明确事件分类的标准和概念之间的差异. 巩固练习三、深入情境,体会随机事件的规律性我们看到,随机事件在生活中是广泛存在的.,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们走入校门的时候内心涌动着好奇与兴奋;因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.我们生活在一个充满了随机事件的世界当中.同时,我们身边也有一些意外是随机事件,那我们是不是因此而时刻都充满着恐慌呢?实现自己的目标这也是个随机事件,我们是不是就因此而放弃了今天的努力了呢?我们没有,这就说明随着我们在每天的生活中不断地接触随机事件我们对他发生的规律性有了一些感性的认识,那么接下来我们将对此做一些理性思考设计意图这一段教学首先表现了随机事件带给人们丰富多彩的生活,体现了教师对数学、对概率的喜爱和热情,传递给学生学习数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的作用,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验已经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探究,同时帮助学生形成正确的世界观.。

古典概型公开课教案

古典概型公开课教案

古典概型公开课教案一、教学目标1. 让学生了解古典概型的定义和特点。

2. 让学生掌握古典概型的计算方法。

3. 培养学生运用古典概型解决实际问题的能力。

二、教学内容1. 古典概型的定义与特点2. 古典概型的计算方法3. 实际问题中的应用案例三、教学重点与难点1. 教学重点:古典概型的定义、特点和计算方法。

2. 教学难点:古典概型的计算方法和实际问题中的应用。

四、教学方法1. 讲授法:讲解古典概型的定义、特点和计算方法。

2. 案例分析法:分析实际问题中的应用案例。

3. 互动教学法:引导学生参与课堂讨论,提高学生的思考能力。

五、教学过程1. 导入新课:通过引入古代骰子游戏,引发学生对古典概型的兴趣。

2. 讲解古典概型的定义与特点:引导学生了解古典概型的基本概念,分析其特点。

3. 讲解古典概型的计算方法:引导学生掌握古典概型的计算方法,并进行课堂练习。

4. 分析实际问题中的应用案例:通过案例分析,让学生学会将古典概型应用于实际问题。

5. 课堂小结:总结本节课所学内容,强调重点和难点。

6. 课后作业:布置相关练习题,巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 课后作业评价:检查学生完成的练习题,评估学生对古典概型的理解和应用能力。

3. 小组讨论评价:在小组讨论环节,评估学生的合作意识和问题解决能力。

七、教学拓展1. 引导学生思考:如何将古典概型应用于现实生活中的概率问题?2. 推荐阅读材料:让学生了解古典概型在数学发展史上的应用和重要性。

八、教学资源1. 教学PPT:展示古典概型的定义、特点、计算方法和应用案例。

2. 练习题:提供相关的练习题,帮助学生巩固所学知识。

3. 案例分析资料:提供实际问题案例,供学生分析讨论。

九、教学建议1. 注重学生基础知识的培养,确保学生掌握古典概型的基本概念和计算方法。

2. 鼓励学生积极参与课堂讨论,提高学生的思考和问题解决能力。

古典概型高中教学设计

古典概型高中教学设计

古典概型高中教学设计1. 引言古典概型是概率论中最为基础的概念之一。

它是指在一个实验中,所有可能的结果出现的机会均等且独立的情况下,计算某个事件发生的概率。

在高中数学教学中,古典概型的教学设计应该注重培养学生的逻辑思维和数学运算能力,帮助他们理解并应用古典概型解决实际问题。

本文将基于这一目标,详细介绍古典概型高中教学的设计。

2. 教学目标本教学设计的主要目标是帮助学生掌握古典概型的基本概念和计算方法,并能够运用古典概型解决实际问题。

具体目标包括:- 理解古典概型的定义和基本性质;- 掌握古典概型的计算公式;- 能够应用古典概型解决实际问题;- 培养学生的逻辑思维和数学运算能力。

3. 教学内容3.1 古典概型的定义和基本性质在本节中,我们将向学生介绍古典概型的概念和基本性质。

通过一些具体的实例,让学生理解古典概型的定义,即在一个实验中,所有可能的结果出现的机会均等且独立。

同时,我们还将讨论古典概型的基本性质,如互斥事件、对立事件等,以及古典概型和概率的关系。

3.2 古典概型的计算方法在本节中,我们将介绍古典概型的计算公式。

对于有限个互不相同的结果称为简单事件的古典概型,概率可以通过以下公式计算得出:P(A) = N(A) / N,其中P(A)表示事件A发生的概率,N(A)表示事件A包含的简单事件数,N表示所有可能的简单事件数。

通过一些具体的演算题,让学生掌握如何使用古典概型的计算方法,并进行相关的计算练习。

3.3 应用古典概型解决实际问题在本节中,我们将通过一些具体的实际问题,让学生应用所学的古典概型解决问题。

这些问题可以来自于生活中的各个领域,如骰子、扑克牌、生日悖论等。

通过解决这些问题,学生将进一步理解古典概型的应用和意义。

4. 教学方法在本教学设计中,我们将采用多种教学方法,以培养学生的逻辑思维和数学运算能力。

具体教学方法包括:- 探究式学习:通过引导学生观察实验现象和实际问题,引导他们发现古典概型的规律和性质,培养他们的探究精神;- 讨论式教学:通过小组讨论和整体讨论的方式,让学生交流思想,共同解决问题,促进他们的思维发展;- 实践活动:通过实际操作和实验,让学生亲身体验古典概型的应用过程,提高他们的动手能力和实际操作能力。

古典概型的教案

古典概型的教案

古典概型的教案【篇一:古典概型教学设计】一、教学背景分析(一)本课时教学内容的功能和地位本节课内容是普通高中课程标准实验教科书人教a版必修3第三章概率第2节古典概型的第一课时,主要内容是古典概型的定义及其概率计算公式。

从教材知识编排角度看,学生已经学习完随机事件的概念,概率的定义,会利用随机事件的频率估计概率,学习了古典概型之后,学生还要学习几何概型,古典概型的知识在课本当中起到承前启后的作用。

古典概型是一种特殊的概率模型。

由于它在概率论发展初期曾是主要的研究对象,许多概率的最初结果也是由它得到的,因此,古典概型在概率论中占有重要地位,是学习概率必不可少的。

学习古典概型,有利于理解概率的概念,有利于计算事件的概率;为后续进一步学习几何概型,随机变量的分布等知识打下基础;它使学生进一步体会随机思想和研究概率的方法,能够解决生活中的实际问题,培养学生应用数学的意识。

(二)学生情况分析(所授对象接受知识情况和对本教学内容已知的可能情况)1、学生的认知基础:学生在初中已经对随机事件有了初步了解,并会用列表法和树状图求等可能事件的概率。

在前面的随机事件的概率一节中,已经掌握了用频率估计概率的方法,即概率的统计定义。

了解了事件的关系与运算,尤其是互斥事件的概念,以及概率的性质和概率的加法公式。

这些知识上的储备为本节课的基本事件的概念理解和古典概型的概率公式的推导打下了基础。

学生在前面的学习中熟悉了大量生活中的随机事件的实例,对于掷硬币,掷骰子这类简单的随机事件的概率可以求得。

2、学生的认知困难:我调查了初中的数学老师,和高一的学生对这部分知识的理解,发现学生初中学习了等可能事件的概率,对简单的等可能事件可计算其概率,但没有模型化,所以造成学生只知其然,不知其所以然。

根据以往的教学经验,如果不对概念进行深入的理解,学生学完古典概型之后,还停留在原有的认知水平上,那么,由于概念的模糊,会导致其对复杂问题的计算错误。

古典概型公开课教案新部编本.doc

古典概型公开课教案新部编本.doc
精品教学教案设计 | Excellent teaching plan
教师学科教案
[ 20 – 20 学年度 第__学期 ]
任教学科:_____________ 任教年级:_____________ 任教老师:_____________
xx 市实验学校
育人犹如春风化雨,授业不惜蜡炬成灰
精品教学教案设计 | Excellent teaching plan
高二农艺班
课时安排
1 课时
授课类型 新授课
教学方法 探究式与讲授式相结合
教学用具
硬币 骰子 图片 多媒体
一激趣诱思 讲一个概率小故事
教学过程
师生互动
设计意图
多媒体演示 提高学习兴趣。
二创设情境
我们先来看三个实验: 试验一:掷一枚质地均匀的硬币 实验二:掷一枚质地均匀的骰子 实验三:在一副 52 张扑克牌(去掉大小王)中随机抽取一张
提高学生的学 引发学生思考, 习积极性,提高 并回答问题。 学 习 数 学 的 兴
趣。
育人犹如春风化雨,授业不惜蜡炬成灰
精品教学教案设计 | Excellent teaching plan
教学过程
设计意图
问题 1:根据以前的学习,完成表格. 1.引入概念:基本事件
2.基本事件有如下的两个特点: (1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的 和。 问题 3:完成表格,观察对比,总结特点. 3.引入概念:古典概型
学生总结教师 突出了古典概
归纳并补充
型计算公式
五例题分析练习反馈
学生先思考再
例 1 单选题是标准化考试中常用的题型,一般是从 A,B, 独立完成,教师

《古典概型》优质课比赛教案

《古典概型》优质课比赛教案

古典概型
一、教学目标
1.知识目标
(1)通过试验理解基本事件的概念和特点.
(2)通过实例,抽象出古典概型的两个基本特征.
(3)推导概率的计算公式,应用公式求事件发生的概率.
2.能力目标
经历公式的推导过程,体验由特殊到一般的数学思想方法的应用.
3.情感态度与价值观目标
(1)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思
想.
(2)培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想.
二、教学重点
理解古典概型及其概率计算公式.
三、教学难点
古典概型的判断;在实际问题中,基本事件的数字化表示.
四、教学方法:
启发式归纳探究.
五、教学方式:
多媒体辅助教学.
六、教学设计
在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
)掷硬币试验中,“正面朝上”“反面朝上”的概率分别是多少?
)在掷骰子试验中,“出现
“出现2点”“出现3点”“出现点”“出现5点”“出现6点”的概率分别是多少?。

古典概型优质课比赛说课教案(配有相应PPT课件,见教学课件文件夹内) 精品

古典概型优质课比赛说课教案(配有相应PPT课件,见教学课件文件夹内)  精品

古典概型(一)说课教案一、教材分析1. 教材的地位及作用:本节课是高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习了随机事件的概率、概率的加法公式之后,学习几何概型之前,尚未学习排列组合的情况下进行教学的。

古典概型安排在这一节,是因为古典概率公式推导要用到加法公式,学了古典概型后有利于计算一些事件的概率,避免了大量重复试验。

有利于进一步理解概率的概念,有助于几何概型的学习,也可以为以后概率的学习奠定基础。

古典概型是一种特殊的数学模型,能培养学生建模的思想,同时它与生活联系密切,有利于解释生活中的一些问题,增加学生的兴趣。

2.教学重点:理解古典概型及其概率计算公式。

3.教学难点:(1)对古典概型两个特点的理解。

(2)确定在一个古典概型中试验的所有基本事件二、目标分析根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节教学目标如下:知识目标:理解古典概型及其概率计算公式;会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

能力目标:培养学生运用观察对比,归纳的方法探究问题的能力,注重化归,数形结合,分类思想的应用,逐步培养学生建模思想,来解决实际问题。

情感目标:通过各种贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想。

三、教法与学法分析导悟学启发接受诱导问题探究激励知识完成应用1.教法我采用:(1)引导发现和归纳概括相结合的教学方法,通过试验、设置表格、提出问题、分析问题,解决问题等教学过程,一步步地来概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性。

(2)多媒体辅助教学,体现直观,突破难点。

2.学法(1)新旧知联系:学生已正确理解了概率的意义,像游戏的公平性,这能促进本节“等可能”的理解。

引导学生进行知识迁移。

《古典概型》示范公开课教案【高中数学必修第一册北师大】

《古典概型》示范公开课教案【高中数学必修第一册北师大】

《古典概型》教学设计◆教学目标1.通过实例体会古典概型的抽象过程;2.理解古典概率的两个基本特征,掌握古典概型的概率计算公式;3.了解古典概型的重要性和应用的广泛性,能建立古典概率模型解决简单的实际问题,提升数学建模素养.◆教学重难点重点:古典概型的建立和应用.难点:古典概型的辨析.◆教学过程一、情境导入问题1.(1)在试验“抛掷一枚均匀的骰子,观察骰子掷出的点数”中,其样本空间有几个样本点?每个样本点出现的可能性相等吗?(2)在试验“连续抛掷一枚均匀的骰子2次,观察每次掷出的点数”中,其样本空间有几个样本点?每个样本点出现的可能性相等吗?答案:(1)样本空间为{1,2,3,4,5,6},这是一个一维有限样本空间,共有6个样本点;因为骰子的几何形状的对称性,所以可以认为每个样本点出现的可能性相等;(2)该试验的样本空间为二维有限样本空间,可以通过表格的形式写出,共有36个样本点;每个样本点出现的可能性相等.通过以上实例,可以归纳出这两个试验所对应的样本空间的特征:(1)有限性:样本空间的样本点总数有限;(2)等可能性:每次试验中,样本空间的各个样本点出现的可能性相等.二、新知探究问题2:(1)抛掷一枚均匀的骰子,“掷出偶数点”的可能性是多少?(2)同时抛掷两枚均匀的骰子(编号为1,2),“1号骰子掷出的点数为1”的可能性是多少?(3)同时抛掷两枚均匀的骰子,“掷出的点数相同”的可能性是多少?针对以上3个问题,试从以下两个方面进行探究:(1)动手实践,探究相关随机事件出现的频率;(2)结合有限性和等可能性,来分析并刻画相应随机事件发生的可能性.答案:(1)抛掷一枚均匀的骰子,其样本空间为{1,2,3,4,5,6},共有6个样本点,每个样本点出现的可能性相等,均为16,而“掷出偶数点”对应的事件为{2,4,6},含有3个样本点,因此,可以认为“掷出偶数点”的可能性是36,即12.(2)同时抛掷两枚均匀的骰子,其样本空间共有36个样本点,每个样本点出现的可能性相等,均为136,而“1号骰子掷出的点数为1”对应的事件为{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)},共含有6个样本点,因此其可能性为636,即16. (3)与(2)同理,“掷出的点数相同”对应的事件为{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},含有6个样本点,因此可以认为“掷出的点数相同”的可能性是636,即16. 问题2:根据以上问题,我们是否可以用一个具体的数来衡量随机试验下某事件发生可能性的大小?答案:可以.对于一个随机事件A ,我们经常用一个数P (A )(0≤P (A )≤1)来表示该事件发生的可能性的大小,这个数就称为随机事件A 的概率.概率度量了随机事件发生的可能性的大小,是对随机事件统计规律性的数量刻画. 抽象概括:一般地,若试验E 具有如下特征:(1)有限性:试验E 的样本空间Ω的样本点总数有限,即样本空间Ω为有限样本空间;(2)等可能性:每次试验中,样本空间Ω的各个样本点出现的可能性相等.则称这样的试验模型为古典概率模型,简称古典概型.追问1:结合前面的举例,能否说一说古典概型之下随机事件概率的计算方法?答案:对于古典概型来说,如果样本空间所含的样本点总数为n ,随机事件A 包含的样本点个数为m ,则事件A 发生的概率为P (A )=A 包含的样本点个数Ω包含的样本点总数=m n . 追问2:试着再举出一些古典概型的例子吧.答案:例如,①单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,所以他选择A ,B ,C ,D 哪一个选项都有可能,因此样本点总数为4,设答对为随机事件A ,由于正确答案是唯一的,所以事件A 只包含一个样本点,所以P (A )=14.②某班级男生30人,女生20人,随机地抽取一位学生代表,出现50个不同的结果,即样本空间共有50个样本点,设选中的代表是女生为随机事件B,则事件B包含20个样本点,所以P(B)=2050=25.说明:在现实中不存在绝对均匀的硬币,也没有绝对均匀的骰子,古典概率模型是从现实中抽象出来的一个数学模型,它有着广泛的应用.问题3:思考下面的问题.(1)向一条线段内随机地投射一个点,观察点落在线段上的不同位置,你认为这个情境适合用古典概型来描述吗?为什么?(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环,命中9环,……,命中1环和脱靶,你认为这个情境适合用古典概型来描述吗?为什么?(3)有人认为,抛掷两枚均匀的骰子,掷出的点数之和可能为2,3,4,…,12,共有11种可能的情形,因此,“掷出的点数之和是5”的可能性是111.这种说法对吗?答案:第(1)个问题中,试验的所有可能结果是线段上的所有点,试验的所有可能结果数是无限的,因此,尽管每一个结果出现的可能性相同,这个试验也不是古典概型;第(2)个问题中,试验的所有可能结果是11个,是有限的,但是命中10环,命中9环……命中1环和脱靶的出现不是等可能的,因此这个试验不是古典概型;第(3)个问题中,抛掷两枚均匀的骰子,如果我们把两枚骰子的点数之和作为观察的指标,那么共有2,3,4,…,12,共有11种可能的情形,能否就此得出“掷出的点数之和是5”的可能性是111的结论呢?关键在于这11种结果出现的可能性是否相等?解决上述疑问可以采用两种办法:(1)亲自动手试验;(2)计算机随机模拟.结合前面自主探究中的经验分析:抛掷两枚均匀的骰子,其样本空间共有36个样本点,每个样本点出现的可能性相等,均为136,而“掷出的点数之和为5”对应的事件为{(1,4),(2,3),(3,2),(4,1)),含有4个样本点.因此,“掷出的点数之和是5”的可能性是436,即19,而不是111.追问:试着来总结一下判定一个概率模型是否为古典概型的方法吧.答案:概率模型是否为古典概型,依据是其是否满足样本点的有限性和各个样本点出现的等可能性,判断它是否满足两个特征得根据具体情形分析.如学生很有可能认为第(2)个问题中命中10环和1环的可能性相等,事实上,1环的区域比10环的区域大得多,所以命中1环的概率也要大得多,而从实际来看,对有些射击者而言,由于高强度的训练,命中10环的概率可能比别的大,所以这些事件发生的可能性大小不同.对第(3)个问题,如果把两个骰子出现的点数的所有情况作为观察的对象,则可以用古典概型进行描述,而如果只考虑两个骰子的点数和,则不满足等可能性,不能使用古典概型的概率公式进行计算.三、应用举例例1.在试验E6“袋中有白球3个(编号为1,2,3)、黑球2个(编号为1,2),这5个球除颜色外完全相同,从中不放回地依次摸取2个,每次摸1个,观察摸出球的情况”中,摸到白球的结果分别记为w1,w2,w3,摸到黑球的结果分别记为b1,b2,求:(1)取到的两球都是白球的概率;(2)取到的两球颜色相同的概率;(3)取到的两个球至少有一个是白球的概率.解:由题意可知Ω={w1w2,w1w3,w1b1,w1b2,w2w1,w2w3,w2b1,w2b2,w3w1,w3w2,w3b1,w3b2,b1w1,b1w2,b1w3,b1b2,b2w1, b2w2,b2w3,b2b1},共有20个样本点,且每个样本点出现的可能性相同,属于古典概型.(1)设事件A表示“取到的两个球都是白球”,则A={w1w2,w1w3, w1w2,w1w3, w3w1,w3w2},共含有6个样本点,所以P(A)=620=310.(2)设事件B表示“取到的两个球颜色相同”,则B={w1w2,w1w3, w2w1,w2w3, w3w1,w3w2,b1b2, b2b1},共含有8个样本点,所以P(B)=820=25.(3)设事件C表示“取到的两个球至少有一个是白球”,则C={w1w2,w1w3,w1b1,w1b2,w2w1,w2w3,w2b1,w2b2,w3w1,w3w2,w3b1,w3b2,b1w1,b1w2,b1w3,b2w1,b2w2,b2w3},含有18个样本点,所以P(C)= =1820=910.思考:你可以结合该题,规划一下运用古典概型求概率的主要步骤吗?答案:(1)根据问题情境判断是否为古典概型;(2)用列举法写出试验所对应的样本空间;(3)利用古典概型的概率公式计算概率.例2.有A、B、C、D四位贵宾,应分别坐在a、b、c、d四个席位上,现在这四人均未留意,在四个席位上随便就坐时:(1)求这四人恰好都坐在自己的席位上的概率;(2)求这四人恰好都没坐在自己的席位上的概率;(3)求这四人恰好有1位坐在自己的席位上的概率.解:将A 、B 、C 、D 四位贵宾就座情况用下面图形表示出来:如上图所示,本题中的等可能基本事件共有24个.(1)设事件A 为“这四人恰好都坐在自己的席位上”,则事件A 只包含1个基本事件,所以P (A )=124. (2)设事件B 为“这四个人恰好都没有坐在自己席位上”,则事件B 包含9个基本事件,所以P (B )=924=38. (3)设事件C 为“这四个人恰有1位坐在自己席位上”,则事件C 包含8个基本事件,所以P (C )=824=13. 例3. 先后抛掷两枚大小相同的骰子(1)求点数之和出现7点的概率;(2)求出现两个4点的概率;(3)求点数之和能被3整除的概率.解:基本事件的总数共36种.(1)记“点数之和出现7点”为事件A ,事件A 包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )=636=16. (2)记“出现两个4点”为事件B ,则事件B 包含的基本事件只有1个,即(4,4).故P (B )=136. (3)记“点数之和能被3整除”为事件C ,则事件C 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )=1236=13. 四、课堂练习1.下列有关古典概型的四种说法:①试验中所有可能出现的样本点只有有限个;②每个事件出现的可能性相等;③每个样本点出现的可能性相等;④已知样本点总数为n ,若随机事件A 包含k 个样本点,则事件A 发生的概率()k P A n=. 其中所正确说法的序号是( )A .①②④B .①③C .③④D .①③④答案:D2.从1,2,3,4,5这5个数字中,不放回地任取两数,两数都是奇数的概率是________答案:310解析:基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,而两数都是奇数的有(1,3),(1,5),(3,5).故所求概率P =310. 3.从甲、乙、丙、丁四个人中选两名代表.求:(1)甲被选中的概率;(2)丁没被选中的概率.解:(1)记甲被选中为事件A ,基本事件有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁共6个,事件A 包含的事件有甲乙,甲丙,甲丁共3个,则P (A )=36=12; (2)记丁被选中为事件B ,由(1)同理可得P (B )=12,又因丁没被选中为丁被选中的对立事件,设为B ,则P (B )=1-P (B )=1-12=12. 五、归纳总结1.古典概型的特征:(1)有限性,(2)等可能性;2.古典概型的概率公式:如果样本空间所含的样本点总数为n ,随机事件A 包含的样本点个数为m ,则事件A 发生的概率为P (A )=A 包含的样本点个数Ω包含的样本点总数=m n . 3.运用古典概型解决实际问题的步骤: (1)根据问题情境判断是否为古典概型;(2)用列举法写出试验所对应的样本空间;(3)利用古典概型的概率公式计算概率.六、布置作业教材P204习题7-2第1,2,3,6题。

高中数学必修3《古典概型》教案

高中数学必修3《古典概型》教案

课题:古典概型教材:新课标人教版《数学》必修3一. 教学目标1.知识与技能(1)通过试验结果的分析理解基本事件的概念及特点。

(2)理解古典概型及其概率计算公式。

(3)学会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2.过程与方法(1)探究分析试验结果,掌握基本事件的两个特点。

(2)通过试验对比让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性。

(3)观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想。

(4)掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观(1) 适当地增加学生合作学习交流的机会,培养学生感受与他人合作精神。

(2) 经历公式的推导过程,体验由特殊到一般的数学思想方法,在探究活动中形成锲而不舍的钻研精神和科学态度。

(3)用现实意义的实例,培养学生以科学的观点评价身边的一些随机现象的能力,激发其学习兴趣,培养勇于探索、善于发现的创新精神。

二. 教学重点、难点1.教学重点理解古典概型的概念及利用古典概型求解随机事件的概率。

2.教学难点如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

三. 教学方法和手段1.教学方法:引导发现和归纳概括相结合根据本节课的特点,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2.教学手段:多媒体辅助教学高一数学“古典概型”教案说明古典概型是高中数学人教A版必修3第三章概率第2节的内容。

古典概型是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种理想的数学模型,也是一种最基本的概率模型。

它的引入避免了大量的重复试验,而且得到的是概率准确值,同时它也是后面学习其它概率的基础,起到承前启后的作用。

5.3.3古典概型教学设计-2024-2025学年高一上学期数学人教B版

5.3.3古典概型教学设计-2024-2025学年高一上学期数学人教B版

教学设计古典概型一、主题内容概率是一个事件发生、一种情况出现的可能性大小的数量指标,介于 0与1之间,这个概念萌芽于16世纪,与掷骰子进行赌博的活动密切相关。

对概率是否存在始终是概率论争论的哲学问题。

古典概型表明定义古老的、经典的概率模型,古典概型讨论的对象局限于随机试验所有可能结果为有限个等可能的情形。

古典概型是《高中数学》人教B版(必修2)第五章的内容,教学安排是2课时,本节是第一课时。

本节教学是在还没有学习排列组合的情况下(随机事件概率后,频率与概率前)展开的。

主题内容主要涉及以下几个方面:样本空间与样本点:样本空间是随机试验所有所有可能的集合,样本点则是这个集合中的元素。

古典概型:样本空间是有限可数的,每个基本事件发生的可能性是相等的。

等可能性:古典概型基于的基本假设是每一个基本事件(即样本空间中的每一个样本点)发生的可能性是相同的。

概率计算:P(A) = 事件A包含的样本点个数 / 样本空间中所有的样本点总数。

二、背景分析《普通高中数学课程标准 (2017年版2020年修订)》对古典概型的内容要求是:结合具体实例,理解古典概型,能计算古典概型中简单随机事件的概率。

教学提示:应引导学生通过古典概型,认识样本空间、样本点,理解随机事件发生的含义。

学业要求:能够掌握古典概型的基本特征,根据实际问题构建概率模型,解决实际问题。

从课标中可以看出主要发展学生的数学建模、数学抽象、数学运算。

数学建模借助具体例子得到古典概率模型,利用样本空间、样本点来描述古典概型,能够计算古典概型中简单随机事件的概率。

三、教材分析关于古典概型的内容,在人教A版和人教B版教材中都被列为重要内容,但呈现的方式和侧重点有所不同。

以下是对两个版本教材的详细分析:人教A版教材下图展示了对人教A版教材古典概型内容顺序分析以下展示了对人教A版教材的古典概型的教学路线分析:教学可以分4活动:1.建立古典概率模型过程:根据试验归纳出共同特征有限性、等可能性抽象出古典概型2.古典概型计算3.巩固提升:通过两个例子归纳求解的一般思路4.例子分析:利用所学知识对样本代表性影响进行分析人教B版教材下图展示了对人教B版教材古典概型内容顺序分析下面展示了对人教B版教材的古典概型的教学路线分析:1.建立古典概率模型过程:借助具体例子的计算抽象出古典概率模型计算2.古典概型计算:从特殊到一般进行推理3.巩固提升:借助瓶盖例子再次理解古典概型4.例子分析:例1:利用定义解决问题;例2利用概率性质解决问题;例3关注题目条件不同;例3、4、5用不同的表示方法表示样本空间有树状图、矩阵、坐标系;例6强调等可能性。

高中高三数学《古典概型》教案、教学设计

高中高三数学《古典概型》教案、教学设计
-例如:将学生分成小组,针对某一实际问题进行讨论,共同找出解决问题的方法。
5.教学过程中,注重启发式教学,引导学生自主探究、发现规律,提高学生的自主学习能力。
-例如:在讲解古典概型计算方法时,教师给出部分提示,让学生自主完成计算过程。
6.设计丰富的课堂练习,巩固所学知识,并及时给予反馈,帮助学生查漏补缺。
-请学生尝试解决以下问题:一个袋子里有5个白球、4个黑球和1个红球,随机取出两个球,求取出的两个球颜色相同的概率。
作业要求:
1.学生在完成作业时,要注重理解古典概型的概念和计算方法,避免死记硬背。
2.在设计生活实例时,要尽量选择有趣、富有挑战性的问题,提高自己的实际应用能力。
3.完成作业后,要进行自我检查,确保解答过程正确无误,并对自己的作业进行适当的批改和反思。
四、教学内容与过程
(一)导入新课
1.教学活动:教师以一个生动的实际例子引入新课,如“一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。”
2.提出问题:通过上述例子,教师引导学生思考以下问题:
-概率是什么?如何计算概率?
-在这个问题中,为什么红球和蓝球的个数会影响概率的计算?
3.过渡:通过讨论,引出古典概型的概念,指出古典概型是解决此类问题的有效方法。
(三)学生小组讨论
1.教学活动:学生分成小组,针对以下问题进行讨论:
-生活中还有哪些问题可以用古典概型来解决?
-在解决古典概型问题时,如何运用排列组合知识?
2.讨论过程:小组成员相互交流,共同解决问题,教师巡回指导。
3.分享与评价:各小组汇报讨论成果,其他小组进行评价,教师给予点评。
(四)课堂练习
1.教学活动:学生完成以下练习题,巩固所学知识。

古典概型教案7篇

古典概型教案7篇

古典概型教案7篇古典概型教案篇1一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中全部可能涌现的基本领件只有有限个;2)每个基本领件涌现的可能性相等;(2)掌控古典概型的概率计算公式:p(a)=2、过程与方法:(1)通过对现实生活中详细的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培育规律推理技能;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感立场与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:重点是掌控古典概型的概念及利用古典概型求解随机事项的概率;难点是如何判断一个试验是否是古典概型,分清一个古典概型中某随机事项包含的基本领件的个数和试验中基本领件的总数。

三、教法与学法指导:依据本节课的特点,可以采纳问题探究式学案导学教学法,通过问题导入、问题探究、问题解决和问题评价等教学过程,与同学共同探讨、合作争论;应用所学数学知识解决现实问题。

四、教学过程:1、创设情境:(1)掷一枚质地匀称的硬币的试验;(2)掷一枚质地匀称的骰子的试验。

师生共同探讨:依据上述状况,你能发觉它们有什么共同特点?同学分组争论试验,每人写出试验结果。

依据结果探究这种试验所求概率的特点,尝试归纳古典概型的定义。

在试验(1)中结果只有2个,即正面朝上或反面朝上,它们都是随机事项。

在试验(2)中,全部可能的试验结果只有6个,即涌现1点2点3点4点5点和6点,它们也都是随机事项。

2、基本概念:(看书130页至132页)(1)基本领件、古典概率模型。

(2)古典概型的概率计算公式:p(a)= .3、例题分析:(呈现例题,深刻体会古典概型的两个特征依据每个例题的不同条件,让每个同学找出并回答每个试验中的基本领件数和基本领件总数,分析是否满意古典概型的特征,然后利用古典概型的`计算方法求得概率。

) 例1 从字母a,b,c,d中任意取出两个不同的试验中,有哪些基本领件?分析:为了得到基本领件,我们可以根据某种顺次,把全部可能的结果都列出来。

【新人教版高中数学公开课精品教案】古典概型 教学设计(新疆阿克苏)

【新人教版高中数学公开课精品教案】古典概型 教学设计(新疆阿克苏)

课题:《古典概型》第一课时教学设计及说明新疆阿克苏地区第二中学刘峰《古典概型》选自高中数学人教A版必修3第三章第2节第1课时。

在当代高中数学新课改的背景下,数学教育要把“数学育人”作为根本目标,要将“德育”渗透到教育教学的各个环节中去。

通过引导学生开展独立思考、主动探究、合作交流等多种活动形式来理解和掌握基本的数学方法和数学技能。

要鼓励学生的创新思考,加强学生的数学实践,培养学生的理性精神,从而激发学生的学习兴趣。

在数学教学过程中,学生成为课堂学习的主体,教师成为学生活动的组织者、引导者、合作者。

下面我将以此为指导思想从:教学内容解析→教学目标设置→学生学情分析→教学策略分析→教学过程等几个方面向各位评委老师说明我的构思与设想。

一、教学内容分析:1、教材分析:(1)教材将本节课内容安排在随机事件概率之后,几何概型之前,古典概型是一种特殊的概率模型,也是一种最基本的概率模型,它的引入避免了大量的重复实验,而且得到的是概率准确值,同时古典概型也为后面学习其他概率的基础。

在教材中起到承前启后的作用,所以在概率论中占有相当重要的地位。

(2)本节课学生将感知认识与理性认识相结合,并且利用生活中大量实例来归纳总结相关的数学概念。

能用系统的眼光看待以前已经接触的知识,通过本节课的探究确定古典概型的定义及计算公式,所以本节课对学生构建数学模型能力和方法有所提升。

(3)本节课渗透了数形结合的思想,分类讨论的思想以及变式化归的思想,树立学生从具体到抽象,从特殊到一般的数学思想,并且利用列举法(树状图、列表)来寻找基本事件,有利于培养学生良好的数学思维。

2、教材处理:依据新教材和新大纲的要求,本节课是《古典概型》第1课时,重点是古典概型的定义和古典概型的计算公式,为了让学生更好地掌握本节课的内容,在紧扣书上例题的同时,对例题做适当的变式、调整与补充。

二、教学目标设置:根据上述教材结构和内容分析,以及对学生认知水平的考察,我制定如下教学目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《古典概型》公开课优秀教学设计
课题:《古典概型》第一课时教学设计及说明
《古典概型》选自高中数学人教A版必修3第三章第2节第1课时。

在当代高中数学新课改的背景下,数学教育要把“数学育人”作为根本目标,要将“德育”渗透到教育教学的各个环节中去。

通过引导学生开展独立思考、主动探究、合作交流等多种活动形式来理解和掌握基本的数学方法和数学技能。

要鼓励学生的创新思考,加强学生的数学实践,培养学生的理性精神,从而激发学生的学习兴趣。

在数学教学过程中,学生成为课堂学习的主体,教师成为学生活动的组织者、引导者、合作者。

下面我将以此为指导思想从:教学内容解析→教学目标设置→学生学情分析→教学策略分析→教学过程等几个方面向各位评委老师说明我的构思与设想。

一、教学内容分析:
1、教材分析:(1)教材将本节课内容安排在随机事件概率之后,几
何概型之前,古典概型是一种特殊的概率模型,也是一种最基本的概率模型,它的引入避免了大量的重复实验,而且得到的是概率准确值,同时古典概型也为后面学习其他概率的基础。

在教材中起到承前启后的作用,所以在概率论中占有相当重要的地位。

(2)本节课学生将感知认识与理性认识相结合,并且利用生活中大量实例来归纳总结相关的数学概念。

能用系统的眼光看待以前已经接触的知识,通过本节课的探究确定古典概型的定义及计算公式,所以本节课对学生构建数学模型能力和方法有所提升。

(3)本节课渗透了数形结合的思想,分类讨论的思想以及变式化
1
归的思想,树立学生从具体到抽象,从特殊到一般的数学思想,并且利用列举法(树状图、列表)来寻找基本事件,有利于培养学生良好的数学思维。

2、教材处理:依据新教材和新大纲的要求,本节课是《古典概型》
第1课时,重点是古典概型的定义和古典概型的计算公式,为了让学生更好地掌握本节课的内容,在紧扣书上例题的同时,对例题做适当的变式、调整与补充。

二、教学目标设置:根据上述教材结构和内容分析,以及对学生认知
水平的考察,我制定如下教学目标。

1,知识与技能:掌握基本事件的概念,正确理解古典概型的两个
特点;并能归纳总结出古典概型的概率计算公式。

2,过程与方法:(1)通过模拟实验理解古典概型的特征;观察
类比各个实验,正确理解古典概型的两个特点;再通过归纳总结出古典概型的计算公式。

学会运用分类讨论的思想解决概率的计算问题。

(2)让学生口头表述和书面表达提高学生数学表达及数学交流的能力。

(3)通过对例题的变式练习培养学生的化归思想。

3,情感态度与价值观:
(1)通过生活中常见的实例引出新课内容,使学生体会到数学源于生活而又高于生活,从而激发学生的学习兴趣。

(2)利用多媒体课件,引导学生探索基本事件、古典概型的定义并能得出古典概型的计算公式,使学生认识到现代技术在数学认知过程
2
中的作用,从而激发学生学习的欲望。

(3)通过实例变式,让学生体会化归思想,并且使学生清楚地认识到数学是以不变应万变。

(4)树立学生从具体到抽象,从特殊到一般的辩证唯物主义的观点,培养学生用随机的观点来理性地理解世界。

4,教学重难点:
重点:古典概型的定义及利用古典概型求解随机事件的概率方法。

难点:判断一个试验是不是古典概型,分清在一个古典概型中某随机
事件包含的基本事件的个数和实验中基本事件的总数。

突破:能从实际生活中的例子提炼有效信息,并且能建立正确的数学
模型,利用分类讨论的思想,列举法是突破重点和难点的关键。

三、学生学情分析:
(1)学生是在初中学过概率的基础上进一步学习的,并且是在学习
完统计后来学习本节课内容。

(2)我所教的是理科小尖班,大部分学生的基础好,学生的理解能力、运算能力、思维能力等方面都不错,所以我在设置例题时进行适当的增加与变式,而对例题进行一定的变式,让学生自己参与对知识的掌握和应用中去。

(3)由于本节课的内容和生活联系紧密,所以我利用了大量的实例进行分析。

四、教法分析和学法指导:教师要善于启发学生自主性学习,充分调
3
动学生学习的积极性和主动性,有效地渗透数学思想和方法。

培养学生的数学能力和
创新能力,使学生独立实现学习目标,本节课我主要采用启发探究式学习,其中,在探索
结论时,采用发现法;在概念的形成及其公式的推导的教学中采用化归法;在训练部分中,主要采用讲练结合法。

它主要分四个环节:问题→思考→交流→总结。

鼓励学生针对问题
展开讨论、相互合作,教师在课堂中起到引导作用,根据本节课知识特点,为突出重点、
突破难点,增加课堂教学容量,我采用多媒体技术辅助教学来提高本节课的学习效率。

五、教学过程:
1、创设情境、引出新课:(1)有一本好书,两位同学都想看.在一个不透明的箱子
里放4个大小相同的球,标号为1,2,3,4,充分搅拌后随机摸取一个球,摸到标号为偶数
的甲先看,摸到标号为奇数的乙先看。

而乙同学提议掷骰子:三点以下甲先看,三点以上
乙先看,这两种方法是否公平?
【设计意图】:由生活的实例,快速地将学生的注意力引入课堂,提出公平与否实质
上是概率大小问题,进而切入本堂课的主题。

2、新课讲授:
(一)学生交流,揭示规律
在学生感知认识完实验结果的特点后,再由教师组织学生分组合作来模拟以下两个实验:
试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“
4
反面朝上”的次数,要求每个小组至少完成20次(最好是10的倍数),最后由数学
课代表汇总;
试验二:抛掷一个质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”“6点“的次数,要求每个小组至少完成50次(最好是10的倍数),最后课代表汇总.
问:(1)用模拟试验的方法来求某一随机事件的概率好不好?为什
么?
(2)根据以前的学习,上述两个模拟试验的每个结果之间有什么特点?
【设计意图】:让学生理性的总结出特点,并且让学生感受与他人合作的重要性,培养学生运用数学语言的能力,随着问题的提出,激发了学生的求知欲望,通过观察对比,培养学生发现问题的能力。

概念形成:1、基本事件具有如下的两个特点:(1)任何两个基本事件是互斥的;
(2) 任何事件(除不可能事件)都可以表示成基本事件的和. 并且引导学生回忆初中学过的列表法和树状图法。

【例1】从字母中任意取出两个不同字母的试验中,有哪些基本事件
?【设计意图】通过例题让学生对比两种方法的利弊,让学生进一步加深对基本事件的列举方法。

(二)引导学生归纳结论
在学生学习激情高涨的时候进一步给出生活中常见的三个实例引导学生归纳总结出古典概型的概念和两个特点。

(1)向
5
感谢您的阅读,祝您生活愉快。

相关文档
最新文档